

CAPACITY FORECASTING IN A BACKUP STORAGE ENVIRONMENT

Mark Chamness Principal Engineer EMC

IT Behavior is Reactive

If it's not broken (yet), don't fix it.

Problem: 100% Disk Capacity

- Backups Fail
- Late night alerts
- Administrative short-cuts
 - Delete files
 - Decrease retention policy
 - Remove snapshots
- Fire drill for new equipment and \$

Solution: Proactive Prevention

Predict & plan for future capacity needs

Prediction Simplified - Single model

- 1. Model subset of data (past 30 days)
- 2. Apply linear regression
- 3. Choose timeframe for notification: next 90 days
- 4. Run analysis and generate notifications

Prediction using single model

Is a single model generally effective?

Single model often performs poorly

- Fixed subset often results in poor predictions
- Why? Not adaptable to changes in behavior

Prediction – Two Models

Generate models for two periods & select best one

Both Wrong!

Prediction – Optimal

Generate all possible models & choose best

Select largest R² ("Regression Sum of Squares")

- Maximum R² occurs at change in behavior
- Result best model to fit the data

Application of "optimal" model to data from 10,000+ Data Domain backup storage systems

Most of the regression models generated have R² close to 1.0, indicating good fit to data

Example: model adapts to recent behavior

Example: a shelf was added, increasing capacity

Example: "Roller-coaster"

$$R^2 = 0.98$$

Example: Model too ambitions

Model not very good – over-fits recent data

Example: Schizophrenic

Model does not work

Model Validation

Requirements for publishing forecasts:

- Goodness-of-fit: R² > 0.90
- Positive slope
- Forecast time frame < 10 years
- Sufficient statistics: 15 days data
- Space utilization: minimum 10%
- Last data point trumps all

Model Validation

- Last data point trumps all previous data
- Can no longer predict behavior

Analysis of model across all systems

Histogram of Forecasted days to 100% capacity

Median time to 100% capacity is 6 months (Note: Median system is 80% full)

Analysis of model across all systems

Histogram of Forecasted days to 100% capacity

Possible explanations:

- Efficient use of capital
- Usage exceeded expectations

6 months

Q&A

#