conference

proceedings

LISA "11: 25th Large
Installation System
Administration
Conference

89U8J8Ju09 uoneJlsIuIWpPY WalsAg uone(eisu| abie] yigz :11, ¥SI1 o sbuipaasoly

Boston, Massachusetts
December 4-9, 2011

SPONSORED BY
susenix
N THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

in cooperation with

LOPSA

110Z 61t 19qwaaa(g ‘sppasnyaessel) ‘uojsog

© 2011 by The USENIX Association
All Rights Reserved

ISBN 978-931971-88-1

This volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings.

USENIX acknowledges all trademarks herein.

USENIX Association

Proceedings of LISA °11:
25th Large Installation System

Administration Conference

December 4-9, 2011

Boston, Massachusetts

Conference Organizers

Program Co-Chairs
Thomas A. Limoncelli, Google, Inc.
Doug Hughes, D. E. Shaw Research, LLC

Program Committee

Narayan Desai, Argonne National Lab

Andrew Hume, AT&T Labs—Research

Duncan Hutty, ZOLL Medical Corporation

Dinah McNutt, Google, Inc.

Tim Nelson, Worcester Polytechnic Institute

Mario Obejas, Raytheon

Mark Roth, Google, Inc.

Carolyn Rowland, National Institute of Standards and
Technology (NIST)

Federico D. Sacerdoti, Aien Capital & Aien Technology

Marc Stavely, Consultant

Nicole Forsgren Velasquez, Pepperdine University

Avleen Vig, Etsy, Inc.

David Williamson, Microsoft Tellme

Invited Talks Coordinators
Zleen Frisch, Exponential Consulting
Kent Skaar, VMware, Inc.

Workshops Coordinator

Cory Lueninghoener, Los Alamos National Laboratory

Guru Is In Coordinator
Chris St. Pierre, Oak Ridge National Laboratory

Poster Session Coordinator
Matt Disney, Oak Ridge National Laboratory

Work-in-Progress Reports (WiPs)
Coordinator
William Bilancio, Arora and Associates, P.C.

Training Program
Daniel V. Klein, USENIX Association

USENIX Board Liaison
David N. Blank-Edelman, Northeastern University

Steering Committee

Paul Anderson, University of Edinburgh
David N. Blank-Edelman, Northeastern University
Mark Burgess, CFEngine

Alva L. Couch, Tufts University

Rudi van Drunen, Competa IT

Zleen Frisch, Exponential Consulting
Xev Gittler, Morgan Stanley

William LeFebvre, Digital Valence, LLC
Mario Obejas, Raytheon

Ellie Young, USENIX Association
Elizabeth Zwicky, Consultant

The USENIX Association Staff

External Reviewers

Paul Armstrong
Derek J. Balling
Steve Barber
Matthew Barr
Lois Bennett
Ken Breeman
Travis Campbell
Brent Chapman
Marc Chiarini
Alva L. Couch
Matt Disney
Rudi van Drunen

Bill Lefebvre
Cory Lueninghoener
Chris McEniry
Adam Moskowitz
Mario Obejas
Tobias Oetiker
Cat Okita

Eric Radman
Benoit Sigoure
Josh Simon

Kent Skaar

Ozan Yigit

LISA °11:
25th Large Installation System Administration Conference
December 4-9, 2011
Boston, Massachusetts

Message from the Program Co-Chairs. e vii

Wednesday, December 7

Perspicacious Packaging

Staging Package Deployment via Repository Management.c.coitiiiiiieieiiieenenencenenennns 1
Chris St. Pierre and Matt Hermanson, Oak Ridge National Laboratory

CDE: Run Any Linux Application On-Demand Without Installation................ ... coiiiiiiiiaee, 9
Philip J. Guo, Stanford University

Improving Virtual Appliance Management through Virtual Layered File Systems 25
Shaya Potter and Jason Nieh, Columbia University

Clusters and Configuration Control

Sequencer: Smart Control of Hardware and Software Components in Clusters (and Beyond) 39
Pierre Vignéras, Bull, Architect of an Open World

Automated Planning for Configuration Changes......... ..ottt iiiiiiieneneenenennns 57
Herry Herry, Paul Anderson, and Gerhard Wickler, University of Edinburgh

Fine-grained Access-control for the Puppet Configuration Languagecciiiiiinen. 69
Bart Vanbrabant, Joris Peeraer, and Wouter Joosen, DistriNet, K.U. Leuven

Security 1

Tiqr: A Novel Take on Two-Factor Authentication........... ..ottt iiiiienenenns 81
Roland M. van Rijswijk and Joost van Dijk, SURFnet BV

Building Useful Security Infrastructure for Free (Practice & Experience Report)...................... 99
Brad Lhotsky, National Institutes on Health, National Institute on Aging, Intramural Research Program

Local System Security via SSHD Instrumentation.ot iiiiiiiiiiiiiiiiiiiiieienenns 109
Scott Campbell, National Energy Research Scientific Computing Center, Lawrence Berkeley National Lab

USENIX Association LISA ’11: 25th Large Installation System Administration Conference iii

Thursday, December 8

From Small Migration to Big Iron

Adventures in (Small) Datacenter Migration (Practice & Experience Report)................. ..o, 121
Jon Kuroda, Jeff Anderson-Lee, Albert Goto, and Scott McNally, University of California, Berkeley

Bringing Up Cielo: Experiences with a Cray XE6 System, or, Getting Started with Your New

140k Processor System (Practice & Experience Report)cociiiiiiiiiiiiiiiiiiiiiiinnnen.. 131
Cory Lueninghoener, Daryl Grunau, Timothy Harrington, Kathleen Kelly, and Quellyn Snead, Los Alamos
National Laboratory

Backup Bonanza

Capacity Forecasting in a Backup Storage Environment (Practice & Experience Report)............... 141
Mark Chamness, EMC

Content-aware Load Balancing for Distributed Backup o ittt 151
Fred Douglis and Deepti Bhardwaj, EMC,; Hangwei Qian, Case Western Reserve University, Philip Shilane,
EMC

To the Cloud!

Getting to Elastic: Adapting a Legacy Vertical Application Environment for Scalability 169
Eric Shamow, Puppet Labs

Scaling on EC2 in a Fast-Paced Environment (Practice & Experience Report)....................o0.. 179
Nicolas Brousse, TubeMogul, Inc.

Honey and Eggs: Keeping Out the Bad Guys with Food

DarkNOC: Dashboard for Honeypot Managementc.cuoieitienireeneneneenencnconenencnns 189
Bertrand Sobesto and Michel Cukier, University of Maryland; Matti Hiltunen, Dave Kormann, and Gregg
Vesonder, AT&T Labs Research; Robin Berthier, University of Illinois

A Cuckoo’s Egg in the Malware Nest: On-the-fly Signature-less Malware Analysis, Detection,

and Containment for Large Networks oottt ittt iieneeneneneanenens 201
Damiano Bolzoni and Christiaan Schade, University of Twente; Sandro Etalle, University of Twente and
Eindhoven Technical University

Seriously Snooping Packets

Auto-learning of SMTP TCP Transport-Layer Features for Spam and Abusive Message Detection. 217
Georgios Kakavelakis, Robert Beverly, and Joel Young, Naval Postgraduate School

Using Active Intrusion Detection to Recover Network Trusto, 227
John F. Williamson and Sergey Bratus, Dartmouth College; Michael E. Locasto, University of Calgary; Sean W.
Smith, Dartmouth College

LISA ’11: 25th Large Installation System Administration Conference USENIX Association

Friday, December 9

Network Security

Community-based Analysis of Netflow for Early Detection of Security Incidents......................
Stefan Weigert, TU Dresden; Matti A. Hiltunen, AT&T Labs Research; Christof Fetzer, TU Dresden

WCIS: A Prototype for Detecting Zero-Day Attacks in Web Server Requests..............ccoevvunne.
Melissa Danforth, California State University, Bakersfield

Networking 1

Automating Network and Service Configuration Using NETCONF and YANG
Stefan Wallin, Luled University of Technology; Claes Wikstrém, Tail-f Systems AB

Deploying IPv6 in the Google Enterprise Network: Lessons Learned......................oooiia,
Haythum Babiker, Irena Nikolova, and Kiran Kumar Chittimaneni, Google

Experiences with BOWL: Managing an Outdoor WiFi Network (or How to Keep Both Internet

Users and Researchers Happy?) (Practice & Experience Report)coiiiiiiiiiiiiia,
T. Fischer, T. Hiihn, R. Kuck, R. Merz, J. Schulz-Zander, and C. Sengul, TU Berlin/Deutsche Telekom
Laboratories

Migrations, Mental Maps, and Make Modernization

Gong Zhang and Ling Liu, Georgia Institute of Technology

Provenance for System Troubleshootingot iiiiiiiiiiiiiiiiiiiiiinrernenennnnnns
Marc Chiarini, Harvard SEAS

Debugging Makefiles with remake.ottt iiiiitiitiinetnsereennsnsnnns
Rocky Bernstein

USENIX Association LISA ’11: 25th Large Installation System Administration Conference

v

Message from the Program Co-Chairs

Dear LISA ’11 Attendee,

There are two kinds of LISA attendees: those who read this letter at the conference and those who read it after
they’ve returned home. To the first group, get ready for six days of brain-filling, technology-packed, geek-centric
tutorials, speakers, papers, and more! To those that are reading this after the conference, we ask, “What’s it like
living in the future? How was the conference? What cool tips and tools did you take home with you to make your
job easier?”

Being a sysadmin is kind of like living in the future. You work with technology every day that would make Buck
Rogers jealous. Most of our friends are jealous, too. When LISA started 25 years ago, a “large site” had 10 comput-
ers, each the size of a dishwasher, with a few gigabytes of combined storage. Today our cell phones have 32GB of
“compact flash,” which is often more than the NFS quota we give our users.

Attending LISA is kind of like spending a week living in the future. We learn technologies that are cutting-edge—
little known now, but next year everyone will be talking about them. When we return from LISA we sound like
time travelers visiting from the future talking about new and futuristic stuff. LISA makes us look good.

LISA rarely has a cohesive conference theme, but this year we thought it was important to highlight DevOps, as it
is a significant cultural change. Although DevOps is often thought of as “something big Web sites do,” the lessons
learned transfer well to enterprise computing.

LISA has always been assembled using the sweat of many dedicated volunteers. It takes a lot of effort to put a
conference like this together, and this year is no different. Most prominent are the Invited Talks committee (Eleen
Frisch and Kent Skaar) and the Program Committee (Narayan Desai, Andrew Hume, Duncan Hutty, Dinah
McNutt, Tim Nelson, Mario Obejas, Mark Roth, Carolyn Rowland, Federico D. Sacerdoti, Marc Stavely, Nicole
Forsgren Velasquez, Avleen Vig, and David Williamson), but also important are the Workshops Coordinator (Cory
Lueninghoener), the Guru Is In Coordinator (Chris St. Pierre), the Poster Session Coordinator (Matt Disney), and
the Work-in-Progress Reports Coordinator (William Bilancio). We couldn’t have done it without every one of them.
Of course, nothing would happen without the leadership of the USENIX staff. We are indebted to you all!

Of the 63 papers submitted, we accepted 28. These papers represent the best “deep thought” research, as well as
Practice and Experience Reports that tell the stories from people “in the trenches.” We encourage you to read them
all. However, the power of LISA is the personal interaction: introduce yourself to the attendees standing in line
near you, strike up a conversation with the person sitting next to you. And remember to have fun!

Sincerely,

Thomas A. Limoncelli, Google, Inc.
Doug Hughes, D. E. Shaw Research, LLC
Program Co-Chairs

USENIX Association LISA ’10: 24th Large Installation System Administration Conference vii

Staging Package Deployment via Repository Management

Chris St. Pierre - stpierreca@ornl.gov
Matt Hermanson - mjhermanson@ornl.gov
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA*

Abstract

This paper describes an approach for managing package versions and updates in a homogenous manner
across a heterogenous environment by intensively managing a set of software repositories rather than by
managing the clients. This entails maintaining multiple local mirrors, each of which is aimed at a different
class of client: One is directly synchronized from the upstream repositories, while others are maintained
from that repository according to various policies that specify which packages are to be automatically
pulled from upstream (and therefore automatically installed without any local vetting) and which are to
be considered more carefully — likely installed in a testing environment, for instance — before they are

deployed widely.
Background

It is important to understand some points about our
environment, as they provide important constraints
to our solution.

We are lucky enough to run a fairly homoge-
nous set of operating systems consisting primarily of
Red Hat Enterprise Linux and CentOS servers, with
fair numbers of Fedora and SuSE outliers. In short,
we are dealing entirely with RPM-based packaging,
and with operating systems that are capable of using
yum [12]. As yum is the default package manage-
ment utility for the majority of our servers, we opted
to use yum rather than try to switch to another pack-
age management utility.

For configuration management, we chose to use
Befg2 [3] for reasons wholly unrelated to package and
software management. Befg2 is a Python and XML-
based configuration management engine that “helps
system administrators produce a consistent, repro-
ducible, and verifiable description of their environ-
ment” [3]. It is in particular the focus on repro-
ducibility and verification that forced us to consider
updating and patching anew.

In order to guarantee that a given configuration —

where a “configuration” is defined as the set of paths,
files, packages, and so forth, that describes a single
system — is fully replicable, Bcfg2 ensures that ev-
ery package specified for a system is the latest avail-
able from that system’s software repositories [8]. (As
will be noted, this can be overridden by specifying
an explicit package version.) This grants the system
administrator two important abilities: to provision
identical machines that will remain identical; and to
reprovision machines to the exact same state they
were previously in. But it also makes it unreasonable
to simply use the vendor’s software repositories (or
other upstream repositories), since all updates will be
installed immediately without any vetting. The same
problem presents itself even with a local mirror.
Befg2 can also use “the client’s response to the
specification ... to assess the completeness of the
specification” [3]. For this to happen, the Bcfg2
server must be able to understand what a “com-
plete” specification entails, and so the server does
not entirely delegate package installation to the Befg2
client. Instead, it performs package dependency res-
olution on the server rather than allowing the client
to set its own configuration. This necessitates en-
suring that the Befg2 Packages plugin uses the same

*This paper has been authored by contractors of the U.S. Government under Contract No. DE-AC05-000R22725. Ac-
cordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 1

yum configuration as the clients; Bcfg2 has support
for making this rather simple [8], but the Packages
plugin does not support the full range of yum func-
tionality, so certain functions like the “versionlock”
plugin and even package excludes, are not available.
Due to the architecture of Bcefg2 — architecture de-
signed to guarantee replicability and verification of
server configurations — it is not feasible or, in most
cases, possible to do client-based package and repos-
itory management. This became critically important
in selecting a solution.

Other Solutions

There are a vast number of potential solutions to this
problem that would seem to be low-hanging fruit —
far simpler to implement, at least initially, than our
ultimate solution — but that would not work, for var-
ious reasons.

Yum Excludes

A core yum feature is the ability to exclude certain
packages from updates or installation [13]. At first,
this would seem to be a solution to the problem of
package versioning: simply install the package version
you want, and then exclude it from further updates.
But this has several issues that made it unsuitable
for our use (or, we believe, this use case in general):

e It does not (and cannot) guarantee a specific
version. Using excludes to set a version depends
on that version being installed (manually) prior
to adding the package to the exclude list.

e There is no guarantee that the package is still in
the repository. Many mainstream repositories’
do not retain older versions in the same repos-
itory as current packages. Consequently, when
reinstalling a machine where yum excludes have
been used to set package versions (or when at-
tempting to duplicate such a machine), there is
no guarantee that the package version expected
will even be available.

e In order to use yum excludes to control package
versions, a very specific order of events must oc-
cur: first, the machine must be installed with-
out the target package included (as Kickstart,
the RHEL installation tool, does not support
installing a specific version of a package [1]);

next, the correct package version must be in-
stalled; and finally, the package must be added
to the exclude list. If this happens out of order,
then the wrong version of the package might be
installed, or the package might not be installed
at all.

e Supplying a permitted update to a package is
even more difficult, as it involves removing the
package exclusion, updating to the correct ver-
sion, and then restoring the exclusion. A config-
uration management system would have to have
tremendously granular control over the order in
which actions are performed to accomplish this
delicate goal.

e As discussed earlier, Bcfg2 performs depen-
dency resolution on the server side in order to
provide a guarantee that a client’s configura-
tion is fully specified. By using yum excludes —
which cannot be configured in Bcfg2’s internal
dependency resolver — the relationship between
the client and the server is broken, and Bcfg2
will in perpetuity claim that the client is out of
sync with the server, thus reducing the useful-
ness of the Bcefg2 reporting tools.

While yum excludes appear at first to be a viable
option, their use to set package versions is not repli-
cable, consistent, and cannot be trivially automated.

Specifying Versions in Bcfg2

Befg2 is capable of specifying specific versions of
packages in the specification, e.g.:

<BoundPackage name="glibc" type="yum">
<Instance version="2.13" release="1"
arch="i686"/>
<Instance version="2.13"
arch="x86_64"/>
</BoundPackage>

release="1"

This is obviously quite verbose (more so because
the example uses a multi-arch package), and as a re-
sult of its verbosity it is also error-prone. Having
to recopy the version, release, and architecture of a
package — separately — is not always a trivial process,
and the relatively few constraints of version and re-
lease strings makes it less so. For instance, given the
package:

iomemory-vsl-2.6.35.12-88.fc14.x86_64-
2.3.0.281-1.0.fc14.x86_64.rpm

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

The package name is “iomemory-vsl-2.6.35.12-
88.fc14.x86_64” (which refers to the specific kernel for
which it was built), the version is “2.3.0.281” and the
release is “1.0.fc14”.2 This can be clarified through
use of the -—queryformat option to rpm, but the fact
that more advanced RPM commands are necessary
makes it clear that this approach is untenable in gen-
eral. Even more worrisome is the package epoch, a
sort of “super-version,” which RPM cleverly hides by
default, but could cause a newer package to be in-
stalled if it was not specified properly.

Maintenance is also tedious, as it involves end-
lessly updating verbose version strings; recall that a
given version is just shorthand for what we actually
care about — that a package works.

This approach also does not abrogate the use of
yum on a system to update it beyond the appropriate
point. The only thing keeping a package at the chosen
version is Befg2’s own self-restraint; if an admin on
a machine lacks that same self-restraint, then he or
she could easily update a package that was not to be
updated, whereupon Bcefg2 would try to downgrade
it.

Finally, this approach presents specific difficulties
for us, as our adoption of Bcfg2 is far from com-
plete; large swaths of the center still use Cfengine 2,
and some machines — particularly compute and stor-
age platforms — operate in a diskless manner and do
not use configuration management tools in a tradi-
tional manner. They depend entirely on their images
for package versions, so specifying versions in Bcfg2
would not help.

To clarify, using Befg2 forced us to reconsider this
problem, and any solution must be capable of work-
ing with Befg2, but it cannot be assumed that the
solution may leverage Bcfg2.

Yum versionlock

Using yum’s own version locking system would ap-
pear to improve upon pegging versions in Becfg2:
it works on all systems, regardless of whether or
not they use Bcfg2; and a shortcut command, yum
versionlock <package-name>, is provided to make
the process of maintaining versions less error-prone.?

It also solves many of the problems of yum ex-
cludes, but suffers from a critical flaw in that ap-
proach: by setting package versions on the client,
the relationship between the Befg2 client and server
would be broken.

Combinations of these three approaches merely
exhibit combinations of their flaws. For instance,

the promising combination of yum’s versionlock plu-
gin and specifying the version in Bcefg2 would ensure
that the Befg2 client and server were of a mind about
package versions, and would work on non-Bcefg2 ma-
chines; however, it would forfeit versionlock’s ease of
use and require the administrator to once again man-
ually copy package versions.

Spacewalk

Spacewalk was the first full-featured solution we
looked at that aims to replace the mirroring portion
of this relationship; all of the other potential solu-
tions listed thus far have attempted to work with a
“dumb” mirror and use yum features to work around
the problem we have described. Spacewalk is a local
mirror system that “manages software content up-
dates for Red Hat derived [sic] distributions” [10]; it
is a tremendously full-featured system, with support
for custom “channels,” collections of packages assem-
bled in an ad-hoc basis.

Unfortunately, Spacewalk was a non-starter for us
for the same reason that it has failed to gain much
traction in the community at large: of the two ver-
sions of Spacewalk, only the Oracle version actually
implements all of the features; the PostgreSQL ver-
sion is deeply underfeatured, even after several years
of work by the Spacewalk team to port all of the Or-
acle stored procedures.

As it turns out, Red Hat has a successor in
mind for Spacewalk and Satellite: CloudForms [14].
The content management portion of CloudForms —
roughly corresponding to the mirror and repository
management functionality of Spacewalk — is Pulp.

A solution: Pulp

Pulp is a tool “for managing software repositories
and their associated content, such as packages, er-
rata, and distributions” [7]. It is, as noted, the spir-
itual successor to Spacewalk, and so implements the
vast majority of Spacewalk’s repository management
features without the dependency on Oracle.

Pulp’s usage model involves syncing multiple up-
stream repositories locally; these repositories can
then be cloned, which uses hard links to sync them
locally with almost no disk space used. This allows
us to sync a repository once, then duplicate it as
many times as necessary to support multiple teams
and multiple stability levels. The sync process sup-
ports filters, which allow us to blacklist or whitelist

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 3

packages and thus exclude “impactful” packages from
automatic updates.

Pulp also supports manually adding packages to
and removing packages from repositories, so we can
later update a given package across all machines that
use a repository with a single command. Adding and
removing also tracks dependencies, so it’s not possi-
ble to add a package to a repository without adding
the dependencies necessary to install it.

Workflow

Pulp provides us with the framework to implement
a solution to the problem outlined earlier, but even
as featureful as it is it remains a fairly basic tool.
Our workflow — enforced by the features Pulp pro-
vides, by segregating repositories, by policy, and by
a nascent in-house web interface — provides the bulk
of the solution. Briefly, we segregate repositories by
tier to test packages before site-wide roll-outs, and by
team to ensure operational separation. Packages are
automatically synced between tiers based on package
filters, which blacklist certain packages that must be
promoted manually. This ensures that most packages
benefit from up to two weeks of community testing
before being deployed site-wide, and packages that
we have judged to be more potentially “impactful”
from more focused local testing as well.

Tiered Repositories

We maintain different repository sets for different
“levels” of stability. We chose to maintain three tiers:

live Synced daily from upstream repositories; not
used on any machines, but maintained due to
operational requirements within Pulp® and for
reference.

unstable Synced daily from live, with the excep-
tion of selected “impactful” packages (more
about which shortly), which can be manually
promoted from live.

stable Synced daily from unstable, with the excep-
tion of the same “impactful” packages, which
can be manually promoted from unstable.

This three-tiered approach guarantees that pack-
ages in stable are at least two days old, and “im-
pactful” packages have been in testing by machines
using the unstable branch. When a package is re-
leased from upstream and sync to public mirrors,

those packages are pulled down into local reposito-
ries. From then on the package in under the control
of Pulp. Initially, a package is considered unstable
and is only deployed to those systems that look at
the repositories in the unstable tier. After a period
of time, the package is then promoted into the stable
repositories, and thus to production machines.

In order to ensure that packages in unstable re-
ceive ample testing before being promoted to stable,
we divide machines amongst those two tiers thusly:

e All internal test machines — that is, all machines
whose sole purpose is to provide test and de-
velopment platforms to customers within the
group — use the unstable branch. Many of
these machines are similar, if not identical, to
production or external test machines.

e Where multiple identical machines exist for a
single purpose, whether in an active-active or
active-passive configuration, exactly one ma-
chine will use the unstable branch and the rest
will use the stable branch.

Additionally, we maintain separate sets of repos-
itories, branched from live, for different teams or
projects that require different patching policies ap-
propriate to the needs of those teams or projects.
Pulp has strong built-in ACLs that support these di-
visions.

In order to organize multiple tiers across multi-
ple groups, we use a strict convention to specify the
repository ID, which acts as the primary key across
all repositories®, namely:

<team name>-<tier>-<os name>-<os version>-
<arch>-<repo name>

For example,
infra-unstable-centos-6-x86_64-updates would
denote the Infrastructure team’s unstable tier of the
64-bit CentOS 6 “updates” repository. This allows us
to tell at a glance the parent-child relationships be-
tween repositories.

Sync Filters

The syncs between the live and unstable and be-
tween unstable and stable tiers are mediated by
filters”. Filters are regular expression lists of pack-
ages to either blacklist from the sync, or whitelist in
the sync; in our workflow, only blacklists are used. A
package filtered from the sync may still remain in the

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

repository; that is, if we specify “kernel(-.*)7 as a
blacklist filter, that does not remove kernel packages
from the repository, but rather refuses to sync new
kernel packages from the repository’s parent. This
is critical to our version-pegging system.

Given our needs, whitelist filters are unnecessary;
our systems tend to fall into one of two types:

e Systems where we generally want updates to
be installed insofar as is reasonable, with some
prudence about installing updates to “impact-
ful” packages.

e Systems where, due to vendor requirements, we
must set all packages to a specific version. Most
often this is in the form of a requirement for a
minor release of RHEL®, in which case there are
no updates we wish to install on an automatic
basis. (We may wish to update specific pack-
ages to respond to security threats, but that
happens with manual package promotion, not
with a sync; this workflow gives us the flexibil-
ity necessary to do so.)

A package that may potentially cause issues when
updated can be blacklisted on a per-team basis®.
Since the repositories are hierarchically tiered, a
package that is blacklisted from the unstable tier
will never make it to the stable tier.

Manual Package Promotion and Removal

The lynchpin of this process is manually reviewing
packages that have been blacklisted from the syncs
and promoting them manually as necessary. For in-
stance, if a filter for a set of repositories blacklisted
"kernel(-.*)7 from the sync, without manually
promoting new kernel packages no new kernel would
ever be installed.

To accomplish this, we use Pulp’s add package
functionality, exposed via the REST API as a POST
to
/repositories/<id>/add_package/,
Python client API as
pulp.client.api.repository.RepositoryAPI.
add_package(), and via the CLI as pulp-admin
repo add_package. In the CLI implementation,
add_package follows dependencies, so promoting a
package will promote everything that package re-
quires that is not already in the target repository.
This helps ensure that each repository stays consis-
tent even as we manipulate it to contain only a subset
of upstream packages'?.

via the

Conversely, if a package is deployed and is later
found to cause problems it can be removed from the
tier and the previous version, if such is available in
the repository, will be (re)installed. Befg2 will help-
fully flag machines where a newer package is installed
than is available in that machine’s repositories, and
will try to downgrade packages appropriately. Pulp
can be configured to retain old packages when it per-
forms a sync; this is helpful for repositories like EPEL
that remove old packages themselves, and guarantees
that a configurable number of older package versions
are available to fall back on.

The remove package functionality is exposed via
Pulp’s REST API as a POST to
/repositories/<id>/delete_package/,
Python client APT as
pulp.client.api.repository.RepositoryAPI.
remove_package (), and via the CLI as pulp-admin
repo remove_package. As with add_package, the
CLI implementation follows dependencies and will
try to remove packages that require the package
being removed; this also helps ensure repository con-
sistency.

Optimally, security patches are applied 10 or 30
days after the initial patch release [2]; this workflow
allows us to follow these recommendations to some
degree, promoting new packages to the unstable tier
on an approximately weekly basis. Packages that
have been in the unstable tier for at least a week
are also promoted to the stable tier every week; in
this we deviate from Beattie et al.’s recommendations
somewhat, but we do so because the updates being
promoted to stable have been vetted and tested by
the machines using the unstable tier.

This workflow also gives us something very impor-
tant: the ability to install updates across all machines
much sooner than the optimal 10- or 30-day period.
High profile vulnerabilities require immediate action
—even to the point of imperiling uptime — and by pro-
moting a new package immediately to both stable
and unstable tiers we can ensure that it is installed
across all machines in our environment in a timely
fashion.

via the

Selecting “impactful” packages

Throughout this paper, we have referred to “impact-
ful” packages — those to which automatic updates
we determined to be particularly dangerous — as a
driving factor. Were it not for our reticence to au-
tomatically update all packages, we could have sim-
ply used an automatic update facility — yum-cron or

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 5

yum-updatesd are both popular — and been done with
it.

We didn’t feel that was appropriate, though. For
instance, installing a new kernel can be problematic
— particularly in an environment with a wide variety
of third-party kernel modules and other kernel-space
modifications — and we wanted much closer control
over that process. We flagged packages as “impact-
ful” according to a simple set of criteria:

e The kernel, and packages otherwise directly tied
to kernel space (e.g., kernel modules and Dy-
namic Kernel Module Support (DKMS) pack-
ages);

e Packages that provide significant, customer-
facing services. On the Infrastructure team,
this included packages like bind, httpd (and
related modules), mysql, and so on.

e Packages related to InfiniBand and Lustre [9];
as one of the world’s largest unclassified Lustre
installations, it’s very important that the Lus-
tre versions on our systems stay in lockstep with
all other systems in the center. Parts of Lus-
tre reside directly in kernel space, an additional
consideration.

The first two criteria provided around 20 packages
to be excluded — a tiny fraction of the total packages
installed across all of our machines. The vast major-
ity of supporting packages continue to be automati-
cally updated, albeit with a slight time delay for the
multiple syncs that must occur.

Results

Our approach produces results in a number of ar-
eas that are difficult to quantify: improved au-
tomation reduces the amount of time we spend in-
stalling patches; not installing patches immediately
improves patch quality and reduces the likelihood of
flawed patches [2]; and increased compartmentaliza-
tion makes it easier for our diverse teams to work
to different purposes without stepping on toes. But
it also provides testable, quantifiable improvements:
since replacing a manual update process with Pulp
and Bcefg2’s automated update process, we can see
that the number of available updates has decreased
and remained low on the machines using Pulp.

Total updates available
16 T T T

T
Servers using Pulp —+—
Servers not using Pulp ---x---

RN x4

- VRV VIV S

Updated packages available
®

S .
08/26 09/02

L S
08/12 08/19

0
08/05 09/09

Date

The practice of staging package deployment
makes is difficult to quantify just how out of date
a client is, as yum on the client will only report the
number of updates available from the repositories in
yum.conf. To find the number of updates available
from upstream, we collect an aggregate of all the
package differences starting at the client and going
up the heirarchy to the upstream repository. E.g.,
for a machine using the unstable tier, we calculate
the number of updates available on the machine it-
self, and then the number of updates available to the
unstable tier from the live tier.

The caveat to this approach is when, for instance,
a package splits into two new packages. This results
in two new packages, and one missing package, total-
ing three “updates” according to yum check-update,
or zero “updates” when comparing repositories them-
selves, when in reality it is a single package update.
For example, if package foo recieves an update that
results in packages foo-client and foo-server, this
could result in a margin of error of -1 or +2. This
gives a slight potential benefit to machines using Pulp
in our metrics, as updates of this sort are underesti-
mated when calculating the difference between repos-
itories, but overestimated when using yum to report
on updates available to a machine. In practice, this is
extremely rare, though, and should not significantly
affect the results.

Ensuring, with a high degree of confidence, that
updates are installed is wonderful, but even more
important is ensuring that vulnerabilities are being
mitigated. Using the data from monthly Nessus [11]
vulnerability scans, we can see that machines using
Pulp do indeed reap the benefits of being patched
with more frequency:!!

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

25 T T
Low mmmmm
Medium v
High e

20 |-

Vulnerabilities

Servers using Pulp

Servers not using Pulp

This graph is artificially skewed against Pulp due
to the sorts of things Nessus scans for; for instance,
web servers are more likely to be using Pulp at this
time simply due to our implementation plan, and
they also have disproportionately more vulnerabili-
ties in Nessus because they have more services ex-
posed.

Future Development

Sponge

At this time, Pulp is very early code; it has been in
use in another Red Hat product for a while, so certain
paths are well-tested, but other paths are pre-alpha.
Consequently, its command line interface lacks pol-
ish, and many tasks within Pulp require extraordi-
nary verbosity to accomplish. It is also not clear if
Pulp is intended for standalone use, although such is
possible.

To ease management of Pulp, we have written a
web frontend for management of Pulp and its objects,
called “Sponge.” Sponge, powered by the Django [4]
web framework, provides views into the state of Pulp
repositories along with the ablity to manage its con-
tents. Sponge leverages Pulp’s Python client API to
provide convience functions that ease our workflow.

By presenting the information visually, Sponge
makes repository management much more intuitive.
Sponge extends the functionality of Pulp by display-
ing the differences between a repository and its parent
in the form of a diff. These diffs give greater insight
into exactly how stable, unstable, and live tiers
differ. They also provide insight into the implications
of a package promotion or removal.

This is particularly important with package re-
moval, since, as noted, removing a package will also

remove anything that requires that specific package.
Without Sponge’s diff feature and a confirmation
step, that is potentially very dangerous; Pulp itself
only gives you confirmation of the packages removed
without an opportunity to confirm or reject a re-
moval. The contrapositive situation — promoting a
package pulling in unintended dependencies — is also
potentially dangerous, albeit less so. Sponge helps
avert both dangers.

Guaranteeing a minimum package age

As Beattie at al. observe [2], the optimal time to ap-
ply security patches is either 10 or 30 days after the
patches have been released. Our workflow currently
doesn’t provide any way to guarantee this; our weekly
manual promotion of new packages merely suggests
that a patch be somewhere between 0 and 6 days old
before it is promoted to unstable, and 7 and 13 days
old before being promoted to stable. We plan to add
a feature — either to Sponge or to Pulp — to promote
packages only once they have aged properly.

Other packaging formats

In this paper we have dealt with systems using yum
and RPM, but the approach can, at least in theory, be
expanded to other packaging systems. Pulp intends
eventually to support not only Debian packages, but
actually any sort of generic content at all [6], mak-
ing it useful for any packaging system. Bcfg2, for
its part, already has package drivers for a wide array
of packaging systems, including APT, Solaris pack-
ages (Blastwave- or SystemV-style), Encap, FreeBSD
packages, IPS, Mac Ports, Pacman, and Portage.
This gives a hint of the future potential for this ap-
proach.

Availability
Most of the software involved in the approach dis-

cussed in this paper is free and open source. The
various elements of our solution can be found at:

Pulp http://pulpproject.org

Bcefg2 http://trac.mcs.anl.gov/projects/
bcfg2

Yum http://yum.baseurl.org/

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 7

Sponge, the web Ul to Pulp listed in the Future
Development section, is currently incomplete and un-
released. We have already worked closely with the
Pulp developers to incorporate features into the Pulp
core itself, and we will continue to do so. We hope
that Sponge will become unnecessary as Pulp ma-
tures.

Author Information

Chris St. Pierre leads the Infrastructure team of the
HPC Operations group at the National Center for
Computational Sciences at Oak Ridge National Lab-
oratory in Oak Ridge, Tennessee. He is deeply in-
volved with the development of Bcfg2, contributing
in particular to the specification validation tool and
Packages plugin for the upcoming 1.2.0 release. He
has taught widely on internal documentation, LDAP,
and spam. Chris serves on the LOPSA Board of Di-
rectors.

Matt Hermanson is a member of the Infrastruc-
ture team of the HPC Operations group at the Na-
tional Center for Computational Sciences at Oak
Ridge National Laboratory in Oak Ridge, Tennessee.
He holds a B.A. in Computer Science from Tennessee
Technological University.

References

[1] Anaconda/Kickstart. http://fedoraproject.org/wiki/
Anaconda/Kickstart#Chapter_3._Package_Selection.

[2] BEATTIE, S., ArNoLD, S., CowaN, C., WAGLE, P.,
WRIGHT, C., AND SHOSTACK, A. Timing the Application
of Security Patches for Optimal Uptime. Proceedings of
LISA ’02: Sixteenth Systems Administration Conference,
USENIX, pp. 233-42.

[3] DEsAL, N. Bcfg2. http://trac.mcs.anl.gov/projects/
bcfg2.

[4] DJANGO SOFTWARE FOUNDATION. Django — The Web
framework for perfectionists with deadlines. https://
www.djangoproject.com/.

[5] DoBIEs, J. GCRepoApis. https://fedorahosted.org/
pulp/wiki/GCRepoApis.

[6] DoOBIES, J. Generic ~ Content
http://blog.pulpproject.org/2011/08/08/
generic-content-support/.

Support.

[7] Dosies, J. Pulp - Juicy software repository management.
http://pulproject.org.

[8] JEROME, S., LaszLo, T., AND StT. PIERrRE, C.
Packages. http://docs.bcfg2.org/server/plugins/
generators/packages.html.

[9] ORACLE CORPORATION. Lustre.
org/index.php/Main_Page.

http://wiki.lustre.
P

[10] RED HaT, INC. Spacewalk: Free & Open Source Linux

Systems Management. http://spacewalk.redhat.com/.

TENABLE NETWORK SECURITY. Tenable Nessus.
//wuw.tenable.com/products/nessus.

[11] http:

(12]
(13]

VIDAL, S. yum. http://yum.baseurl.org/.

VIDAL, S. yum.conf - configuration file for yum(8). man
5 yum.conf.

[14] WARNER, T., AND SANDERS, T. The Future of RHN Satel-
lite: A New Architecture Enabling the Traditional Data

Center and the Cloud. Red Hat Summit, Red Hat, Inc.

Notes

1For instance, Extra Packages for Enterprise Linux (EPEL)
and the CentOS repositories themselves.

2 Admittedly, this is a non-standard naming scheme, but
no solution can be predicated on the idea that all RPMs are
well-built.

3The command in question merely maintains a local file on
a machine, so that file would still have to be copied into the
Bcefg2 specification, but we believe this would be less error-
prone than copying package version details.

4This is actually only true if the package is being added
from another repository; it is possible to add a package di-
rectly from the filesystem, in which case dependency checking
is not performed. This is not a use case for us, though.

5In Pulp, filters can only be applied to repositories with
local feeds.

6This may change in future versions of Pulp, as multiple
users, ourselves included, have asked for stronger grouping
functionality [5].

7As noted earlier, in Pulp, filters can only be applied to
repositories with local feeds, so no filter mediates the sync be-
tween upstream and live.

81t is lost on many vendors that it is unreasonable and fool-
ish to require a specific RHEL minor release. As much work
as has gone into this solution, it is still less than would be
required to convince most vendors of this fact, though.

9Technically, filters can be applied on a per-repository basis,
so black- and whitelists can be applied to individual reposito-
ries. This is very rare in our workflow, though.

101t is true that our approach does not guarantee consistency.
A repository sync might result in an inconsistency if a package
that was not listed on that sync’s blacklist required a package
that was listed on the blacklist. In practice this can be limited
by using regular expressions to filter families of packages (e.g.,
“mysql.* or ~(.*-)7mysql.* to blacklist all MySQL-related
packages rather than just blacklisting the mysql-server pack-
age itself

M Unfortunately long-term data was not available for vul-
nerabilities for a number of reasons: CentOS 5 stopped ship-
ping updates in their mainline repositories between July 21st
and September 14th; the August security scan was partially
skipped; and Pulp hasn’t been in production long enough to
get meaningful numbers prior to that. Still, the snapshot of
data is compelling.

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

CDE: Run Any Linux Application On-Demand Without Installation

Philip J. Guo
Stanford University
pg@cs.stanford.edu

Abstract

There is a huge ecosystem of free software for Linux, but
since each Linux distribution (distro) contains a differ-
ent set of pre-installed shared libraries, filesystem layout
conventions, and other environmental state, it is difficult
to create and distribute software that works without has-
sle across all distros. Online forums and mailing lists
are filled with discussions of users’ troubles with com-
piling, installing, and configuring Linux software and
their myriad of dependencies. To address this ubiqui-
tous problem, we have created an open-source tool called
CDE that automatically packages up the Code, Data, and
Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines. Creating a CDE
package is as simple as running the target application un-
der CDE’s monitoring, and executing a CDE package re-
quires no installation, configuration, or root permissions.
CDE enables Linux users to instantly run any application
on-demand without encountering “dependency hell”.

1 Introduction

The simple-sounding task of taking software that runs on
one person’s machine and getting it to run on another
machine can be painfully difficult in practice. Since no
two machines are identically configured, it is hard for
developers to predict the exact versions of software and
libraries already installed on potential users’ machines
and whether those conflict with the requirements of their
own software. Thus, software companies devote con-
siderable resources to creating and testing one-click in-
stallers for products like Microsoft Office, Adobe Pho-
toshop, and Google Chrome. Similarly, open-source de-
velopers must carefully specify the proper dependencies
in order to integrate their software into package manage-
ment systems [4] (e.g., RPM on Linux, MacPorts on Mac
OS X). Despite these efforts, online forums and mail-
ing lists are still filled with discussions of users’ troubles

with compiling, installing, and configuring software and
their myriad of dependencies. For example, the official
Google Chrome help forum for “install/uninstall issues”
has over 5800 threads.

In addition, a study of US labor statistics predicts that
by 2012, 13 million American workers will do program-
ming in their jobs, but amongst those, only 3 million will
be professional software developers [24]. Thus, there are
potentially millions of people who still need to get their
software to run on other machines but who are unlikely
to invest the effort to create one-click installers or wres-
tle with package managers, since their primary job is not
to release production-quality software. For example:

e System administrators often hack together ad-
hoc utilities comprised of shell scripts and custom-
compiled versions of open-source software, in or-
der to perform system monitoring and maintenance
tasks. Sysadmins want to share their custom-built
tools with colleagues, quickly deploy them to other
machines within their organization, and “future-
proof” their scripts so that they can continue func-
tioning even as the OS inevitably gets upgraded.

e Research scientists often want to deploy their com-
putational experiments to a cluster for greater per-
formance and parallelism, but they might not have
permission from the sysadmin to install the required
libraries on the cluster machines. They also want to
allow colleagues to run their research code in order
to reproduce and extend their experiments.

e Software prototype designers often want clients to
be able to execute their prototypes without the has-
sle of installing dependencies, in order to receive
continual feedback throughout the design process.

In this paper, we present an open-source tool called
CDE [1] that makes it easy for people of all levels of
IT expertise to get their software running on other ma-
chines without the hassle of manually creating a robust

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 9

e
machine \
(cems

Figure 1: CDE enables users to package up any Linux
application and deploy it to all modern Linux distros.

installer or dealing with user complaints about depen-
dencies. CDE automatically packages up the Code, Data,
and Environment required to run a set of x86-Linux pro-
grams on other x86-Linux machines without any instal-
lation (see Figure 1). To use CDE, the user simply:

1. Prepends any set of Linux commands with the cde
executable. cde executes the commands and uses
ptrace system call interposition to collect all the
code, data files, and environment variables used
during execution into a self-contained package.

2. Copies the resulting CDE package to an x86-Linux
machine running any distro from the past ~5 years.

3. Prepends the original packaged commands with the
cde-exec executable to run them on the target
machine. cde-exec uses ptrace to redirect file-
related system calls so that executables can load
the required dependencies from within the package.
Execution can range from ~0% to ~30% slower.

The main benefits of CDE are that creating a package
is as easy as executing the target program under its super-
vision, and that running a program within a package re-
quires no installation, configuration, or root permissions.

The design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to other Linux machines with as little effort as
possible. However, CDE is not meant to replace tradi-
tional installers or package managers; its intended role is
to serve as a convenient ad-hoc solution for people like
sysadmins, research scientists, and prototype makers.

Since its release in Nov. 2010, CDE has been down-
loaded over 3,000 times [1]. We have exchanged hun-
dreds of emails with users throughout both academia and
industry. In the past year, we have made several signifi-
cant enhancements to the base CDE system in response to
user feedback. Although we introduced an early version

-Ubuntu ll
centos)

Your Linux
machine

Figure 2: CDE’s streaming mode enables users to run any
Linux application on-demand by fetching the required
files from a farm of pre-installed distros in the cloud.

of CDE in a short paper [20], this paper presents a more
complete CDE system with three new features:

e To overcome CDE’s primary limitation of only be-
ing able to package dependencies collected on exe-
cuted paths, we introduce new tools and heuristics
for making CDE packages complete (Section 3).

e To make CDE-packaged programs behave just like
native applications on the target machine rather than
executing in an isolated sandbox, we introduce a
new seamless execution mode (Section 4).

e Finally, to enable users to run any Linux application
on-demand, we introduce a new application stream-
ing mode (Section 5). Figure 2 shows its high-level
architecture: The system administrator first installs
multiple versions of many popular Linux distros in
a “distro farm” in the cloud (or an internal com-
pute cluster). The user connects to that distro farm
via an ssh-based protocol from any x86-Linux ma-
chine. The user can now run any application avail-
able within the package managers of any of the dis-
tros in the farm. CDE’s streaming mode fetches the
required files on-demand, caches them locally on
the user’s machine, and creates a portable distro-
independent execution environment. Thus, Linux
users can instantly run the hundreds of thousands of
applications already available in the package man-
agers of all distros without being forced to use one
specific release of one specific distro'.

This paper continues with descriptions of real-world
use cases (Section 6), evaluations of portability and per-
formance (Section 7), comparisons to related work (Sec-
tion &), and concludes with discussions of design philos-
ophy, limitations, and lessons learned (Section 9).

IThe package managers included in different releases of the same
Linux distro often contain incompatible versions of many applications!

10

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

Alice's computer

(1) cde <command>

open()
cde-package/
: ; cde-root/
/usr/lib/logutils.so ‘ usr/

lib/

Bob's computer
(3) cde-exec <command>

cde-package/
cde-root/
usr/
lib/

/usr/lib/logutils.so

logutils.so

Figure 3: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends her
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2 CDE system overview

We described the details of CDE’s design and implemen-
tation in a prior paper and its accompanying technical
report [20]. We will now summarize the core features of
CDE using an example.

Suppose that Alice is a system administrator who is
developing a Python script to detect anomalies in net-
work log files. She normally runs her script using this
Linux command:

python detect_anomalies.py net.log

Suppose that Alice’s script (detect_anomalies.py)
imports some 3rd-party Python extension modules,
which consist of optimized C++ log parsing code com-
piled into shared libraries. If Alice wants her colleague
Bob to be able to run her analysis, then it is not sufficient
to just send her script and net . 1og data file to him.

Even if Bob has a compatible version of Python on his
Linux machine, he will not be able to run her script until
he compiles, installs, and configures the exact extension
modules that her script used (and all of their transitive
dependencies). Since Bob is probably using a different
Linux distribution (distro) than Alice, even if Alice pre-
cisely recalled all of the steps involved in installing all of
the original dependencies on her machine, those instruc-
tions probably will not work on Bob’s machine.

program

kernel
open file

[4 >
copy file into package

Figure 4: Timeline of control flow between target pro-
gram, kernel, and cde process during an open syscall.

2.1 Creating a new CDE package

To create a self-contained package with all of the depen-
dencies required to run her anomaly detection script on
another Linux machine, Alice simply prepends her com-
mand with the cde executable:

cde python detect_anomalies.py net.log

cde runs her command normally and uses the Linux
ptrace system call to monitor all of the files it ac-
cesses throughout execution. cde creates a new sub-
directory called cde-package/cde-root/ and copies
all of those accessed files into there, mirroring the orig-
inal directory structure. Figure 4 shows an overview of
the control flow between the target program, Linux ker-
nel, and cde during a file-related system call.

For example, if Alice’s script dynamically
loads an extension module as a shared library
named /usr/lib/logutils.so (i.e., log pars-
ing utility code), then cde will copy it to
cde-package/cde-root/usr/lib/logutils.so
(see Figure 3). cde also saves the values of environment
variables in a text file within cde-package/.

When execution terminates, the cde—-package/ sub-
directory (which we call a “CDE package”) contains all
of the files required to run Alice’s original command.

2.2 Executing a CDE package

Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s
anomaly detection script without first installing anything
on his machine. To do so, he unzips the package, changes
into the sub-directory containing the script, and prepends
her original command with the cde-exec executable
(also included in the package):

cde-exec python detect_anomalies.py net.log

cde-exec sets up the environment variables saved
from Alice’s machine and executes the versions of
python and its extension modules that are located within
the package. cde-exec uses ptrace to monitor all

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 11

program

open() f
kernel @ -~ >

open file
from package

cde-exec

® >

rewrite open() argument

Figure 5: Timeline of control flow between target pro-
gram, kernel, and cde—exec during an open syscall.

system calls that access files and dynamically rewrites
their path arguments to the corresponding paths within
the cde-package/cde—root/ sub-directory. Figure 5
shows the control flow between the target program, ker-
nel, and cde-exec during a file-related system call.

For example, when her script requests to load the
/usr/lib/logutils.so library using an open sys-
tem call, cde-exec rewrites the path argument of
the open call to cde-package/cde-root/usr/1lib/
logutils.so (see Figure 3). This run-time path redi-
rection is essential, because /usr/lib/logutils.so
probably does not exist on Bob’s machine.

2.3 CDE package portability

Alice’s CDE package can execute on any Linux ma-
chine with an architecture and kernel version that are
compatible with its constituent binaries. CDE currently
works on 32-bit and 64-bit variants of the x86 archi-
tecture (1386 and x86-64, respectively). In general, a
32-bit cde—-exec can execute 32-bit packaged applica-
tions on 32- and 64-bit machines. A 64-bit cde-exec
can execute both 32-bit and 64-bit packaged applications
on a 64-bit machine. Extending CDE to other architec-
tures (e.g., ARM) is straightforward because the st race
tool that CDE is built upon already works on many archi-
tectures. However, CDE packages cannot be transported
across architectures without using a CPU emulator.

Our portability experiments (§7.1) show that pack-
ages are portable across Linux distros released within 5
years of the distro where the package originated. Besides
sharing with colleagues like Bob, Alice can also deploy
her package to run on a cluster for more computational
power or to a public-facing server machine for real-time
online monitoring. Since she does not need to install any-
thing as root, she does not risk perturbing existing soft-
ware on those machines. Also, having her script and all
of its dependencies (including the Python interpreter and
extension modules) encapsulated within a CDE package
makes it somewhat “future-proof” and likely to continue
working on her machine even when its version of Python
and associated extensions are upgraded in the future.

cde-root usr bin

Figure 6: The result of copying a file named
/usr/bin/java into the cde-root/ directory.

3 Semi-automated package completion

CDE’s primary limitation is that it can only package up
files accessed on executed program paths. Thus, pro-
grams run from within a CDE package will fail when exe-
cuting paths that access new files (e.g., libraries, configu-
ration files) that the original execution(s) did not access.
Unfortunately, no automatic tool (static or dynamic)
can find and package up all the files required to suc-
cessfully execute all possible program paths, since that
problem is undecidable in general. Similarly, it is also
impossible to automatically quantify how “complete” a
CDE package is or determine what files are missing,
since every file-related system call instruction could be
invoked with complex or non-deterministic arguments.
For example, the Python interpreter executable has only
one dlopen call site for dynamically loading extension
modules, but that dlopen could be called many times
with different dynamically-generated string arguments
derived from script variables or configuration files.
There are two ways to cope with this package incom-
pleteness problem. First, if the user executes additional
program paths, then CDE will add new files into the same
cde-package/ directory. However, making repeated
executions can get tedious, and it is unclear how many
or which paths are necessary to complete the package?.
Another way to make CDE packages more com-
plete is by manually copying additional files and sub-
directories into cde—package/cde—root /. For exam-
ple, while executing a Python script, CDE might au-
tomatically copy the few Python standard library files
it accesses into, say, cde-package/cde—root/usr/
lib/python/. To complete the package, the user
could copy the entire /usr/lib/python/ directory
into cde-package/cde-root/ so that all Python li-
braries are present. A user can usually make his/her
package complete by copying only a few crucial direc-
tories into the package, since programs store all of their
files in several top-level directories (see Section 3.3).
However, programs also depend on shared libraries
that reside in system-wide directories like /1ib and
/usr/lib. Copying all the contents of those directo-
ries into a package results in lots of wasted disk space.
In Section 3.2, we present an automatic heuristic tech-
nique that finds nearly all shared libraries that a program
requires and copies them into the package.

2similar to trying to achieve 100% coverage during software testing

12

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

java-1.6.0-openjdk-1.6.0.0

lib jvm >
cde-root
etc alternatives java >

T

jre-1.6.0-openjdk - jre

Figure 7: The result of using OKAPI to deep-copy a single /usr/bin/java file into cde-root/, preserving the
exact symlink structure from the original directory tree. Boxes are directories (solid arrows point to their contents),
diamonds are symlinks (dashed arrows point to their targets), and the bold ellipse is the actual java executable file.

3.1 The OKAPI utility for deep file copying

Before describing our heuristics for completing CDE
packages, we first introduce a utility library we built
called OKAPI (pronounced “oh-copy”), which performs
detailed copying of files, directories, and symlinks.
OKAPI does one seemingly-simple task that turns out to
be tricky in practice: copying a filesystem entity (i.e.,
a file, directory, or symlink) from one directory to an-
other while fully preserving its original sub-directory and
symlink structure (a process that we call deep-copying).
CDE uses OKAPI to copy files into the cde-root/ sub-
directory when creating a new package, and the support
scripts of Sections 3.2 and 3.3 also use OKAPI.

For example, suppose that CDE needs to copy the
/usr/bin/java executable file into cde—root/ when
it is packaging a Java application. The straightforward
way to do this is to use the standard mkdir and cp utili-
ties. Figure 6 shows the resulting sub-directory structure
within cde-root/, with the boxes representing direc-
tories and the bold ellipse representing the copy of the
java executable file located at cde-root/usr/bin/
java. However, it turns out that if CDE were to use
this straightforward copying method, the Java applica-
tion would fail to run from within the CDE package! This
failure occurs because the java executable introspects
its own path and uses it as the search path for finding
the Java standard libraries. On our Fedora Core 9 ma-
chine, the Java standard libraries are actually installed
in /usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0,
so when java reads its own path as /usr/bin/java, it
cannot possibly use that path to find its standard libraries.

In order for Java applications to properly run from
within CDE packages, all of their constituent files must
be “deep-copied” into the package while replicating
their original sub-directory and symlink structures. Fig-
ure 7 illustrates the complexity of deep-copying a single
file, /usr/bin/java, into cde-root/. The diamond-
shaped nodes represent symlinks, and the dashed arrows
point to their targets. Notice how /usr/bin/javais a

symlink to /etc/alternatives/java, which is itself
a symlink to /usr/lib/jvm/jre-1.6.0-openjdk/
bin/java. Another complicating factor is that /usr/
lib/jvm/jre-1.6.0-openjdk is itself a symlink
to the /usr/lib/jvm/java—-1.6.0-openjdk-1.6.
0.0/jre/ directory, so the actual java executable
resides in /usr/1lib/jvm/java-1.6.0-openjdk-1.
6.0.0/jre/bin/. Java can only find its standard li-
braries when these paths are all faithfully replicated
within the CDE package.

The OKAPI utility library automatically performs the
deep-copying required to generate the filesystem struc-
ture of Figure 7. Its interface is as simple as ordinary cp:
The caller simply requests for a path to be copied into a
target directory, and OKAPI faithfully replicates the sub-
directory and symlink structure.

OKAPI performs one additional task: rewriting the
contents of symlinks to transform absolute path targets
into relative path targets within the destination directory
(e.g., cde-root/). In our example, /usr/bin/java
is a symlink to /etc/alternatives/java. However,
OKAPI cannot simply create the cde-root/usr/bin/
java symlink to also point to /etc/alternatives/
java, since that target path is outside of cde-root/.
Instead, OKAPI must rewrite the symlink target so that
itactually refersto . ./../etc/alternatives/java,
which is a relative path that points to cde-root/etc/
alternatives/java.

The details of this particular example are not impor-
tant, but the high-level message that Figure 7 conveys
is that deep-copying even a single file can lead to the
creation of over a dozen sub-directories and (possibly-
rewritten) symlinks. The problem that OKAPI solves is
not Java-specific; we have observed that many real-world
Linux applications fail to run from within CDE packages
unless their files are deep-copied in this detailed way.

OKAPI is also available as a free standalone command-
line tool [1]. To our knowledge, no other Linux file copy-
ing tool (e.g., cp, rsync) can perform the deep-copying
and symlink rewriting that OKAPI does.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 13

3.2 Heuristics for copying shared libraries

When Linux starts executing a dynamically-linked ex-
ecutable, the dynamic linker (e.g., 1d-linuxx.sox)
finds and loads all shared libraries that are listed in a spe-
cial .dynamic section within the executable file. Run-
ning the 1dd command on the executable shows these
start-up library dependencies. When CDE is executing a
target program to create a package, CDE finds all of these
dependencies as well because they are loaded at start-up
time via open system calls.

However, programs sometimes load shared libraries in
the middle of execution using, say, the d1open function.
This run-time loading occurs mostly in GUI programs
with a plug-in or extension architecture. For example,
when the user instructs Firefox to visit a web page with
a Flash animation, Firefox will use dlopen to load the
Adobe Flash Player shared library. 1dd will not find that
dependency since it is not hard-coded in the .dynamic
section of the Firefox executable, and CDE will only
find that dependency if the user actually visits a Flash-
enabled web page while creating a package for Firefox.

We have created a simple heuristic-based script that
finds most or all shared libraries that a program requires>.
The user first creates a base CDE package by executing
the target program once (or a few times) and then runs
our script, which works as follows:

1. Find all ELF binaries (executables and shared li-
braries) within the package using the Linux find
and f£ile utilities.

2. For each binary, find all constant strings using the
strings utility, and look for strings containing
“.s0” since those are likely to be shared libraries.

3. Call the 1ocate utility on each candidate shared li-
brary string, which returns the full absolute paths of
all installed shared libraries that match each string.

4. Use OKAPI to copy each library into the package.

5. Repeat this process until no new libraries are found.

This heuristic technique works well in practice be-
cause programs often list all of their dependent shared
libraries in string constants within their binaries. The
main exception occurs in dynamic languages like Python
or MATLAB, whose programs often dynamically gener-
ate shared library paths based on the contents of scripts
and configuration files.

Another limitation of this technique is that it is overly
conservative and can create larger-than-needed pack-
ages, since the locate utility can find more libraries
than the target program actually needs.

3always a superset of the shared libraries that 1dd finds

3.3 OKAPI-based directory copying script

In general, running an application once under CDE mon-
itoring only packages up a subset of all required files. In
our experience, the easiest way to make CDE packages
complete is to copy entire sub-directories into the pack-
age. To facilitate this process, we created a script that
repeatedly calls OKAPI to copy an entire directory at a
time into cde-root/, automatically following symlinks
to other directories and recursively copying as needed.

Although this approach might seem primitive, it is ef-
fective in practice because applications often store all of
their files in a few top-level directories. When a user
inspects the directory structure within cde-root/, it
is usually obvious where the application’s files reside.
Thus, the user can run our OKAPI-based script to copy
the entirety of those directories into the package.

Evaluation: To demonstrate the efficacy of this ap-
proach, we have created complete self-contained CDE
packages for six of the largest and most popular Linux
applications. For each app, we made an initial packag-
ing run with cde, inspected the package contents, and
copied at most three directories into the package. The
entire packaging process took several minutes of human
effort per application. Here are our full results:

e AbiWord is a free alternative to Microsoft Word.
After an initial packaging run, we saw that some
plug-ins were included in the cde-root/usr/

and cde-root/

usr/lib/goffice/0.8.1/plugins directories.

Thus, we copied the entirety of those two original

directories into cde-root/ to complete its pack-

age, thereby including all AbiWord plug-ins.

lib/abiword-2.8/plugins

e Eclipse is a sophisticated IDE and software de-
velopment platform. We completed its package
by copying the /usr/lib/eclipse and /usr/
share/eclipse directories into cde—root /.

o Firefox is a popular web browser. We completed its
package by copying /usr/lib/firefox-3.6.18
and /usr/lib/firefox—-addons into
cde-root/ (plus another directory for the
third-party Adobe Flash player plug-in).

e GIMP is a sophisticated graphics editing tool.
We completed its package by copying /usr/lib/
gimp/2.0 and /usr/share/gimp/2.0.

e Google Earth is an interactive 3D mapping ap-
plication. We completed its package by copying
/opt/google/earth into cde-root/.

e OpenOffice.org is a free alternative to the Mi-
crosoft Office productivity suite. We completed its
package by copying the /usr/lib/openoffice
directory into cde-root/.

14

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

home

/

bob » Cde-package # cde-root usr —
0 :

var log » httpd

error log

Figure 8: Example filesystem layout on Bob’s machine after he receives a CDE package from Alice (boxes are direc-
tories, ellipses are files). CDE’s seamless execution mode enables Bob to run Alice’s packaged script on the log files
in /var/log/httpd/ without first moving those files inside of cde-root/.

4 Seamless execution mode

When executing a program from within a package,
cde-exec redirects all file accesses into the package
by default, thereby creating a chroot-like sandbox with
cde-package/cde-root/ as the pseudo-root direc-
tory (see Figure 3, Step 3). However, unlike chroot, CDE
does not require root access to run, and its sandbox poli-
cies are flexible and user-customizable [20].

This default chroot-like execution mode is fine for run-
ning self-contained GUI applications like games or web
browsers, but it is a somewhat awkward way to run most
types of UNIX-style command-line programs that sys-
tem administrators, developers, and hackers often prefer.
If users are running, say, a compiler or command-line im-
age processing utility from within a CDE package, they
would need to first move their input data files into the
package, run the target program using cde-exec, and
then move the resulting output data files back out of the
package, which is a cumbersome process.

In our Alice-and-Bob example from Section 2 (see
Figure 3), if Bob wants to run Alice’s anomaly detec-
tion script on his own log data (e.g., bob.log), he
needs to first move his data file inside of cde—package/
cde-root/, change into the appropriate sub-directory
deep within the package, and then run:

cde-exec python detect_anomalies.py bob.log

In contrast, if Bob had actually installed the proper
version of Python and its required extension modules on
his machine, then he could run Alice’s script from any-
where on his filesystem with no restrictions. Some CDE
users wanted CDE-packaged programs to behave just like
regularly-installed programs rather than requiring input

files to be moved inside of a cde-package/cde-root/
sandbox, so we implemented a new seamless execution
mode that largely achieves this goal.

Seamless execution mode works using a simple
heuristic: If cde-exec is being invoked from a di-
rectory not in the CDE package (i.e., from somewhere
else on the user’s filesystem), then only redirect a path
into cde-package/cde-root/ if the file that the path
refers to actually exists within the package. Otherwise
simply leave the path unmodified so that the program can
access the file normally. No user intervention is needed
in the common case.

The intuition behind why this heuristic works is
that when programs request to load libraries and other
mandatory components, those files must exist within the
package, so their paths are redirected. On the other hand,
when programs request to load an input file passed via,
say, a command-line argument, that file does not exist
within the package, so the original path is used to retrieve
it from the native filesystem.

In the example shown in Figure 8, if Bob ran Alice’s
script to analyze an arbitrary log file on his machine (e.g.,
his web server log, /var/log/httpd/access_log),
then cde-exec will redirect Python’s request for its own
libraries (e.g., /1ib/libpython2.6.s0 and /usr/
lib/logutils.so) inside of cde-root/ since those
files exist within the package, but cde-exec will not
redirect /var/log/httpd/access_log and instead
load the real file from its original location.

Seamless execution mode fails when the user
wants the packaged program to access a file from
the native filesystem, but an identically-named
file actually exists within the package. In the
above example, if cde-package/cde-root/var/

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 15

sshfs mount of a remote Linux distro's root FS

cde-remote-root

home alice

cde-root

bin
share » eclipse-3.6 —»@
" :
usr .
T—al] .
lib » eclipse-3.6 :
bin
usr share » eclipse-3.6

lib

Y

eclipse-3.6

Local cache (mirrors remote FS)

Figure 9: An example use of CDE’s streaming mode to run Eclipse 3.6 on any Linux machine without installation.
cde-exec fetches all dependencies on-demand from a remote Linux distro and stores them in a local cache.

log/httpd/access_log existed, then that file
would be processed by the Python script instead of
/var/log/httpd/access_log. There is no auto-
mated way to resolve such name conflicts, but cde-exec
provides a “verbose mode” where it prints out a log
of what paths were redirected within the package.
The user can inspect that log and then manually write
redirection/ignore rules in a configuration file to control
which paths cde-exec redirects into cde-root/. For
instance, the user could tell cde—exec to not redirect
any paths starting with /var/log/httpd/*.

Using seamless execution mode, our users have been
able to run software such as programming language in-
terpreters and compilers, scientific research tools, and
sysadmin scripts from CDE packages and have them be-
have just like regularly-installed programs.

5 On-demand application streaming

We now introduce a new application streaming mode
where CDE users can instantly run any Linux application
on-demand without having to create, transfer, or install
any packages. Figure 2 shows a high-level architectural
overview. The basic idea is that a system administra-
tor first installs multiple versions of many popular Linux
distros in a “distro farm” in the cloud (or an internal com-
pute cluster). When a user wants to run some application
that is available on a particular distro, they use sshfs (an
ssh-based network filesystem [9]) to mount the root di-
rectory of that distro into a special cde-remote-root/
mountpoint on their Linux machine. Then the user can
use CDE’s streaming mode to run any application from
that distro locally on their own machine.

5.1 Implementation and example

Figure 9 shows an example of streaming mode. Let’s say
that Alice wants to run the Eclipse 3.6 IDE on her Linux
machine, but the particular distro she is using makes it
difficult to obtain all the dependencies required to install
Eclipse 3.6. Rather than suffering through dependency
hell, Alice can simply connect to a distro in the farm that
contains Eclipse 3.6 and then use CDE’s streaming mode
to “harvest” the required dependencies on-demand.

Alice first mounts the root directory of the re-
mote distro at cde-remote-root/. Then she
runs (-s activates
streaming mode). cde-exec finds and executes
cde-remote-root/bin/eclipse. When that exe-
cutable requests shared libraries, plug-ins, or any other
files, cde—exec will redirect the respective paths into
cde-remote-root/, thereby executing the version of
Eclipse 3.6 that resides in the cloud distro. However,
note that the application is running locally on Alice’s
machine, not in the cloud.

“cde-exec -s eclipse”

An astute reader will immediately realize that running
applications in this manner can be slow, since files are be-
ing accessed from a remote server. While sshfs performs
some caching, we have found that it does not work well
enough in practice. Thus, we have implemented our own
caching layer within CDE: When a remote file is accessed
from cde-remote-root/, cde—exec uses OKAPI to
make a deep-copy into a local cde-root/ directory and
then redirects that file’s path into cde—root /. In stream-
ing mode, cde-root/ initially starts out empty and then
fills up with a subset of files from cde-remote-root/
that the target program has accessed.

16

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

To avoid unnecessary filesystem accesses, CDE’s
cache also keeps a list of file paths that the target program
tried to access from the remote server, even keeping paths
for non-existent files. On subsequent runs, when the pro-
gram tries to access one of those paths, cde-exec will
redirect the path into the local cde-root/ cache. It is
vital to track non-existent files since programs often try
to access non-existent files at start-up while doing, say, a
search for shared libraries by probing a list of directories
in a search path. If CDE did not track non-existent files,
then the program would still access the directory entries
on the remote server before discovering that those files
still do not exist, thus slowing down performance.

With this cache in place, the first time an application is
run, all of its dependencies must be downloaded, which
could take several seconds to minutes. This one-time de-
lay is unavoidable. However, subsequent runs simply use
the files already in the local cache, so they execute at
regular cde-exec speeds. An added bonus is that even
running a different application for the first time might
still result in some cache hits for, say, generic libraries
like 1ibc, so the entire application does not need to be
downloaded.

Finally, the package incompleteness problem faced by
regular CDE (see Section 3) no longer exists in streaming
mode. When the target application needs to access new
files that do not yet exist in the local cache (e.g., Alice
loads a new Eclipse plug-in), those files are transparently
fetched from the remote server and cached.

5.2 Synergy with package managers

Nearly all Linux users are currently running one partic-
ular distro with one default package manager that they
use to install software. For instance, Ubuntu users must
use APT, Fedora users must use YUM, SUSE users must
use Zypper, Gentoo users must use Portage, etc. More-
over, different releases of the same distro contain differ-
ent software package versions, since distro maintainers
add, upgrade, and delete packages in each new release®.

As long as a piece of software and all of its depen-
dencies are present within the package manager of the
exact distro release that a user happens to be using, then
installation is trivial. However, as soon as even one de-
pendency cannot be found within the package manager,
then users must revert to the arduous task of compiling
from source (or configuring a custom package manager).

CDE’s streaming mode frees Linux users from this
single-distro restriction and allows them to run software

4We once tried installing a machine learning application that de-
pended on the 1ibcv computer vision library. The required 1ibcv
version was found in the APT repository on Ubuntu 10.04, but it
was not found in the repositories on the two immediately neighboring
Ubuntu releases: 9.10 and 10.10.

that is available within the package manager of any distro
in the cloud distro farm. The system administrator is re-
sponsible for setting up the farm and provisioning access
rights (e.g., ssh keys) to users. Then users can directly in-
stall packages in any cloud distro and stream the desired
applications to run locally on their own machines.

Philosophically, CDE’s streaming mode maximizes
user freedom since users are now free to run any appli-
cation in any package manager from the comfort of their
own machines, regardless of which distro they choose
to use. CDE complements traditional package managers
by leveraging all of the work that the maintainers of
each distro have already done and opening up access to
users of all other distros. This synergy can potentially
eliminate quasi-religious squabbles and flame-wars over
the virtues of competing distros or package management
systems. Such fighting is unnecessary since CDE allows
users to freely choose from amongst all of them.

6 Real-world use cases

Since we released the first version of CDE on Novem-
ber 9, 2010, it has been downloaded at least 3,000 times
as of September 2011 [1]. We cannot track how many
people have directly checked out its source code from
GitHub, though. We have exchanged hundreds of emails
with CDE users and discovered six salient real-world use
cases as a result of these discussions. Table 1 shows that
we used 16 CDE packages, mostly sent in by our users,
as benchmarks in the experiments reported in Section 7.
They contain software written in diverse programming
languages and frameworks. We now summarize the use
case categories and benchmarks (highlighted in bold).

Distributing research software: The creators of two
research tools found CDE online and used it to create
portable packages that they uploaded to their websites:

The website for graph—tool, a Python/C++ module
for analyzing graphs, lists these (direct) dependencies:
“GCC 4.2 or above, Boost libraries, Python 2.5 or above,
expat library, NumPy and SciPy Python modules, GCAL
C++ geometry library, and Graphviz with Python bind-
ings enabled.” [11] Unsurprisingly, lots of people had
trouble compiling it: 47% of all messages on its mailing
list (137 out of 289) were questions related to compila-
tion problems. The author of graph-tool used CDE
to automatically create a portable package (containing
149 shared libraries and 1909 total files) and uploaded
it to his website so that users no longer needed to suffer
through the pain of manually compiling it.

arachni, a Ruby-based tool that audits web appli-
cation security [10], requires six hard-to-compile Ruby
extension modules, some of which depend on versions
of Ruby and libraries that are not available in the pack-

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 17

Package name Description

Distributing research software

Dependencies Creator

arachni Web app. security scanner framework [10] Ruby (+ extensions) security researcher
graph-tool Lib. for manipulation & analysis of graphs [11] Python, C++, Boost math researcher
pads Language for processing ad-hoc data [19] Perl, ML, Lex, Yacc self
saturn Static program analysis framework [13] Perl, ML, Berkeley DB self

Running production software on incompatible distros

meld
bio-menace
google—-earth

Creating reproducible computational experiments

Interactive visual diff and merge tool for text
Classic video game within a MS-DOS emulator
3D interactive map application by Google

Python, GTK+
DOSBox, SDL
shell scripts, OpenGL

software engineer
game enthusiast
self

kpiece
gadm

Deploying computations to cluster or cloud

Robot motion planning algorithm [26]
Genetic algorithm for social networks [21]

robotics researcher
self

C++, OpenGL
C++, make, R

ztopo
klee

Submitting executable bug reports

Batch processing of topological map images
Automatic bug finder & test case generator [16]

C++, Qt
C++, LLVM, pClibe

graduate student
self

cog-bug-2443
gcc—bug-46651
1lvm-bug-8679

Collaborating on class programming projects

Incorrect output by Coq proof assistant [2]
Causes GCC compiler to segfault [3]
Runs LLVM compiler out of memory [5]

ML, Coq bug reporter
gcc bug reporter
C++, LLVM bug reporter

email-search
vr—osg

Natural language semantic email search
3D virtual reality modeling of home appliances

Python, NLTK, Octave
C++, OpenSceneGraph

college student
college student

Table 1: CDE packages used as benchmarks in our experiments, grouped by use cases. ‘self’ in the ‘Creator’ column
means package was created by the author; all other packages created by CDE users (mostly people we have never met).

age managers of most modern Linux distributions. Its
creator, a security researcher, created and uploaded CDE
packages and then sent us a grateful email describing
how much effort CDE saved him: “My guess is that it
would take me half the time of the development process
to create a self-contained package by hand; which would
be an unacceptable and truly scary scenario.”

In addition, we used CDE to create portable binary
packages for two of our Stanford colleagues’ research
tools, which were originally distributed as tarballs of
source code: pads [19] and saturn [13]. 44% of
the messages on the pads mailing list (38 / 87) were
questions related to troubles with compiling it (22% for
saturn). Once we successfully compiled these projects
(after a few hours of improvising our own hacks since the
instructions were outdated), we created CDE packages by
running their regression test suites, so that others do not
need to suffer through the compilation process.

Even the saturn team leader admitted in a public
email, “As it stands the current release likely has prob-
lems running on newer systems because of bit rot — some

libraries and interfaces have evolved over the past cou-
ple of years in ways incompatible with the release.” [7]
In contrast, our CDE packages are largely immune to “bit
rot” (until the user-kernel ABI changes) because they
contain all required dependencies.

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions, espe-
cially when system upgrades are infeasible. For exam-
ple, an engineer at Cisco wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.
Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port, and then ran the tools from within the packages
on his work machines. He sent us one of the packages,
which we used as a benchmark: the me1d visual diff tool.

18

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google—earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: A funda-
mental tenet of science is that colleagues should be able
to reproduce the results of one’s experiments. In the past
few years, science journals and CS conferences (e.g.,
SIGMOD, FSE) have encouraged authors of published
papers to put their code and datasets online, so that oth-
ers can independently re-run, verify, and build upon their
experiments. However, it can be hard for people to set up
all of the (often-undocumented) dependencies required
to re-run experiments. In fact, it can even be difficult
to re-run one’s own experiments in the future, due to in-
evitable OS and library upgrades. To ensure that he could
later re-run and adjust experiments in response to re-
viewer critiques for a paper submission [16], our group-
mate Cristian took the hard drive out of his computer at
paper submission time and archived it in his drawer!

In our experience, the results of many computational
science experiments can be reproduced within CDE pack-
ages since the programs are output-deterministic [15], al-
ways producing the same outputs (e.g., statistics, graphs)
for a given input. A robotics researcher used CDE to
make the experiments for his motion planning paper
(kpiece) [26] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [21].

Deploying computations to cluster or cloud: People
working on computational experiments on their desktop
machines often want to run them on a cluster for greater
performance and parallelism. However, before they can
deploy their computations to a cluster or cloud comput-
ing (e.g., Amazon EC2), they must first install all of the
required executables and dependent libraries on the clus-
ter machines. At best, this process is tedious and time-
consuming; at worst, it can be impossible, since regular
users often do not have root access on cluster machines.

A user can create a self-contained package using CDE
on their desktop machine and then execute that package
on the cluster or cloud (possibly many instances in par-
allel), without needing to install any dependencies or to
get root access on the remote machines. For instance, our
colleague Peter wanted to use a department-administered
100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-

quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.
Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [16] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.
Klee can be hard to compile since it depends on LLVM,
which is very picky about specific versions of GCC and
other build tools being present before it will compile.

Submitting executable bug reports: Bug reporting is
a tedious manual process: Users submit reports by writ-
ing down the steps for reproduction, exact versions of
executables and dependent libraries, (e.g., “I’'m running
Java version 1.6.0_13, Eclipse SDK Version 3.6.1, ... "),
and maybe attaching an input file that triggers the bug.
Developers often have trouble reproducing bugs based
on these hand-written descriptions and end up closing re-
ports as “not reproducible.”

CDE offers an easier and more reliable solution: The
bug reporter can simply run the command that triggers
the bug under CDE supervision to create a CDE package,
send that package to the developer, and the developer can
re-run that same command on their machine to reproduce
the bug. The developer can also modify the input file and
command-line parameters and then re-execute, in order
to investigate the bug’s root cause.

To show that this technique works, we asked peo-
ple who recently reported bugs to popular open-source
projects to use CDE to create executable bug reports.
Three volunteers sent us CDE packages, and we were
able to reproduce all of their bugs: one that causes
the Coq proof assistant to produce incorrect output
(cog-bug-2443) [2], one that segfaults the GCC com-
piler (gee-bug-46651) [3], and one that makes the
LLVM compiler allocate an enormous amount of mem-
ory and crash (11vm-bug-8679) [5].

Since CDE is not a record-replay tool, it is not guar-
anteed to reproduce non-deterministic bugs. However, at
least it allows the developer to run the exact versions of
the faulting executables and dependent libraries.

Collaborating on class programming projects: Two
users sent us CDE packages they created for collaborat-
ing on class assignments. Rahul, a Stanford grad student,
was using NLTK [22], a Python module for natural lan-
guage processing, to build a semantic email search en-
gine (email-search) for a machine learning class. De-
spite much struggle, Rahul’s two teammates were unable
to install NLTK on their Linux machines due to conflict-
ing library versions and dependency hell. This meant
that they could only run one instance of the project at a

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 19

time on Rahul’s laptop for query testing and debugging.
When Rahul discovered CDE, he created a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Joshua, an undergrad from Mexico, emailed
us a similar story about how he used CDE to collaborate
on and demo his virtual reality class project (vr-osg).

7 Evaluation

7.1 Evaluating CDE package portability

To show that CDE packages can successfully execute on
a wide range of Linux distros and kernel versions, we
tested our benchmark packages on popular distros from
the past 5 years. We installed fresh copies of these dis-
tros (listed with the versions and release dates of their
kernels) on a 3GHz Intel Xeon x86-64 machine:

e Sep 2006 — CentOS 5.5 (Linux 2.6.18)

e Oct 2007 — Fedora Core 8 (Linux 2.6.23)

e Oct 2008 — openSUSE 11.1 (Linux 2.6.27)

Sep 2009 — Ubuntu 9.10 (Linux 2.6.31)

e Feb 2010 — Mandriva Free Spring (Linux 2.6.33)
e Aug 2010 — Linux Mint 10 (Linux 2.6.35)

We installed 32-bit and 64-bit versions of each distro
and executed our 32-bit benchmark packages (those cre-
ated on 32-bit distros) on the 32-bit versions, and our
64-bit packages on the 64-bit versions. Although all of
these distros reside on one physical machine, none of our
benchmark packages were created on that machine: CDE
users created most of the packages, and we made sure to
create our own packages on other machines.

Results: Out of the 96 unique configurations we tested
(16 cDE packages each run on 6 distros), all executions
succeeded except for one>. By “succeeded”, we mean
that the programs ran correctly, as far as we could ob-
serve: Batch programs generated identical outputs across
distros; regression tests passed; we could interact nor-
mally with the GUI programs; and we could reproduce
the symptoms of the executable bug reports.

In addition, we were able to successfully execute all
of our 32-bit packages on the 64-bit versions of CentOS,
Mandriva, and openSUSE (the other 64-bit distros did
not support executing 32-bit binaries).

In sum, we were able to use CDE to successfully exe-
cute a diverse set of programs (Table 1) “out-of-the-box”
on a variety of Linux distributions from the past 5 years,
without performing any installation or configuration.

Svr—osg failed on Fedora Core 8 with a known error related to

graphics drivers.

7.2 Comparing against a one-click installer

To show that the level of portability that CDE enables
is substantive, we compare CDE against a representative
one-click installer for a commercial application. We in-
stalled and ran Google Earth (Version 5.2.1, Sep 2010)
on our 6 test distros using the official 32-bit installer from
Google. Here is what happened on each distro:

e CentOS (Linux 2.6.18) — installs fine but Google
Earth crashes upon start-up with variants of this
error message repeated several times, because the
GNU Standard C++ Library on this OS is too old:

/usr/lib/libstdc++.s0.6:
version ‘GLIBCXX_3.4.9" not found
(required by ./libgoogleearth_free.so)

e Fedora (Linux 2.6.23) — same error as CentOS
e openSUSE (Linux 2.6.27) — installs and runs fine
e Ubuntu (Linux 2.6.31) — installs and runs fine

e Mandriva (Linux 2.6.33) — installs fine but Google
Earth crashes upon start-up with this error message
because a required graphics library is missing:

error while loading shared libraries:
1ibGL.so.1l: cannot open shared object
file: No such file or directory

e Linux Mint (Linux 2.6.35) — installer program
crashes with this cryptic error message because the
XML processing library on this OS is foo new and
thus incompatible with the installer:

setup.data/setup.xml:1: parser error :
Document is empty

setup.data/setup.xml:1: parser error :
Start tag expected, <’ not found

Couldn’t load ’setup.data/setup.xml’

In summary, on 4 out of our 6 test distros, a bi-
nary installer for the fifth major release of Google Earth
(v5.2.1), a popular commercial application developed by
a well-known software company, failed in its sole goal
of allowing the user to run the application, despite adver-
tising that it should work on any Linux 2.6 machine.

If a team of professional Linux developers had this
much trouble getting a widely-used commercial applica-
tion to be portable across distros, then it is unreasonable
to expect researchers or hobbyists to be able to easily
create portable Linux packages for their prototypes.

In contrast, once we were able to install Google
Earth on just one machine (Dell desktop running Ubuntu
8.04), we ran it under CDE supervision to create a self-
contained package, copied the package to all 6 test dis-
tros, and successfully ran Google Earth on all of them
without any installation or configuration.

20

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

Native CDE slowdown Native CDE slowdown Syscalls
Benchmark run time pack exec Command time pack eXec per sec
400.perlbench 237s 3.0% 2.5% gadm (algorithm) ~ 4187s 0% 0%°" 19
401 .bzip2 473s 0.2% 0.1% pads (inferencer) 18.6s 3% 1% 478
403.gcc 093s 2.7% 22% klee 79s 31% 2%" 260
410.bwaves 185.7s 0.2% 0.3% gadm (make plots) 7.2s 8% 2%" 544
416.gamess 1299s 0.1% 0% gadm (C++ comp) 8.5s 17% 5% 1459
429 .mcf 16.2s 2.7% 0% saturn 222.7s 18% 18% 6477
433.milc 15.1s 2% 0.6% google-earth 12.5s 65% 19% 7938
434 . zeusmp 36.3s 0% 0% pads (compiler) 1.7s 59% 28% 6969
435.gromacs 133.9s 0.3% 0.1%
436.cactusADM 26.1s 0% 0% Table 3: Quantifying run-time slowdown of CDE
437.leslie3d 136.0s 0.1% 0% package creation and execution within a package. Each
444 .namd 13.9s 3% 0.3% entry reports the mean taken over 5 runs; standard devi-
445 .gobmk 97.5s 04% 0.2% ations are negligible. Slowdowns marked with are not
447.dealll 28.7s 0.5% 0.2% statistically significant at p < 0.01 according to a t-test.
450.soplex 57s 2.2% 1.8%
453 .povray 7.8s 2.2% 1.9%
454 .calculix 1.4s 5% 4% benchmark suite (both integer and floating-point bench-
456 . hmmer 482s 0.2% 0.1% marks) [8]. We chose this suite because it contains CPU-
458.sjeng 121.4s 0% 0.2% bound applications that are representative of the types
459 .GemsFDTD 55.2s 0.2% 1.6% of programs that computational scientists and other re-
462 .1libguantum 1.8s 2% 0.6% searchers are likely to run with CDE. For instance, SPEC
464 . h264ref 87.2s 0% 0% CPU2006 contains benchmarks for video compression,
465.tonto 2299s 0.8% 0.4% molecular dynamics simulation, image ray-tracing, com-
470.1bm 31.9s 0% 0% binatorial optimization, and speech recognition.
471 .omnetpp 51.0s 0.7% 0.6% We ran these experiments on a Dell machine with a
473.astar 103.7s 0.2% 0% 2.67GHz Intel Xeon CPU running a 64-bit Ubuntu 10.04
481 .wrf 161.6s 0.2% 0% distro (Linux 2.6.32). Each trial was run three times, but
482 .sphinx3 8.8s 3% 0% the variances in running times were negligible.
483 .xalancbmk 58.0s 1.2% 1.8% Table 2 shows the percentage slowdowns incurred

Table 2: Quantifying run-time slowdown of CDE
package creation and execution within a package on the
SPEC CPU2006 benchmarks, using the “train” datasets.

7.3 Evaluating CDE run-time slowdown

The primary drawback of executing a CDE-packaged ap-
plication is the run-time slowdown due to extra user-
kernel context switches. Every time the target applica-
tion issues a system call, the kernel makes two extra con-
text switches to enter and then exit the cde—exec mon-
itoring process, respectively. cde-exec performs some
computations to calculate path redirections, but its run-
time overhead is dominated by context switching®.

We informally evaluated the run-time slowdown of
cde and cde-exec on 34 diverse Linux applications. In
summary, for CPU-bound applications, CDE causes al-
most no slowdown, but for I/O-bound applications, CDE
causes a slowdown of up to ~30%.

We first ran CDE on the entire SPEC CPU2006

Disabling path redirection still results in similar overheads.

by using cde to create each package (the ‘pack’ col-
umn) and by using cde-exec to execute each package
(the ‘exec’ column). The ‘exec’ column slowdowns are
shown in bold since they are more important for our
users: A package is only created once but executed mul-
tiple times. In sum, slowdowns ranged from non-existent
to ~4%, which is unsurprising since the SPEC CPU2006
benchmarks were designed to be CPU-bound and not
make much use of system calls.

To test more realistic I/O-bound applications, we mea-
sured running times for executing the following com-
mands in the five CDE packages that we created (those
labeled with “self” in the “Creator” column of Table 1):

e pads — Compile a PADS [19] specification into C
code (the “pads (compiler)” row in Table 3), and
then infer a specification from a data file (the “pads
(inferencer)” row in Table 3).

e gadm — Reproduce the GADM experiment [21]:
Compile its C++ source code (‘C++ comp’), run ge-
netic algorithm (‘algorithm’), and use the R statis-
tics software to visualize output data (‘make plots’).

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 21

® google-earth — Measure startup time by
launching it and then quitting as soon as the initial
Earth image finishes rendering and stabilizes.

e klee — Use Klee [16] to symbolically execute a
C target program (a STUN server) for 100,000 in-
structions, which generates 21 test cases.

e saturn— Run the regression test suite, which con-
tains 69 tests (each is a static program analysis).

We measured the following on a Dell desktop (2GHz
Intel x86, 32-bit) running Ubuntu 8.04 (Linux 2.6.24):
number of seconds it took to run the original command
(‘Native time’), percent slowdown vs. native when run-
ning a command with cde to create a package (‘pack’),
and percent slowdown when executing the command
from within a CDE package with cde—exec (‘exec’). We
ran each benchmark five times under each condition and
report mean running times. We used an independent two-
group t-test [17] to determine whether each slowdown
was statistically significant (i.e., whether the means of
two sets of runs differed by a non-trivial amount).

Table 3 shows that the more system calls a program
issues per second, the more CDE causes it to slow down
due to the extra context switches. Creating a CDE pack-
age (‘pack’ column) is slower than executing a program
within a package (‘exec’ column) because CDE must cre-
ate new sub-directories and copy files into the package.

CDE execution slowdowns ranged from negligible (not
statistically significant) to ~30%, depending on system
call frequency. As expected, CPU-bound workloads like
the gadm genetic algorithm and the pads inferencer ma-
chine learning algorithm had almost no slowdown, while
those that were more I/O- and network-intensive (e.g.,
google-earth) had the largest slowdowns.

When using CDE to run GUI applications, we did not
notice any loss in interactivity due to the slowdowns.
When we navigated around the 3D maps within the
google-earth GUI, we felt that the CDE-packaged ver-
sion was just as responsive as the native version. When
we ran GUI programs from CDE packages that users sent
to us (the bio-menace game, meld visual diff tool, and
vr-osg), we also did not perceive any visible lag.

The main caveat of these experiments is that they are
informal and meant to characterize “typical-case” behav-
ior rather than being stress tests of worst-case behavior.
One could imagine developing adversarial I/O intensive
benchmarks that issue tens or hundreds of thousands of
system calls per second, which would lead to greater
slowdowns. We have not run such experiments yet.

Finally, we also ran some informal performance tests
of cde-exec’s seamless execution mode. As expected,
there were no noticeable differences in running times
versus regular cde-exec, since the context-switching
overhead dominates cde-exec computation overhead.

8 Related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to manu-
ally specify dependencies at package creation time. For
example, Mac OS X programmers can create application
bundles using Apple’s developer tools IDE [6]. Research
prototypes like PDS [14], which creates self-contained
Windows apps, and the Collective [23], which aggregates
a set of software into a portable virtual appliance, also
require the user to manually specify dependencies.
VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by
having ThinApp monitor the installation of new soft-
ware [12]. Unlike CDE, ThinApp cannot be used to cre-
ate packages from existing software already installed on
a live machine, which is our most common use case.
Package management systems are often used to install
open-source software and their dependencies. Generic
package managers exist for all major operating systems
(e.g., RPM for Linux, MacPorts for Mac OS X, Cygwin
for Windows), and specialized package managers ex-
ist for ecosystems surrounding many programming lan-
guages (e.g., CPAN for Perl, RubyGems for Ruby) [4].
From the package creator’s perspective, it takes time
and expertise to manually bundle up one’s software and
list all dependencies so that it can be integrated into a
specific package management system. A banal but tricky
detail that package creators must worry about is adhering
to platform-specific idioms for pathnames and avoiding
hard-coding non-portable paths into their programs [25].
In contrast, creating a CDE package is as easy as running
the target program, and hard-coded paths are fine since
cde-exec redirects all file accesses into the package.
From the user’s perspective, package managers work
great as long as the exact desired versions of software
exist within the system. However, version mismatches
and conflicts are common frustrations, and installing new
software can lead to a library upgrade that breaks existing
software [18]. The Nix package manager is a research
project that tries to eliminate dependency conflicts via
stricter versioning, but it still requires package creators to
manually specify dependencies at creation time [18]. In
contrast, CDE packages can be run without any installa-
tion, configuration, or risk of breaking existing software.
Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defi-

22

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

nition) larger than the corresponding CDE packages since
they must also contain the OS kernel and other extrane-
ous applications. CDE is a more lightweight solution be-
cause it enables users to create and run packages natively
on their own machines rather than through a VM.

9 Discussion and conclusions

Our design philosophy underlying CDE is that people
should be able to package up their Linux software and
deploy it to run on other Linux machines with as little ef-
fort as possible. However, we are not proposing CDE as
a replacement for traditional software installation. CDE
packages have a number of limitations. Most notably,

e They are not guaranteed to be complete.

e Their constituent shared libraries are “frozen” and
do not receive regular security updates. (Static link-
ing also shares this limitation.)

e They run slower than native applications due to
ptrace overhead. We measured slowdowns of
up to 28% in our informal experiments (§7.3), but
slowdowns can be worse for [/O-heavy programs.

Software engineers who are releasing production-
quality software should obviously take the time to cre-
ate and test one-click installers or integrate with package
managers. But for the millions of system administra-
tors, research scientists, prototype designers, program-
ming course students and teachers, and hobby hackers
who just want to deploy their ad-hoc software as quickly
as possible, CDE can emulate many of the benefits of tra-
ditional software distribution with much less required la-
bor: In just minutes, users can create a base CDE pack-
age by running their program under CDE supervision, use
our semi-automated heuristic tools to make the package
complete, deploy to the target Linux machine, and then
execute it in seamless execution mode to make the target
program behave like it was installed normally.

In particular, we believe that the lightweight nature of
CDE makes it a useful tool in the Linux system admin-
istrator’s toolbox. Sysadmins need to rapidly and ef-
fectively respond to emergencies, hack together scripts
and other utilities on-demand, and run diagnostics with-
out compromising the integrity of production machines.
Ad-hoc scripts are notoriously brittle and non-portable
across Linux distros due to differences in interpreter ver-
sions (e.g., bash vs. dash shell, Python 2.x vs. 3.x), sys-
tem libraries, and availability of the often-obscure pro-
grams that the scripts invoke. Encapsulating scripts and
their dependencies within a CDE package can make them
portable across distros and minor kernel versions; we
have been able to take CDE packages created on 2010-
era Linux distros and run them on 2006-era distros [20].

Lessons learned: We would like to conclude by shar-
ing some generalizable system design lessons that we
learned throughout the past year of developing CDE.

e First and foremost, start with a conceptually-clear
core idea, make it work for basic non-trivial cases,
document the still-unimplemented tricky cases,
launch your system, and then get feedback from real
users. User feedback is by far the easiest way for
you to discover what bugs are important to fix and
what new features to add next.

e A simple and appealing quick-start webpage guide
and screencast video demo are essential for attract-
ing new users. No potential user is going to read
through dozens of pages of an academic research
paper before deciding to try your system. In short,
even hackers need to learn to be great salespeople.

e To maximize your system’s usefulness, you must
design it to be easy-to-use for beginners but also to
allow advanced users to customize it to their liking.
One way to accomplish this goal is to have well-
designed default settings, which can be adjusted via
command-line options or configuration files. The
defaults must work well “out-of-the-box™ without
any tuning, or else beginners will get frustrated.

e Resist the urge to add new features just because
they’re “interesting”, “cool”, or “potentially use-
ful”. Only add new features when there are com-
pelling real users who demand it. Instead, focus
your development efforts on fixing bugs, writing
more test cases, improving your documentation,
and, most importantly, attracting new users.

e Users are the best sources of bug reports, since they
often stress your system in ways that you could have
never imagined. Whenever a user reports a bug, try
to create a representative minimal test case and add
it to your regression test suite.

o If a user has a conceptual misunderstanding of how
your system works, then think hard about how you
can improve your documentation or default settings
to eliminate this misunderstanding.

In sum, get real users, make them happy, and have fun!

Acknowledgments

Special thanks to Dawson Engler for supporting my ef-
forts on this project throughout the past year, to Bill
Howe for inspiring me to develop CDE’s streaming mode,
to Yaroslav Bulatov for being a wonderful CDE power-
user and advocate, to Federico D. Sacerdoti (my pa-
per shepherd) for his insightful critiques that greatly im-
proved the prose, and finally to the NSF fellowship for
funding this portion of my graduate studies.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 23

References

(1]

(2]

[3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

CDE public source code repository, https://github.com/
pgbovine/CDE.

Coq proof assistant: Bug 2443, http://coqg.inria.fr/
bugs/show_bug.cgi?id=2443.

GCC compiler: Bug 46651, http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=46651.

List of software package management systems, http:
//en.wikipedia.org/wiki/List_of_software_
package_management_systems.

LLVM compiler: Bug 8679, http://llvm.org/bugs/
show_bug.cgi?id=8679.

Mac OS X Bundle Programming Guide: Introduction,
http://developer.apple.com/library/mac/
#documentation/CoreFoundation/Conceptual/
CFBundles/Introduction/Introduction.html.

Saturn online discussion thread, https://mailman.
stanford.edu/pipermail/saturn-discuss/
2009-August/000174.html.

Spec cpu2006 benchmarks, http://www.spec.org/
cpu2006/.
SSH Filesystem, http://fuse.sourceforge.net/
sshfs.html.

arachni project home page,
Zapotek/arachni.

https://github.com/

graph-tool project home page,
skewed.de/graph-tool/.

http://projects.

VMware ThinApp User’s Guide, http://www.vmware.
com/pdf/thinapp46_manual.pdf.

AIKEN, A., BUGRARA, S., DILLIG, 1., DILLIG, T., HACK-
ETT, B., AND HAWKINS, P. An overview of the Saturn project.
PASTE °07, ACM, pp. 43-48.

ALPERN, B., AUERBACH, J., BALA, V., FRAUENHOFER, T.,
MUMMERT, T., AND PIGOTT, M. PDS: A virtual execution envi-
ronment for software deployment. VEE ’05, ACM, pp. 175-185.

ALTEKAR, G., AND STOICA, I. ODR: output-deterministic re-
play for multicore debugging. SOSP *09, ACM, pp. 193-206.

CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. OSDI *08, USENIX Association, pp. 209-224.

CHAMBERS, J. M. Statistical Models in S. CRC Press, Inc.,
Boca Raton, FL, USA, 1991.

DOLSTRA, E., DE JONGE, M., AND VISSER, E. Nix: A safe
and policy-free system for software deployment. In LISA "04, the
18th USENIX conference on system administration (2004).

FISHER, K., AND GRUBER, R. PADS: a domain-specific lan-
guage for processing ad hoc data. PLDI "05, ACM, pp. 295-304.

Guo, P.J., AND ENGLER, D. CDE: Using system call interpo-
sition to automatically create portable software packages (short
paper). In USENIX Annual Technical Conference (June 2011).

LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
general diffusion model for social networks. In Proc. of the 24th
AAAI Conference on Artificial Intelligence (2010), AAAI Press.

LoPER, E., AND BIRD, S. NLTK: The Natural Language
Toolkit. In In ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and Computational Linguistics (2002).

SAPUNTZAKIS, C., BRUMLEY, D., CHANDRA, R., ZEL-
DOVICH, N., CHOW, J., LAM, M. S., AND ROSENBLUM, M.
Virtual appliances for deploying and maintaining software. In
LISA °03, the 17th USENIX conference on system administration
(2003).

[24]

[25]

[26]

SCAFFIDI, C., SHAW, M., AND MYERS, B. Estimating the num-
bers of end users and end user programmers. In IEEE Symposium
on Visual Languages and Human-Centric Computing (2005).

STAELIN, C. mkpkg: A software packaging tool. In LISA '98,
the 12th USENIX conference on system administration (1998).

SUCAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In Int’l Workshop on the
Algorithmic Foundations of Robotics (2008), pp. 449-464.

24

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

Improving Virtual Appliance Management through
Virtual Layered File Systems

Shaya Potter

Jason Nieh

Computer Science Department
Columbia University

{spotter, nieh}@cs.columbia.edu

Abstract

Managing many computers is difficult. Recent virtual-
ization trends exacerbate this problem by making it easy
to create and deploy multiple virtual appliances per phys-
ical machine, each of which can be configured with dif-
ferent applications and utilities. This results in a huge
scaling problem for large organizations as management
overhead grows linearly with the number of appliances.

To address this problem, we introduce Strata, a system
that combines unioning file system and package manage-
ment semantics to enable more efficient creation, pro-
visioning and management of virtual appliances. Un-
like traditional systems that depend on monolithic file
systems, Strata uses a collection of individual sotware
layers that are composed together into the Virtual Lay-
ered File System (VLFS) to provide the traditional file
system view. Individual layers are maintained in a cen-
tral repository and shared across all file systems that use
them. Layer changes and upgrades only need to be done
once in the repository and are then automatically propa-
gated to all virtual appliances, resulting in management
overhead independent of the number of appliances. Our
Strata Linux prototype requires only a single loadable
kernel module providing the VLES support and doesn’t
require any application or source code level kernel mod-
ifications. Using this prototype, we demonstrate how
Strata enables fast system provisioning, simplifies sys-
tem maintenance and upgrades, speeds system recovery
from security exploits, and incurs only modest perfor-
mance overhead.

1 Introduction

A key problem organizations face is how to efficiently
provision and maintain the large number of machines de-
ployed throughout their organizations. This problem is
exemplified by the growing adoption and use of virtual
appliances (VAs). VAs are pre-built software bundles run
inside virtual machines (VMs). Since VAs are often tai-
lored to a specific application, these configurations can
be smaller and simpler, potentially resulting in reduced
resource requirements and more secure deployments.

While VAs simplify application deployment and de-
crease hardware costs, they can tremendously increase
the human cost of administering these machines As VAs
are cloned and modified, organizations that once had a
few hardware machines to manage now find themselves
juggling many more VAs with diverse system configura-
tions and software installations.

This causes many management problems. First, as
these VAs share a lot of common data, they are inefficient
to store, as there are multiple copies of many common
files. Second, by increasing the number of systems in
use, we increase the number of systems needing security
updates. Finally, machine sprawl, especially non actively
maintained machines, can give attackers many places to
hide as well as make attack detection more difficult. In-
stead of a single actively used machine, administrators
now have to monitor many irregularly used machines.

Many approaches have been used to address these
problems, including diskless clients [5], traditional pack-
age management systems [6, 1], copy-on-write disks [9],
deduplication [16] and new VM storage formats [12, 4].
Unfortunately, they suffer from various drawbacks that
limit their utility and effectiveness in practice. They ei-
ther do not directly help with management, incur man-
agement overheads that grow linearly with the number of
VAs, or require a homogenous configuration, eliminating
the main advantages of VAs.

The fundamental problem with previous approaches is
that they are based on a monolithic file system or block
device. These file systems and block devices address
their data at the block layer and are simply used as a stor-
age entity. They have no direct concept of what the file
system contains or how it is modified. However, man-
aging VAs is essentially done by making changes to the
file system. As a result, any upgrade or maintenance op-
eration needs to be done to each VA independently, even
when they all need the same maintenance.

We present Strata, a novel system that integrates file
system unioning with package management semantics
and uses the combination to solve VA management prob-
lems. Strata makes VA creation and provisioning fast.
It automates the regular maintenance and upgrades that
must be performed on provisioned VA instances. Finally,

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 25

it improves the ability to detect and recover from security
exploits.

Strata achieves this by providing three architectural
components: layers, layer repositories, and the Virtual
Layered File System (VLES). A layer is a set of files that
are installed and upgraded as a unit. Layers are analo-
gous to software packages in package management sys-
tems. Like software packages, a layer may require other
layers to function correctly, just as applications often re-
quire various system libraries to run. Strata associates
dependency information with each layer that defines re-
lationships among distinct layers. Unlike software pack-
ages, which are installed into each VA’s file system, lay-
ers can be shared directly among multiple VAs.

Layer repositories are used to store layers centrally
within a virtualization infrastructure, enabling them to
be shared among multiple VAs. Layers are updated and
maintained in the layer repository. When a new version
of an application becomes available, due to added fea-
tures or a security patch, a new layer is added to the
repository. Different versions of the same application
may be available through different layers in the layer
repository. The layer repository is typically stored in a
shared storage infrastructure accessible by the VAs, such
as an SAN. Storing layers on the SAN does not impact
VA performance because an SAN is where a traditional
VA’s monolithic file system is stored.

The VLFS implements Strata’s unioning mechanism
and provides the file system for each VA. Like a tradi-
tional unioning file system, it is a collection of individual
layers composed into a single view. It enables, a file sys-
tem to be built out of many shared read-only layers while
providing each file system with its own private read-write
layer to contain all file system modifications that occur
during runtime. In addition, it provides new semantics
that enable unioning file systems to be used as the ba-
sis for package management type system. These include
how layers get added and removed from the union struc-
ture as well as how the file system handles files deleted
from a read-only layer.

Strata, by combining the unioning and package man-
agement semantics, provides a number of management
benefits. First, Strata is able to create and provision
VAs quickly and easily. By leveraging each layer’s de-
pendency information, Strata allows an administrator to
quickly create template VAs by only needing to explicitly
select the application and tool layers of interest. These
template VAs can then be instantly provisioned by end
users as no copying or on demand paging is needed to
instantiate any file system as all the layers are accessed
from the shared layer repository.

Second, Strata automates upgrades and maintenance
of provisioned VAs. If a layer contains a bug to be fixed,
the administrator only updates the template VA with a

replacement layer containing the fix. This automatically
informs all provisioned VAs to incorporate the updated
layer into their VLFS’s namespace view, thereby requir-
ing the fix to only be done once no matter how many
VAs are deployed. Unlike traditional VAs, who are up-
dated by replacing an entire file system [12, 4], Strata
does not need to be rebooted to have these changes take
effect. Unlike package management, all VLFS changes
are atomic as no time is spent deleting and copying files.

Finally, this semantic allows Strata to easily recover
VAs in the presence of security exploits. The VLFS al-
lows Strata to distinguish between files installed via its
package manager, which are stored in a shared read-only
layer, and the changes made over time, which are stored
in the private read-write layer. If a VA is compromised,
the modifications will be confined to the VLFS’s pri-
vate read-write layer, thereby making the changes easy
to both identify and remove.

We have implemented a Strata Linux prototype with-
out any application or source code operating system ker-
nel changes and provide the VLFS as a loadable kernel
module. We show that by combining traditional pack-
age management with file system unioning we provide
powerful new functionality that can help automate many
machine management tasks. We have used our proto-
type with VMware ESX virtualization infrastructure to
create and manipulate a variety of desktop and server
VAs to demonstrate its utility for system provisioning,
system maintenance and upgrades, and system recovery.
Our experimental results show that Strata can provision
VAs in only a few seconds, can upgrade a farm of fifty
VAs with several different configurations in less than two
minutes, and has scalable storage requirements and mod-
est file system performance overhead.

2 Related Work

The most common way to provision and maintain ma-
chines today is using the package management system
built into the operating system [6, 1]. Package manage-
ment provides a number of benefits. First, it divides the
installable software into independent chunks called pack-
ages. When one wants to install a piece of software or
upgrade an already installed piece of software, all one
has to do is download and install that single item. Sec-
ond, these packages can include dependency information
that instructs the system about what other packages must
be installed with this package. This enables tools [2, 10]
to automatically determine the entire set of packages one
needs to install when one wants to install a piece of soft-
ware, making it significantly easier for an end-user to in-
stall software.

However, package managers view the file system as a
simple container for files and not as a partner in the man-

26

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

agement of the machine. This causes them to suffer from
a number of flaws in their management of large numbers
of VAs. They are not space or time efficient, as each pro-
visioned VA requires time-consuming copying of many
megabytes or gigabytes into each VA’s file system. These
inefficiencies affect both provisioning and updating of a
system as a lot of time is spent, downloading, extract-
ing and installing the individual packages into the many
independent VAs.

As the package manager does not work in partnership
with the file system, the file system does not distinguish
between a file installed from a package and a file modi-
fied or created in the course of usage. Specialized tools
are needed to traverse the entire file system to determine
if a file has been modified and therefore compromised.
Finally, package management systems work in the con-
text of a running system to modify the file system di-
rectly. These tools often cannot not work if the VA is
suspended or turned off.

For local scenarios, the size and time efficiencies of
provisioning a VA can be improved by utilizing copy-
on-write (COW) disks, such as QEMU’s QCOW2 [9]
format. These enables VAs to be provisioned quickly,
as little data has to be written to disk immediately due
to the COW property. However, once provisioned, each
COW copy is now fully independent from the original, is
equivalent to a regular copy, and therefore suffers from
all the same maintenance problems as a regular VA. Even
if the original disk image is updated, the changes would
be incompatible with the cloned COW images. This is
because COW disks operate at the block level. As files
get modified, they use different blocks on their underly-
ing device. Therefore, it is likely that the original and
cloned COW images address the same blocks for differ-
ent pieces of data. For similar reasons, COW disks do not
help with VA creation, as multiple COW disks cannot be
combined together into a single disk image.

Both the Collective [4] and Ventana [12] attempt to
solve the VA maintenance problem by building upon
COW concepts. Both systems enable VAs to be provi-
sioned quickly by performing a COW copy of each VA’s
system file system. However, they suffer from the fact
that they manage this file system at either the block de-
vice or monolithic file system level, providing users with
only a single file system. While ideally an administra-
tor could supply a single homogeneous shared image for
all users, in practice, users want access to many heteroge-
neous images that must be maintained independently and
therefore increase the administrator’s work. The same
is true for VAs provisioned by the end user, while they
both enable the VAs to maintain a separate disk from the
shared system disk that persists beyond upgrades.

Mirage [17] attempts to improve the disk image sprawl
problem by introducing a new storage format, the Mi-

rage Index Format (MIF), to enumerate what files be-
long to a package. However, it does not help with the
actual image sprawl in regard to machine maintenance,
because each machine reconstituted by Mirage still has a
fully independent file system, as each image has its own
personal copy. Although each provisioned machine can
be tracked, they are now independent entities and suffer
from the same problems as a traditional VA.

Stork [3] improves on package management for
container-based systems by enabling containers to hard
link to an underlying shared file system so that files are
only stored once across all containers. By design, it can-
not help with managing independent machines, virtual
machines, or VAs, because hard links are a function in-
ternal to a specific file system and not usable between
separate file systems.

Union file systems [11, 19] provide the ability to com-
pose multiple different file namespaces into a single
view. Unioning file systems are commonly used to pro-
vide a COW file system from a read-only copy, such as
with Live-CDs. However, unioning file system by them-
selves do not directly help with VA management, as the
underlying file system has to be maintained using regular
tools. Strata builds upon and leverages this mechanism
by improving its ability to handle deleted files as well
as managing the layers that belong to the union. This
allows Strata to provide a solution that enables efficient
provisioning and management of VAs.

Strata focuses on improving virtual appliance manage-
ment, but the VLFS idea can be used to address other
management and security problems as well. For exam-
ple, our previous work on Apiary [14] demonstrates how
the VLFS can be combined with containers to provide
a transparent desktop application fault containment ar-
chitecture that is effective at limiting the damage from
exploits to enable quick recovery while being as easy to
use as a traditional desktop system.

3 Strata Basics

Figure 1 shows Strata’s three architectural components:
layers, layer repositories, and VLFSs. A layer is a dis-
tinct self-contained set of files that corresponds to a spe-
cific functionality. Strata classifies layers into three cat-
egories: software layers with self-contained applications
and system libraries, configuration layers with configu-
ration file changes for a specific VA, and private layers
allowing each provisioned VA to be independent. Lay-
ers can be mixed and matched, and may depend on other
layers. For example, a single application or system li-
brary is not fully independent, but depends on the pres-
ence of other layers, such as those that provide needed
shared libraries. Strata enables layers to enumerate their
dependencies on other layers. This dependency scheme

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 27

3) VLFS 1) Layer
Template
MySQL Config Layer 2) Layer
MySQL Repository
$ Others. MYSOL
s ySQ

Apache

Firefox
OpenOffice

MySQL+Apache Template

MySQL+Apache
Template

MySQL+Apache Config Layer Gnome

MySQL Config Layer
Apache Config Layer
MySQL
Apache

Others.

MySQL+Apache Template

- Apache Config Layer
N } Apache
S N
N Others
Apache Template Template

Provisioned VLFSs/
Appliances

Template VLFSs/
Appliances

Figure 1: How Strata’s Components Fit Together

allows automatic provisioning of a complete, fully con-
sistent file system by selecting the main features desired
within the file system.

Layers are provided through layer repositories. As
Figure 1 shows, a layer repository is a file system share
containing a set of layers made available to VAs. When
an update is available, the old layer is not overwritten.
Instead, a new version of the layer is created and placed
within the repository, making it available to Strata’s
users. Administrators can also remove layers from the
repository, e.g., those with known security holes, to pre-
vent them from being used. Layer repositories are gen-
erally stored on centrally managed file systems, such as
a SAN or NFS, but they can also be provided by proto-
cols such as FTP and HTTP and mirrored locally. Layers
from multiple layer repositories can form a VLES as long
as they are compatible with one another. This allows lay-
ers to be provided in a distributed manner. Layers pro-
vided by different maintainers can have the same layer
names, causing a conflict. This, however, is no different
from traditional package management systems as pack-
ages with the same package name, but different function-
ality, can be provided by different package repositories.

As Figure 1 shows, a VLFS is a collection of layers
from layer repositories that are composed into a single
file system namespace. The layers making up a particu-
lar VLFS are defined by the VLFS’s layer definition file
(LDF), which enumerates all the layers that will be com-
posed into a single VLFS instance. To provision a VLFS,
an administrator selects software layers that provide the
desired functionality and lists them in the VLFS’s LDF.

Within a VLFS, layers are stacked on top of another
and composed into a single file system view. An impli-
cation of this composition mechanism is that layers on
top can obscure files on layers below them, only allow-
ing the contents of the file instance contained within the

higher level to be used. This means that files in the pri-
vate or configuration layers can obscure files in lower
layers, such as when one makes a change to a default
version of a configuration file located within a software
layer. However, to prevent an ambiguous situation from
occurring, where the file system’s contents depend on the
order of the software layers, Strata prevents software lay-
ers that contain a subset of the same file from being com-
posed into a single VLFS.

4 Using Strata

Strata’s usage model is centered around the usage of lay-
ers to quickly create VLFSs for VAs as shown in Fig-
ure 1. Strata allows an administrator to compose together
layers to form template VAs. These template VAs can be
used to form other template appliances that extend their
functionality, as well as to provide the VA that end users
will provision and use. Strata is designed to be used
within the same setup as a traditional VM architecture.
This architecture includes a cluster of physical machines
that are used to host VM execution as well as a shared
SAN that stores all of the VM images. However, instead
of storing complete disk images on the SAN, Strata uses
the SAN to store the layers that will be used by the VMs
it manages.

4.1 Creating Layers and Repositories

Layers are first created and stored in layer repositories.
Layer creation is similar to the creation of packages in
a traditional package management system, where one
builds the software, installs it into a private directory,
and turns that directory into a package archive, or in
Strata’s case, a layer. For instance, to create a layer
that contains the MySQL SQL server, the layer main-
tainer would download the source archive for MySQL,
extract it, and build it normally. However, instead of in-
stalling it into the system’s root directory, one installs
it into a virtual root directory that becomes the file sys-
tem component of this new layer. The layer maintainer
then defines the layer’s metadata, including its name
(mysgl-server in this case) and an appropriate ver-
sion number to uniquely identify this layer. Finally, the
entire directory structure of the layer is copied into a file
system share that provides a layer repository, making the
layer available to users of that repository.

4.2 Creating Appliance Templates

Given a layer repository, an administrator can then cre-
ate template VAs. Creating a template VA involves: (1)
Creating the template VA with an identifiable name. (2)

28

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

Determining what repositories are available to it. (3) Se-
lecting a set of layers that provide the functionality de-
sired.

To create a template VA that provides a MySQL
SQL server, an administrator creates an appliance/VLFS
named sgl-server and selects the layers needed for a
fully functional MySQL server file system, most impor-
tantly, the mysql-server layer. Strata composes these lay-
ers together into the VLFES in a read-only manner along
with a read-write private layer, making the VLFS us-
able within a VM. The administrator boots the VM and
makes the appropriate configuration changes to the tem-
plate VA, storing them within the VLFS’s private layer.
Finally, the private layer belonging to the template appli-
ance’s VLEFS is converted into the template’s read-only
configuration layer by being moved to a SAN file-system
that the VAs can only access in a read-only manner. As
another example, to create an Apache web server appli-
ance, an administrator creates an appliance/VLFS named
web-server, and selects the layers required for an
Apache web server, most importantly, the layer contain-
ing the Apache program.

Strata extends this template model by allowing multi-
ple template VAs to be composed together into a single
new template. An administrator can create a new tem-
plate VA/VLEFS, sql+web-server, composed of the
MySQL and Apache template VAs. The resulting VLFS
has the combined set of software layers from both tem-
plates, both of their configuration layers, and a new con-
figuration layer containing the configuration state that in-
tegrates the two services together, for a total of three con-
figuration layers.

4.3 Provisioning and Running Appliance
Instances

In Strata, a VLFS can be created by building off a pre-
viously defined VLFS set of layers and combining those
layers with a new read-write private layer. Therefore,
given previously defined templates, Strata enables VAs
to be efficiently and quickly provisioned and deployed
by end users. Provisioning a VA involves (1) creating
a virtual machine container with a network adapter and
an empty virtual disk, (2) using the network adapter’s
unique MAC address as the machine’s identifier for iden-
tifying the VLFS created for this machine, and (3) form-
ing the VLFS by referencing the already existing respec-
tive template VLFS and combining the template’s read-
only software and configuration layers with a read-write
private layer provided by the VM’s virtual disk.

As each VM managed by Strata does not have a phys-
ical disk off which to boot, Strata network boots each
VM. When the VM boots, its BIOS discovers a network
boot server which provides it with a boot image, includ-

ing a base Strata environment. The VM boots this base
environment, which then determines which VLFS should
be mounted for the provisioned VM using the MAC ad-
dress of the machine. Once the proper VLFS is mounted,
the machine transitions to using it as its root file system.

4.4 Updating Appliances

Strata upgrades provisioned VAs efficiently using a sim-
ple three-step process. First, an updated layer is installed
into a shared layer repository. Second, administrators are
able to modify the template appliances under their con-
trol to incorporate the update. Finally, all provisioned
VAs based on that template will automatically incorpo-
rate the update as well. Note that updating appliances
is much simpler than updating generic machines, as ap-
pliances are not independently managed machines. This
means that extra software that can conflict with an up-
grade will not be installed into a centrally managed ap-
pliance. Centrally managed appliance updates are lim-
ited to changes to their configuration files and what data
files they store.

Strata’s updates propagate automatically even if the
VA is not currently running. If a provisioned VA is shut
down, the VA will compose whatever updates have been
applied to its templates automatically, never leaving the
file system in a vulnerable state, because it composes its
file system afresh each time it boots. If it is suspended,
Strata delays the update to when the VA is resumed, as
updating layers is a quick task. Updating is significantly
quicker than resuming, so this does not add much to its
cost.

Furthermore, VAs are upgraded atomically, as Strata
adds and removes all the changed layers in a single oper-
ation. In contrast, traditional package management sys-
tem, when upgrading a package, first uninstalls it before
reinstalling the newer version. This traditional method
leaves the file system in an inconsistent state for a short
period of time. For instance, when the libc package is up-
graded, its contents are first removed from the file system
before being replaced. Any application that tries to exe-
cute during the interim will fail to dynamically link be-
cause the main library on which it depends is not present
within the file system at that moment.

4.5 Improving Security

Strata makes it much easier to manage VAs that have had
their security compromised. By dividing a file system
into a set of shared read-only layers and storing all file
system modifications inside the private read-write layer,
Strata separates changes made to the file system via layer
management from regular runtime modifications. This
enables Strata to easily determine when system files have

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 29

been compromised, because making a compromise per-
sistent requires the file system be modified, modifying or
adding files to the file system to create a compromise will
be readily visible in the private layer. This allows Strata
to not rely on tools like Tripwire [8] or maintain sepa-
rate databases to determine if files have been modified
from their installed state. Similarly, this check can be
run external to the VA, as it just needs access to the pri-
vate layer, thereby preventing an attacker from disabling
it. This reduces management load due to not requiring
any external databases be kept in sync with the file sys-
tem state as it changes. While an attacker could try to
compromise files on the shared layers, they would have
to exploit the SAN containing the layer repository. In
a regular virtualization architecture, if an attacker could
exploit the SAN, he would also have access to all

This segregation of modified file system state also en-
ables quick recovery from a compromised system. By
sreplacing the VA’s private layer with a fresh private
layer, the compromised system is immediately fixed and
returned to its default, freshly provisioned state. How-
ever, unlike reinstalling a system from scratch, replacing
the private layer does not require throwing away the con-
tents of the old private layer. Strata enables the layer
to be mounted within the file system, enabling admin-
istrators to have easy access to the files located within
it to move the uncompromised files back to their proper
place.

5 Strata Architecture

Strata introduces the concept of a virtual layered file
system in place of traditional monolithic file systems.
Strata’s VLFS allows file systems to be created by com-
posing layers together into a single file system names-
pace view. Strata allows these layers to be shared by
multiple VLFSs in a read-only manner or to remain read-
write and private to a single VLFS.

Every VLFS is defined by a layer definition file, which
specifies what software layers should be composed to-
gether. An LDF is a simple text file that lists the layers
and their respective repositories. The LDF’s layer list
syntax is repository/layer version andcanbe
proceeded by an optional modifier command. When an
administrator wants to add or remove software from the
file system, instead of modifying the file system directly,
they modify the LDF by adding or removing the appro-
priate layers.

Figure 2 contains an example LDF for a MySQL SQL
server template appliance. The LDF lists each individual
layer included in the VLFS along with its correspond-
ing repository. Each layer also has a number indicating
which version will be composed into the file system. If
an updated layer is made available, the LDF is updated

main/mysgl-server 5.0.51a-3

main/base 1

main/libdb4.2 4.2.52-18
main/apt-utils 0.5.28.6
main/liblocale-gettext-perl 1.01-17
main/libtext-charwidth-perl 0.04-1
main/libtext—-iconv-perl 1.2-3
main/libtext-wrapil8n-perl 0.06-1
main/debconf 1.4.30.13

main/tcpd 7.6-8

main/libgdbm3 1.8.3-2

main/perl 5.8.4-8

main/psmisc 21.5-1
main/libssl10.9.7 0.9.7e-3
main/liblockfilel 1.06
main/adduser 3.63
main/libreadlined4 4.3-11
main/libnet-daemon-perl 0.38-1
main/libplrpc-perl 0.2017-1
main/libdbi-perl 1.46-6

main/ssmtp 2.61-2

=main/mailx 3a8.1.2-0.20040524cvs-4

Figure 2: LDF for MySQL Server Template

to include the new layer version instead of the old one.
If the administrator of the VLFS does not want to up-
date the layer, they can hold a layer at a specific version,
with the = syntax element. This is demonstrated by the
mailx layer in Figure 2, which is being held at the ver-
sion listed in the LDF.

Strata allows an administrator to select explicitly only
the few layers corresponding to the exact functionality
desired within the file system. Other layers needed in
the file system are implicitly selected by the layers’ de-
pendencies as described in Section 5.2. Figure 2 shows
how Strata distinguishes between explicitly and implic-
itly selected layers. Explicitly selected layers are listed
first and separated from the implicitly selected layers
by a blank line. In this case, the MySQL server has
only one explicit layer, mysql-server, but has 21 implic-
itly selected layers. These include utilities such as Perl
and TCP Wrappers (tcpd), as well as libraries such as
OpenSSL (libssl). Like most operating systems that re-
quire a minimal set of packages to always be installed,
Strata also always includes a minimal set of shared layers
that are common to all VLFSs that it denotes as base. In
our Strata prototype, these are the layers that correspond
to packages that Debian makes essential and are there-
fore not removable. Strata also distinguishes explicit lay-
ers from implicit layers to allow future reconfigurations
to remove one implicit layer in favor of another if depen-
dencies need to change.

When an end user provisions an appliance by cloning a
template, an LDF is created for the provisioned VA. Fig-

30

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

@main/sgl-server

Figure 3: LDF for Provisioned MySQL Server VA

ure 3 shows an example introducing another syntax ele-
ment, @, that instructs Strata to reference another VLFS’s
LDF as the basis for this VLES. This lets Strata clone the
referenced VLFES by including its layers within the new
VLES. In this case, because the user wants only to de-
ploy the SQL server template, this VLFS LDF only has
to include the single @ line. In general, a VLFS can refer-
ence more than one VLFS template, assuming that layer
dependencies allow all the layers to coexist.

5.1 Layers

Strata’s layers are composed of three components: meta-
data files, the layer’s file system, and configuration
scripts. They are stored on disk as a directory tree
named by the layer’s name and version. For instance,
version 5.0.51a of the MySQL server, with a strata
layer version of 3, would be stored under the directory
mysgl-server_5.0.51a-3. Within this directory,
Strata defines a metadata file, a filesystem di-
rectory, and a scripts directory corresponding to the
layer’s three components.

The metadata files define the information that de-
scribes the layer. This includes its name, version, and
dependency information. This information is impor-
tant to ensure that a VLFS is composed correctly. The
metadata file contains all the metadata that is speci-
fied for the layer. Figure 4 shows an example metadata
file. Figure 5 shows the full metadata syntax. The meta-
data file has a single field per line with two elements, the
field type and the field contents. In general, the metadata
file’s syntax is Field Type: value, where value
can be either a single entry or a comma-separated list of
values.

The layer’s file system is a self-contained set of files
providing a specific functionality. The files are the indi-
vidual items in the layer that are composed into a larger
VLFS. There are no restrictions on the types of files that
can be included. They can be regular files, symbolic
links, hard links, or device nodes. Similarly, each di-
rectory entry can be given whatever permissions are ap-
propriate. A layer can be seen as a directory stored on
the shared file system that contains the same file and di-
rectory structure that would be created if the individual
items were installed into a traditional file system. On a
traditional UNIX system, the directory structure would
typically contain directories such as /usr, /bin and
/etc. Symbolic links work as expected between layers
since they work on path names, but one limitation is that
hard links cannot exist between layers.

The layer’s configuration scripts are run when a layer

Layer: mysgl-server

Version: 5.0.51a-3

Depends: ..., perl (>= 5.6),
tcpd (>= 7.6-4),...

Figure 4: Metadata for MySQL-Server Layer
Layer: Layer Name

Version: Version of Layer Unit
Conflicts: layerl (opt. constraint),

Depends: layerl (...),
layer2 (...) | layer3,
Pre-Depends: layerl (...),

Provides: virtual_layer,

Figure 5: Metadata Specification

is added or removed from a VLFS to allow proper in-
tegration of the layer within the VLFS. Although many
layers are just a collection of files, other layers need to
be integrated into the system as a whole. For example,
a layer that provides mp3 file playing capability should
register itself with the system’s MIME database to allow
programs contained within the layer to be launched au-
tomatically when a user wants to play an mp3 file. Simi-
larly, if the layer were removed, it should remove the pro-
grams contained within itself from the MIME database.
Strata supports four types of configuration scripts: pre-
remove, post-remove, pre-install, and post-install. If they
exist in a layer, the appropriate script is run before or
after a layer is added or removed. For example, a pre-
remove script can be used to shut down a daemon before
it is actually removed, while a post-remove script can
be used to clean up file system modifications in the pri-
vate layer. Similarly, a pre-install script can ensure that
the file system is as the layer expects, while the post-
install script can start daemons included in the layer. The
configuration scripts can be written in any scripting lan-
guage. The layer must include the proper dependencies
to ensure that the scripting infrastructure is composed
into the file system in order to allow the scripts to run.

5.2 Dependencies

A key Strata metadata element is enumeration of the de-
pendencies that exist between layers. Strata’s depen-
dency scheme is heavily influenced by the dependency
scheme in Linux distributions such as Debian and Red
Hat. In Strata, every layer composed into Strata’s VLFS
is termed a layer unit. Every layer unit is defined by its
name and version. Two layer units that have the same
name but different layer versions are different units of
the same layer. A layer refers to the set of layer units
of a particular name. Every layer unit in Strata has a
set of dependency constraints placed within its metadata.
There are four types of dependency constraints: (a) de-

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 31

pendency, (b) pre-dependency, (c) conflict and (d) pro-
vide.

Dependency and Pre-Dependency: Dependency and
pre-dependency constraints are similar in that they re-
quire another layer unit to be integrated at the same
time as the layer unit that specifies them. They differ
only in the order the layer’s configuration scripts are ex-
ecuted to integrate them into the VLFS. A regular de-
pendency does not dictate order of integration. A pre-
dependency dictates that the dependency has to be inte-
grated before the dependent layer. Figure 4 shows that
the MySQL layer depends on TCP Wrappers, (tcpd),
because it dynamically links against the shared library
libwrap.so.0 provided by TCP Wrappers. MySQL
cannot run without this shared library, so the layer units
that contain MySQL must depend on a layer unit contain-
ing an appropriate version of the shared library. These
constraints can also be versioned to further restrict which
layer units satisfy the constraint. For example, shared
libraries can add functionality that breaks their applica-
tion binary interface (ABI), breaking in turn any applica-
tions that depend on that ABI. Since MySQL is compiled
against version 0.7.6 of the libwrap library, the depen-
dency constraint is versioned to ensure that a compatible
version of the library is integrated at the same time.

Conflict: Conflict constraints indicate that layer units
cannot be integrated into the same VLFS. There are mul-
tiple reasons this can occur, but it is generally because
they depend on exclusive access to the same operating
system resource. This can be a TCP port in the case of
an Internet daemon, or two layer units that contain the
same file pathnames and therefore would obscure each
other. For this reason, Strata defines that two layer units
of the same layer are by definition in conflict because
they will contain some of the same files.

An example of this constraint occurs when the ABI
of a shared library changes without any source code
changes, generally due to an ABI change in the tool
chain that builds the shared library. Because the ABI
has changed, the new version can no longer satisfy any
of the previous dependencies. But because nothing else
has changed, the file on disk will usually not be renamed
either. A new layer must then be created with a different
name, ensuring that the library with the new ABI is never
used to satisfy an old dependency on the original layer.
Because the new layer contains the same files as the old
layer, it must conflict with the older layer to ensure that
they are not integrated into the same file system.

Provide: Provide dependency constraints introduce
virtual layers. A regular layer provides a specific set of
files, but a virtual layer indicates that a layer provides
a particular piece of general functionality. Layer units
that depend on a certain piece of general functionality
can depend on a specific virtual layer name in the normal

manner, while layer units that provide that functionality
will explicitly specify that they do. For example, layer
units that provide HTML documentation depend on the
presence of a web server to enable a user to view them,
but which one is not important. Instead of depending
on a particular web server, they depend on the virtual
layer name httpd. Similarly, layer units containing a
web server and obeying system policy for the location of
static html content, such as Apache or Boa, are defined
to provide the httpd virtual layer name and therefore
satisfy those dependencies. Unlike regular layer units,
virtual layers are not versioned.

Example: Figure 2 shows how dependencies can af-
fect a VLFS in practice. This VLFS has only one ex-
plicit layer, mysql-server, but 21 implicitly selected lay-
ers. The mysql-server layer itself has a number of di-
rect dependencies, including Perl, TCP Wrappers, and
the mailx program. These dependencies in turn de-
pend on the Berkeley DB library and the GNU dbm li-
brary, among others. Using its dependency mechanism,
Strata is able to automatically resolve all the other lay-
ers needed to create a complete file system by specifying
just a single layer

Returning to Figure 4, this example defines a subset
of the layers that the mysql-server layer requires to be
composed into the same VLES to allow MySQL to run
correctly. More generally, Figure 5 shows the complete
syntax for the dependency metadata. Provides is the sim-
plest, with only a comma separated list of virtual layer
names. Conflicts adds an optional version constraint to
each conflicted layer to limit the layer units that are actu-
ally in conflict. Depends and Pre-Depends add a boolean
OR of multiple layers in their dependency constraints to
allow multiple layers to satisfy the dependency.

Resolving Dependencies: To allow an administra-
tor to select only the layers explicitly desired within the
VLEFS, Strata automatically resolves dependencies to de-
termine which other layers must be included implicitly.

Linux distributions already face this problem and tools
have been developed to address it, such as Apt [2] and
Smart [10]. To leverage Smart, Strata adopts the same
metadata database format that Debian uses for packages
for its own layers. In Strata, when an administrator
requests that a layer be added to or removed from a tem-
plate appliance, Smart also evaluates if the operation can
succeed and what is the best set of layers to add or re-
move. Instead of acting directly on the contents of the
file system, however, Strata only has to update the tem-
plate’s VLFS’s definition file with the set of layers to be
composed into the file system.

32

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

5.3 Layer Creation

Strata allows layers to be created in two ways. First,
Strata allows the . deb packages used by Debian-derived
distributions and the . rpm packages used by RedHat-
derived distributions to be converted into layers that
Strata users can use. Strata converts packages into lay-
ers in two steps. First, Strata extracts the relevant meta-
data from the package, including its name and version.
Second, Strata extracts the package’s file contents into a
private directory that will be the layer’s file system com-
ponents. When using converted packages, Strata lever-
ages the underlying distribution’s tools to run the con-
figuration scripts belonging to the newly created layers
correctly. Instead of using the distribution’s tools to un-
pack the software package, Strata composes the layers
together and uses the distribution’s tools as though the
packages have already been unpacked. Although Strata
is able to convert packages from different Linux distri-
butions, it cannot mix and match them because they are
generally ABI incompatible with one another.

More commonly, Strata leverages existing packaging
methodologies to simplify the creation of layers from
scratch. In a traditional system, when administrators in-
stall a set of files, they copy the files into the correct
places in the file system using the root of the file sys-
tem tree as their starting point. For instance, an admin-
istrator might run make install to install a piece of
software compiled on the local machine. But in Strata
layer creation is a three step process. First, instead of
copying the files into the root of the local file system,
the layer creator installs the files into their own specific
directory tree. That is, they make a blank directory to
hold a new file system tree that is created by having the
make install copy the files into a tree rooted at that
directory, instead of the actual file system root.

Second, the layer maintainer extracts programs that in-
tegrate the files into the underlying file system and cre-
ates scripts that run when the layer is added to and re-
moved from the file system. Examples of this include
integration with Gnome’s GConf configuration system,
creation of encryption keys, or creation of new local
users and groups for new services that are added. This
leverages skills that package maintainers in a traditional
package management world already have.

Finally, the layer maintainer needs to set up the meta-
data correctly. Some elements of the metadata, such as
the name of the layer and its version, are simple to set,
but dependency information can be much harder. But
because package management tools have already had to
address this issue, Strata is able to leverage the tools they
have built. For example, package management systems
have created tools that infer dependencies using an exe-
cutable dynamically linking against shared libraries [15].

Instead of requiring the layer maintainer to enumerate
each shared library dependency, we can programmati-
cally determine which shared libraries are required and
populate the dependency fields based on those versions
of the library currently installed on the system where the
layer is being created.

5.4 Layer Repositories

Strata provides local and remote layer repositories. Local
layer repositories are provided by locally accessible file
system shares made available by a SAN. They contain
layer units to be composed into the VLFS. This is sim-
ilar to a regular virtualization infrastructure in which all
the virtual machines’ disks are stored on a shared SAN.
Each layer unit is stored as its own directory; a local layer
repository contains a set of directories, each of which
corresponds to a layer unit. The local layer repository’s
contents are enumerated in a database file providing a
flat representation of the metadata of all the layer units
present in the repository. The database file is used for
making a list of what layers can be installed and their de-
pendency information. By storing the shared layer repos-
itory on the SAN, Strata lets layers be shared securely
among different users’ appliances. Even if the machine
hosting the VLFS is compromised, the read-only layers
will stay secure, as the SAN will enforce the read-only
semantic independently of the VLFS.

Remote layer repositories are similar to local layer
repositories, but are not accessible as file system shares.
Instead, they are provided over the Internet, by protocols
such as FTP and HTTP, and can be mirrored into a local
layer repository. Instead of mirroring the entire remote
repository, Strata allows on-demand mirroring, where all
the layers provided by the remote repository are acces-
sible to the VAs, but must be mirrored to the local mir-
ror before they can be composed into a VLFS. This al-
lows administrators to store only the needed layers while
maintaining access to all the layers and updates that the
repository provides. Administrators can also filter which
layers should be available to prevent end users from us-
ing layers that violate administration policy. In general,
an administrator will use these remote layer repositories
to provide the majority of layers, much as administrators
use a publicly managed package repository from a regu-
lar Linux distribution.

Layer repositories let Strata operate within an enter-
prise environment by handling three distinct yet related
issues. First, Strata has to ensure that not all end users
have access to every layer available within the enterprise.
For instance, administrators may want to restrict certain
layers to certain end users for licensing or security rea-
sons. Second, as enterprises get larger, they gain levels
of administration. Strata must support the creation of an

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 33

enterprise-wide policy while also enabling small groups
within the enterprise to provide more localized admin-
istration. Third, larger enterprises supporting multiple
operating systems cannot rely on a single repository of
layers because of inherent incompatibilities among oper-
ating systems.

By allowing a VLFS to use multiple repositories,
Strata solves these three problems. First, multiple reposi-
tories let administrators compartmentalize layers accord-
ing to the needs of their end users. By providing end
users with access only to needed repositories, organiza-
tions prevent their end users from using the other layers.
Strata depends on traditional file system access control
mechanisms to enforce these permissions. Second, by al-
lowing sub-organizations to set up their own repositories,
Strata lets a sub-organization’s administrator provide the
layers that end users need without requiring intervention
by administrators of global repositories. Finally, multi-
ple repositories allow Strata to support multiple operat-
ing systems, as each distinct operating system has its own
set of layer repositories.

5.5 VLFS Composition

To create a VLFS, Strata has to solve a number of file
system-related problems. First, Strata has to support the
ability to combine numerous distinct file system layers
into a single static view. This is equivalent to installing
software into a shared read-only file system. Second, be-
cause users expect to treat the VLFS as a normal file sys-
tem, for instance, by creating and modifying files, Strata
has to let VLESs be fully modifiable. By the same token,
users must also be able to delete files that exist on the
read-only layer.

By basing the VLFS on top of unioning file sys-
tems [11, 19], Strata solves all these problems. Unioning
file systems join multiple layers into a single namespace.
Unioning file systems have been extended to apply at-
tributes such as read-only and read-write to their layers.
The VLFS leverages this property to force shared lay-
ers to be read-only, while the private layer remains read-
write. If a file from a shared read-only layer is mod-
ified, it is copied-on-write (COW) to the private read-
write layer before it is modified. For example, Live-CDs
use this functionality to provide a modifiable file system
on top of the read-only file system provided by the CD.
Finally, unioning file systems use white-outs to obscure
files located on lower layers. For example, if a file lo-
cated on a read-only layer is deleted, a white-out file will
be created on the private read-write layer. This file is in-
terpreted specially by the file-system and is not revealed
to the user while also preventing the user from seeing
files with the same name.

But end users need to be able to recover deleted files

by reinstalling or upgrading the layer containing them.
This is equivalent to deleting a file from a traditional
monolithic file system, but reinstalling the package con-
taining the file in order to recover it. Also, Strata sup-
ports adding and removing layers dynamically without
taking the file system off line. This is equivalent to
installing, removing, or upgrading a software package
while a monolithic file system is online.

Unlike a traditional file system, where deleted system
files can be recovered simply by reinstalling the package
containing that file, in Strata, white-outs in the private
layer persist and continue to obscure the file even if the
layer is replaced. To solve this problem, Strata provides
a VLFS with additional writeable layers associated with
each read-only shared layer. Instead of containing file
data, as does the topmost private writeable layer, these
layers just contain white-out marks that will obscure files
contained within their associated read-only layer. The
user can delete a file located in a shared read-only layer,
but the deletion only persists for the lifetime of that par-
ticular instance of the layer. When a layer is replaced
during an upgrade or reinstall, a new empty white-out
layer will be associated with the replacement, thereby
removing any preexisting white-outs. In a similar way,
Strata handles he case where a file belonging to a shared
read-only layer is modified and therefore copied to the
VLFS’s private read-write layer. Strata provides a revert
command that lets the owner of a file that has been mod-
ified revert the file to its original pristine state. While a
regular VLFS unlink operation would have removed the
modified file from the private layer and created a white-
out mark to obscure the original file, revert only removes
the copy in the private layer, thereby revealing the origi-
nal below it.

Strata also allows a VLFS to be managed while be-
ing used. Some upgrades, specifically of the kernel, will
require the VA to be rebooted, but most should be able
to occur without taking the VA off line. However, if a
layer is removed from a union, the data is effectively re-
moved as well because unions operate only on file system
namespaces and not on the data the underlying files con-
tain. If an administrator wants to remove a layer from
the VLFS, they must take the VA off line, because layers
cannot be removed while in use.

To solve this problem, Strata emulates a traditional
monolithic file system. When an administrator deletes
a package containing files in use, the processes that are
currently using those files will continue to work. This
occurs by virtue of unlink’s semantic of first removing
a file from the file system’s namespace, and only remov-
ing its data after the file is no longer in use. This lets
processes continue to run because the files they need will
not be removed until after the process terminates. This
creates a semantic in which a currently running program

34

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

can be using versions of files no longer available to other
programs.

Existing package managers use this semantic to allow
a system to be upgraded online, and it is widely under-
stood. Strata applies the same semantic to layers. When
a layer is removed from a VLFS, Strata marks the layer
as unlinked, removing it from the file system names-
pace. Although this layer is no longer part of the file
system namespace and thus cannot be used by any oper-
ations such as open that work on the namespace, it does
remain part of the VLFS, enabling data operations such
as read and write to continue working correctly for
previously opened files.

6 Experimental Results

We have implemented Strata’s VLFS as a loadable kernel
module on an unmodified Linux 2.6 series kernel as well
as a set of userspace management tools. The file system
is a stackable file system and is an extended version of
UnionFS [19]. We present experimental results using our
Strata Linux prototype to manage various VAs, demon-
strating its ability to reduce management costs while
incurring only modest performance overhead. Experi-
ments were conducted on VMware ESX 3.0 running on
an IBM BladeCenter with 14 IBM HS20 eServer blades
with dual 3.06 GHz Intel Xeon CPUs, 2.5 GB RAM,
and a Q-Logic Fibre Channel 2312 host bus adapter con-
nected to an IBM ESS Shark SAN with 1 TB of disk
space. The blades were connected by a gigabit Ether-
net switch. This is a typical virtualization infrastructure
in an enterprise computing environment where all vir-
tual machines are centrally stored and run. We compare
plain Linux VMs with a virtual block device stored on
the SAN and formatted with the ext3 file system to VMs
managed by Strata with the layer repository also stored
on the SAN. By storing both the plain VM’s virtual block
device and Strata’s layers on the SAN, we eliminate any
differences in performance due to hardware architecture.

To measure management costs, we quantify the time
taken by two common tasks, provisioning and updating
VAs. We quantify the storage and time costs for pro-
visioning many VAs and the performance overhead for
running various benchmarks using the VAs. We ran ex-
periments on five VAs: an Apache web server, a MySQL
SQL server, a Samba file server, an SSH server provid-
ing remote access, and a remote desktop server provid-
ing a complete GNOME desktop environment. While the
server VAs had relatively few layers, the desktop VA has
very many layers. This enables the experiments to show
how the VLFS performance scales as the number of lay-
ers increases. To provide a basis for comparison, we pro-
visioned these VAs using (1) the normal VMware virtu-
alization infrastructure and plain Debian package man-

Apache| MySQL| Samba | SSH Desktop

Plain 184s 179s 183s 174s 355s

Strata 0.002s | 0.002s | 0.002s | 0.002s | 0.002s

QCOW2| 0.003s | 0.003s | 0.003s | 0.003s | 0.003s
Table 1: VA Provisioning Times

agement tools, and (2) Strata. To make a conservative
comparison to plain VAs and to test larger numbers of
plain VAs in parallel, we minimized the disk usage of
the VAs. The desktop VA used a 2 GB virtual disk, while
all others used a 1 GB virtual disk.

6.1 Reducing Provisioning Times

Table 1 shows how long it takes Strata to provision VAs
versus regular and COW copying. To provision a VA us-
ing Strata, Strata copies a default VMware VM with an
empty sparse virtual disk and provides it with a unique
MAC address. It then creates a symbolic link on the
shared file system from a file named by the MAC address
to the layer definition file that defines the configuration
of the VA. When the VA boots, it accesses the file de-
noted by its MAC address, mounts the VLFS with the
appropriate layers, and continues execution from within
it. To provision a plain VA using regular methods, we
use QEMU’s gemu—img tool to create both raw copies
and COW copies in the QCOW?2 disk image format.

Our measurements for all five VAs show that using
COW copies and Strata takes about the same amount of
time to provision VAs, while creating a raw image takes
much longer. Creating a raw image for a VAs takes 3 to
almost 6 minutes and is dominated by the cost of copy-
ing data to create a new instance of the VA. For larger
VAs, these provisioning times would only get worse. In
contrast, Strata provisions VAs in only a few millisec-
onds because a null VMware VM has essentially no data
to copy. Layers do not need to be copied, so copying
overhead is essentially zero. While COW images can
be created in a similar amount of time, they do not pro-
vide any of the management benefits of Strata, as each
new COW image is independent of the base image from
which it was created.

6.2 Reducing Update Times

Table 2 shows how long it takes to update VAs us-
ing Strata versus traditional package management. We
provisioned ten VA instances each of Apache, MySQL,
Samba, SSH, and Desktop for a total of 50 provisioned
VAs. All were kept in a suspended state. When a se-
curity patch was made available for the tar package
installed in all the VAs, we updated them [18]. Strata
simply updates the layer definition files of the VM tem-
plates, which it can do even when the VAs are not active.
When the VA is later resumed during normal operation,

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 35

100000.0 -
Raw VM Disk
COW VM Disk
Strata m—
10000.0

1000.0

Size (MB)

100.0

1.0

1VM

5 VMs 50 VMs

Figure 6: Storage Requirements

it automatically checks to see if the layer definition file
has been updated and updates the VLFS namespace view
accordingly, an operation that is measured in microsec-
onds. To update a plain VA using normal package man-
agement tools, each VA instance needs to be resumed and
put on the network. An administrator or script must ssh
into each VA, fetch and install the update packages from
a local Debian mirror, and finally re-suspend the VA.

Table 2 shows the total average time to update each
VA using traditional methods versus Strata. We break
down the update time into times to resume the VM, get
access to the network, actually perform the update, and
re-suspend the VA. The measurements show that the cost
of performing an update is dominated by the manage-
ment overhead of preparing the VAs to be updated and
not the update itself. Preparation is itself dominated by
getting an IP address and becoming accessible on a busy
network. While this cost is not excessive on a quiet net-
work, on a busy network it can take a significant amount
of time for the client to get a DHCP address, and for the
ARP on the machine controlling the update to find the
target machine. The average total time to update each
plain VA is about 73 seconds. In contrast, Strata takes
only a second to update each VA. As this is an order
of magnitude shorter even than resuming the VA, Strata
is able to delay the update to a point when the VA will
be resumed from standby normally without impacting its
ability to quickly respond. Strata provides over 70 times
faster update times than traditional package management
when managing even a modest number of VAs. Strata’s
ability to decrease update times would only improve as
the number of VAs being managed grows.

Plain Strata
VM Wake | 14.66s NA
Network 43.72s NA
Update 10.22s 1.041s
Suspend 3.96s NA
Total 73.2s 1.041s

Table 2: VA Update Times

6.3 Reducing Storage Costs

Figure 6 shows the total storage space required for dif-
ferent numbers of VAs stored with raw and COW disk
images versus Strata. We show the total storage space
for 1 Apache VA, 5 VAs corresponding to an Apache,
MySQL, Samba, SSH, and Desktop VA, and 50 VAs cor-
responding to 10 instances of each of the 5 VAs. As ex-
pected, for raw images, the total storage space required
grows linearly with the number of VA instances. In con-
trast, the total storage space using COW disk images and
Strata is relatively constant and independent of the num-
ber of VA instances. For one VA, the storage space re-
quired for the disk image is less than the storage space
required for Strata, as the layer repository used contains
more layers than those used by any one of the VAs. In
fact, to run a single VA, the layer repository size could
be trimmed down to the same size as the traditional VA.

For larger numbers of VAs, however, Strata provides
a substantial reduction in the storage space required, be-
cause many VAs share layers and do not require dupli-
cate storage. For 50 VAs, Strata reduces the storage
space required by an order of magnitude over the raw
disk images. Table 3 shows that there is much dupli-
cation among statically provisioned virtual machines, as
the layer repository of 405 distinct layers needed to build
the different VLFSs for multiple services is basically the
same size as the largest service. Although initially Strata
does not have an significant storage benefit over COW
disk images, as each COW disk image is independent
from the version it was created from, it now must be
managed independently. This increases storage usage, as
the same updates must be independently applied to many
independent disk images

6.4 Virtualization Overhead

To measure the virtualization cost of Strata’s VLFS,
we used a range of micro-benchmarks and real appli-
cation workloads to measure the performance of our
Linux Strata prototype, then compared the results against
vanilla Linux systems within a virtual machine. The vir-
tual machine’s local file system was formatted with the
Ext 3 file system and given read-only access to a SAN
partition formatted with Ext 3 as well. We performed
each benchmark in each scenario 5 times and provide the
average of the results.

Repo Apache| MySQL | Samba | SSH Desktop
1.8GB | 217MB | 206MB | 169MB | 127MB| 1.7GB
#Layer| 43 23 30 12 404
Shared | 191MB | 162MB | 152MB | 123MB| 169MB
Unique | 26MB | 44MB 17MB | 4MB 1.6GB

Table 3: Layer Repository vs. Static VAs

36

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

1400.0

Plain VM
Strata VM
1200.0

1000.0

800.0

600.0 -

Time (s)

400.0 +

200.0

0.0

Postmark Kernel Apache

Figure 7: Application Benchmarks

To demonstrate the effect that Strata’s VLFS has on
system performance, we performed a number of bench-
marks. Postmark [7], the first benchmark, is a synthetic
test that measures how the system would behave if used
as a mail server. Our postmark test operated on files be-
tween 512 and 10K bytes, with an initial set of 20,000
files, and performed 200,000 transactions. Postmark is
very intensive on a few specific file system operations
such as 1ookup (), create (), and unlink (), be-
cause it is constantly creating, opening, and removing
files. Figure 7 shows that running this benchmark within
a traditional VA is significantly faster than running it in
Strata. This is because as Strata composes multiple file
system namespaces together, it places significant over-
head on those namespace operations.

To demonstrate that postmark’s results are not indica-
tive of application oriented performance, we ran two
application benchmarks to measure the overhead Strata
imposes in a desktop and server VA scenario. The
first benchmark was a multi-threaded build of the Linux
2.6.18.6 kernel with two concurrent jobs using the two
CPUs allocated to the VM. In all scenarios, we added the
8 software layers required to build a kernel to the layers
needed to provide the service. Figure 7 shows that while
Strata imposes a slight overhead on the kernel build com-
pared to the underlying file system it uses, the cost is
minimal, under 5% at worst.

The second benchmark measured the amount of HTTP
transactions that were able to be completed per second to
an Apache web server placed under load. We imported
the database of a popular guitar tab search engine and
used the http_load [13] benchmark to continuously
performed a set of 20 search queries on the database
until 60,000 queries in total have been performed. For
each case that did not already contain Apache, we added
the appropriate layers to the layer definition file to make
Apache available. Figure 7 shows that Strata imposes a
minimal overhead of only 5%.

While the Postmark benchmark demonstrated that the
VLES is not an appropriate file system for workloads that
are heavy with namespace operations, this shouldn’t pre-
vent Strata from being used in those scenarios. No file
system is appropriate for all workloads and no system
has to be restricted to simply using one file system. One
can use Strata and the VLFS to manage the system’s con-
figuration while also providing an additional traditional
file system on a seperate partition or virtual disk drive
to avoid all the overhead the VLFS imposes. This will
be very effective for workloads, such as the mail server
Postmark is emulating, where namespace heavy opera-
tions, such as a mail server processing its mail queue,
can be kept on a dedicated file system.

7 Conclusions and Future Work

Strata introduces a new and better way for system admin-
istrators to manage virtual appliances using virtual lay-
ered file systems. Strata integrates package management
semantics with the file system by using a novel form of
file system unioning enable dynamic composition of file
system layers. This provides powerful new management
functionality for provisioning, upgrading, securing, and
composing VAs. VAs can be quickly and simply provi-
sioned as no data needs to be copied into place. VAs can
be easily upgraded as upgrades can be done once cen-
trally and applied atomically, even for a heterogeneous
mix of VAs and when VAs are suspended or turned off.
VAs can be more effectively secured since file system
modifications are isolated so compromises can be eas-
ily identified. VAs can be composed as building blocks
to create new systems since file system composition also
serves as the core mechanism for creating and maintain-
ing VAs. We have implemented Strata on Linux by pro-
viding the VLEFS as a loadable kernel modules, but with-
out requiring any source code level kernel changes, and
have demonstrated how a Strata can be used in real life
situations to improve the ability of system administra-
tors to manage systems. Strata significantly reduces the
amount of disk space required for multiple VAs, and al-
lows them to be provisioned almost instantaneously and
quickly updated no matter how many are in use.

While Strata just exists as a lab prototype today, there
are few steps that could make it significantly more de-
ployable. First, our changes to UnionFS should either be
integrated with the current version of UnionFS or with
another unioning file system. Second, better tools should
be created for managing the creation and management of
individual layers. This can include better tools for con-
verting layers from existing Linux distributions as well
as new tools that enable layers to be created in a way
that takes full advantage of Strata’s concepts. Third, the
ability to to integrate Strata’s concepts with cloud com-

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 37

puting infrastructures, such as Eucalyptus, should be in-
vestigated.

Acknowledgments

Carolyn Rowland provided helpful comments on earlier
drafts of this paper. This work was supported in part by
AFOSR MURI grant FA9550-07-1-0527 and NSF grants
CNS-1018355, CNS-0914845, and CNS-0905246.

References

[1] The RPM Package Manager. http://www.
rpm.org/.

[2] B. Byfield. An Apt-Get Primer. http://www.
linux.com/articles/40745, Dec. 2004.

[3] J. Capps, S. Baker, J. Plichta, D. Nyugen,
J. Hardies, M. Borgard, J. Johnston, and J. H.
Hartman. Stork: Package Management for Dis-
tributed VM Environments. In The 21st Large In-
stallation System Administration Conference, Dal-
las, TX, Nov. 2007.

[4] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. S. Lam. The Collective: A Cache-Based System
Management Architecture. In The 2nd Symposium
on Networked Systems Design and Implementation,
pages 259-272, Boston, MA, Apr. 2005.

[5] D. R. Cheriton. The V Distributed System. Com-
munications of the ACM, 31(3):314-333, Mar.
1988.

[6] J. Fernandez-Sanguino. Debian GNU/Linux
FAQ - Chapter 8 - The Debian Package Man-
agement Tools. http://www.debian.org/
doc/FAQ/ch-pkgtools.en.html.

[7] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR3022, Network Appli-
ance, Inc., Oct. 1997.

[8] G.Kim and E. Spafford. Experience with Tripwire:
Using Integrity Checkers for Intrusion Detection.
In The 1994 System Administration, Networking,
and Security Conference, Washington, DC, Apr.
1994.

[9] M. McLoughlin. QCOW2 Image Format.
http://www.gnome.org/~markmc/
gcow—image-format.htm, Sept. 2008.

[10] G. Niemeyer. Smart Package Manager. http:
//labix.org/smart.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J.-S. Pendry and M. K. McKusick. Union Mounts
in 44BSD-lite. In The 1995 USENIX Technical
Conference, New Orleans, LA, Jan. 1995.

B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtu-
alization Aware File Systems: Getting Beyond the
Limitations of Virtual Disks. In 3rd Symposium

on Networked Systems Design and Implementation,
pages 353-366, San Jose, CA, May 2006.

J. Poskanzer. http://www.acme.com/
software/http_load/.

S. Potter and J. Nieh. Apiary: Easy-to-Use Desk-
top Application Fault Containment on Commodity
Operating Systems. In The 2010 USENIX Annual
Technical Conference, pages 103—116, June 2010.

D. Project. DDP Developers’ Manuals. http://
www.debian.org/doc/devel-manuals.

S. Quinlan and S. Dorward. Venti: A New Ap-
proach to Archival Storage. In Ist USENIX confer-

ence on File and Storage Technologies, Monterey,
CA, Jan. 2002.

D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening Black Boxes: Us-
ing Semantic Information to Combat Virtual Ma-
chine Image Sprawl. In The 2008 ACM Interna-
tional Conference on Virtual Execution Environ-
ments, pages 111-120, Seattle, WA, Mar. 2008.

F. Weimer. DSA-1438-1 Tar — Several Vul-
nerabilities. http://www.ua.debian.org/
security/2007/dsa-1438, Dec. 2007.

C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versa-
tility and Unix Semantics in Namespace Unifica-
tion. ACM Transactions on Storage, 2(1):1-32,
Feb. 2006.

38 LISA °11: 25th Large Installation System Administration Conference

USENIX Association

Sequencer:

smart control of hardware and software components in

clusters (and beyond).

Dr. Pierre Vignéras
pierre.vigneras@bull.net
Extreme Computing R&D

Bull, Architect of an Open World
www.bull.com

September 15, 2011

Abstract

Starting/stopping a whole cluster or a part of it is
a real challenge considering the different commands
related to various device types and manufacturers,
and the order that should be respected. This arti-
cle presents a solution called the sequencer that al-
lows the automatic shutting down and starting up
of clusters, subset of clusters or even data-centers.
It provides two operation modes designed for ease
of use and emergency conditions. Our product has
been designed to be efficient and it is currently used
to power on and power off one of the largest cluster
in the world: the Tera-100, made of more than 4000
nodes.

Keywords: emergency power off, start/stop
procedure, actions sequencing, workflow,
planning, cluster management, automation,
case study.

1 Introduction
Emergency Power Off (EPO) is often not consid-

ered from a system administration point of view in
traditionnal clusters'. Even for Tier-IV infrastruc-

Mn this article, we consider clusters because they are the
first target of our solution. However, this solution also applies
to general data-centers.

tures [1], EPO may happen for various reasons. In
such cases, stopping (or starting, both cases are ad-
dressed) macro components such as a whole rack or a
rack set requires an appropriate sequence of actions.
Considering the vast number of different components
a cluster is composed of:

nodes: compute nodes?, login nodes, management
nodes, io (nfs, lustre, ...) nodes, ...

hardware: power switches (also called Power Dis-
tribution Units or PDUs), ethernet switches, in-
finiband [2] switches, cold doors®, disk arrays,

powering on/off a whole set of racks can be a real
challenge.

First, since it is made of a set of heterogeneous
devices, starting/stopping each component of a clus-
ter is not straightforward: usually each device type
comes with its own poweron/off command. For ex-
ample, shutting down a node can be as simple as an

2From a hardware perspective, a node in a cluster is just a
computer. A distinction is made however between nodes de-
pending on their roles in the cluster. For example, user might
connect to a login node for development, and job submission.
The batch scheduler runs on the management node and dis-
patch jobs to compute nodes. Compute nodes access storage
through io nodes and so on.

3A cold door is a water-based cooling system produced by
Bull that allows high density server in the order of 40 kW per
rack.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 39

'ssh host /sbin/halt -p’. However, it might be
preferable to use an out of band command through
the IPMI BMC* if the node is unresponsive for ex-
ample. Starting a node can be done using a wake on
lan [3] command or an IPMI [4] command. Some de-
vices cannot be powered on/off remotely (infiniband
or ethernet switches for example). Those devices
might be connected to manageable Power Distribu-
tion Units (PDUs) that can remotely switch their
outlets on/off using SNMP [5] commands. On the
extreme case, manual intervention might be required
to switch on/off the electrical power.

For software components, there is also a need
to manage the shutdown of multiple components
on different nodes. Considering high availability
framework, virtualization, localization, and clients,
using standard calls to /etc/init.d/service
[start|stop] is often inappropriate.

Finally, the set of instructions for the powering
on/off of each cluster’s components should be or-
dered. Trivial examples include:

e powering off an ethernet switch too soon may
prevent other components, including nodes, from
being powered off;

e powering off a cold door should be done at the
very end to prevent cooled components from be-
ing burnt out.

By the way, this ordering problem is not only relevant
to hardware devices. A software component can also
require that a sequence of instructions is executed
before being stopped. As a trivial example, when
an NFS daemon is stopped, one may prefer that all
NFS clients unmount their related directories first in
order to prevent either the fill of syslog with NFS
mount error (when NFS mount option is ’soft’) or
the load average brutal increase due to the freezing
of softwares accessing the NFS directories (when NFS
mount option is "hard’).

Therefore, in this article, the generic term ’'com-
ponent’ may define a hardware component such as a
node, a switch, or a cold door, or a software compo-
nent such as a lustre server or an NFS server.

4Baseboard Management Controller.

Our proposition — called the sequencer — ad-
dresses the problem of starting/stopping a cluster (or
a data-center). Its design takes into account emer-
gency conditions. Those conditions impose various
constraints addressed by our solution:

e Predictive: an EPO should have been validated
before being used. It should not perform un-
known actions.

e Easy: an EPO should be easy to launch. The
emergency cause may happen at any time, espe-
cially when skilled staff is not present. There-
fore, the EPO procedure should be launchable
by “unskilled” humans.

e Fast: an EPO should be as fast as possible.

e Smart: an EPO should power off each compo-
nent of a cluster in the correct order so most
resources will be preserved.

e Robust: an EPO should be tolerant to failure.
For example, if a shutdown on a node cooled by
a cold door returned an error, the corresponding
cold door should not be switched off to prevent
the burnout of the node. On the other side, the
rest of the cluster can continue the EPO process.

This article is organized as follow: section 2 exposes
the design of our solution while some implementation
details are dealt with in section 3 following by scala-
bility issues in section 4. Some results of our initial
implementation are given section 5. Section 6 com-
pares our solution to related works. Finally, section 7
presents future works.

2 Design

Three major difficulties arise when considering the
starting/stopping of a cluster or of a subset of it:

1. the computing of the dependency graph between
components (power off a cold door after all com-
ponents of the related rack have been powered
off);

40

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

2. the defining of an efficient (scalable) instructions
sequence where the order defined by the depen-
dency graph is respected (powering off nodes
might be done in parallel);

3. the execution of the instructions set itself, taking
failure into account properly (do not power off
the cold door, if related rack’s nodes have failed
to power off).

Therefore, the sequencer is made of three distinct
functional layers:

Dependency Graph Maker (DGM): this layer
computes the dependency graph according to de-
pendency rules defined by the system adminis-
trator in a database.

Instructions Sequence Maker (ISM): this layer
computes the instructions sequence that should
be executed for starting/stopping the given list
of components and that satisfies dependency
constraints defined in the dependency graph
computed by the previous layer.

Instructions Sequence Executor (ISE): this
layer executes the instructions sequence com-
puted by the previous layer and manages the
handling of failures.

Finally, a chaining of those layers is supported
through an “all-in-one” command.

This design provides therefore two distinct pro-
cesses for the starting/stopping of components:

Incremental Mode: in this mode, each stage is run
separately. The output of each stage can be ver-
ified and modified before being passed to the
next stage as shown on figure 2.1. The incre-
mental mode generates a script from constraints
expressed in a database table and from a com-
ponents list. This script is optimized in terms
of scalability and is intepretable by the instruc-
tions sequence executor that deals with paral-
lelism and failures. This mode is the one de-
signed for emergency cases. The instructions set
computed should be validated before being used
in production.

Component
List

Dependency
Graph Maker

Dependency
Graph

Rules

’ Dependency L

Instructions
Sequence
Executor

Verify/Modify

Instructions
Sequence

Instructions
Sequence Maker

Figure 2.1: Incremental Mode: each stage output can
be verified and modified before being passed to the

next one.
Component Dependency
List Rules

Sequencer

Figure 2.2: Black Box Mode: using the sequencer for
simple non-critical usage.

Black Box Mode: in this mode, illustrated in fig-
ure 2.2, chaining feature is used to start/stop
components as shown by the following syntax:
clmsequencer \ # command name

stop \ # ruleset name

colddoor3 node[100-200] # components list

This command is somewhat equivalent to the fol-

lowing:

clmsequencer \ # command name

depmake \

stop \

colddoor3 node[100-200] \

| clmsequencer seqmake \

dgm stage

ruleset name

components list

ism stage

| clmsequencer seqexec # 1ise stage
and can therefore be seen as a syntactic sugar.

The computation of the dependency graph and of
the instruction set can take a significant amount of
time, especially on very large clusters such as the

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 41

Tera-100°. This is another good reason for choosing
the incremental mode in emergency conditions where
each minute is important.

3 Implementation

3.1 Dependency Graph Maker

(DGM)

The Dependency Graph Maker (DGM) is the first
stage of the sequencer. It takes a components list
in parameter, and produces a dependency graph in
output. It uses a set of dependency rules described
in a database table. The CLI has the following usage:

clmsequencer depgraph [--out filel
ruleset cl_1...cl_N

The output is a human readable description of the
computed dependency graph in XML format that the
Instructions Sequence Maker can parse. By default,
the computed dependency graph is produced on the
standard output.

The --output file option allows the computed
dependency graph to get written in the specified
file.

The ruleset parameter defines which ruleset
should be used to compute the dependency graph.
Ruleset will be explained in section 3.1.2 on the se-
quencer table.

Finally, other parameters c1_1...cl1_N define on
which components the dependency graph should be
computed. Each parameter describes a list of com-
ponent in a specific format describes in next sec-
tion 3.1.1.

3.1.1 Components list specification

The first stage of the sequencer takes as an input a
list of components. This list is of the form:

prefix[a-b,c-d,...] [#type] [€category]

where:

5Tera-100 is ranked #6 in the Top500 november 2010 list
of fastest supercomputers in the world and #1 in Europe. It
is composed of several thousands of Bull bullx series S servers.
See http://www.top500.0rg/ for details.

prefix[a-b,c-d,...]: is the standard contracted nota-
tion for designing a set of names prefixed by
‘prefix’ and suffixed by a number taken in
the range given by intervals [a — b], [c — d], and
so on. For example, compute[1-3,5,7-8] de-
fines names: computel, compute2, compute3,
computeb, compute?, compute8.

category: is optionnal and defines the table® where
given names should be looked for their type
(if not given). The type of a component is
used in the definition of the dependency table
as described in section 3.1.2. Category exam-
ples (with some related types) are: node (io,
nfs, login,compute), hwmanager (bmc, cmc,
coldoor”) and soft (nfsd, nagios, sshd).

Some examples of full component list names are given
below:

R-[1-3]#io@rack: the io racks R-1, R-2 and R-3;

bullx[10-11]#mds@node: the lustre mds node
bullx10 and bullx11;
colddoori#coldoor@hwmanager: the cold door

numbered 1;
esw-1#eth@switch: the ethernet switch esw-1;

server[1-2]#nfsd@soft: NFS daemons running on
serverl and server2.

3.1.2 Sequencer Dependency Rules: the se-
quencer table

The Dependency Graph Maker requires dependency
rules to be specified in a database table. This table
describes multiple sets of dependency rules. A ruleset
is defined as a set of dependency rules. For example,
there is one ruleset called smartstart containing all

61t is considered a good practice to have a database where
the cluster is described. In a bullx cluster, each component
is known and various informations are linked to it such as its
model, its status, its location and so on. There should be a
way to find a type from a component name. In this article, we
use a database for that purpose, any other means can be used
though.

7Cold doors are spelled ’coldoor’ in bullx cluster database.

42

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

the dependency rules required for the starting of com-
ponents. Another ruleset containing all dependency
rules required for the stopping of components would
be called smartstop.

The format of this table is presented below. One
line in the table represents exactly one dependency
rule. Table columns are:

ruleset: the name of the ruleset this dependency
rule is a member of.

name: the rule name, this name is used as a reference
in the dependson column, it should be unique
in the ruleset;

types: the component types the rule should be ap-
plied to. A type is specified using the full name
(that is, ’type@category’). Multiple types
should be separated by the "pipe" symbol as
in compute®@node|io@node. The special string
’ALL’ acts like a joker: ’ALL@node’ means
any component from table node matches, while
’ALL@ALL’ means any component matches, and
is equivalent to ALL’ alone.

filter: an expression of the following two forms:

e Jvar =" regexp

e Jvar !~ regexp

where ’Jvar’ is a variable that will be replaced
by its value on execution (see table 1 for the
list of available variables). The operator ’="’
means that component will be filtered in only if
a match occurs while ’ ! ¥’ means the component
will be filtered in only if a match does not oc-
cur (said otherwise, it a match occurs, it will be
filtered out).

If the expression does not start with a known
YJivar’ then, the expression is interpreted as a
(shell) command that when called specifies if the
given component should be filtered in (returned
code is 0) or out (returned code is different than
0). Variables will also be replaced before com-
mand execution, if specified. As an example, to
filter out any component which name starts with
the string *bullx104’, one would use: ’%name

=~ ~bullx104’. On the other side, to let a
script decide on the component id, one would
use: ’/usr/bin/my_filter %id’.

Finally, two special values are reserved for spe-
cial meanings here:

e String ’ALL’: any component is filtered in
(i.e. accepted);

e The *NULL’ special DB value: any compo-
nent is filtered out (i.e. refused).

action: the (shell) command that should be exe-
cuted for each component that matches the rule
type (and that have been filtered in). Variables
will be replaced, if specified (see table 1 for the
list of available variables). If the action is pre-
fixed with the @’ symbol, the given action will
be executed on the component using an ’ssh’in-
ternal connexion. Depending on the action exit
code, the Instruction Sequence Executor may
continue its execution, or abort. This will be
discussed in section 3.3.

depsfinder: the (shell) command that specifies
which components the current component de-
pends on. The command should return the com-
ponents set on its standard output, one compo-
nent per line. A component should be of the
following format: ’name#type@category’. Vari-
ables will be replaced, if specified (see table 1 for
the list of available variables). When set to the
YNULL’ special DB value, rule names specified in
the dependson column are simply ignored.

dependson: a comma-separated list of rule names,
this rule depends on. For each dependency re-
turned by the depsfinder, the sequencer looks
if the dependency type matches one of the rule
type specified by this field (rule names specified
should be in the same ruleset). If such a match
occurs, the rule is applied on the dependency.
When set to the *NULL’ special DB value, the
script specified in the ’depsfinder’ column is
simply ignored.

comments: a free form comment.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 43

[Name | Value \ Example ‘
%id The full name of the component bullx12#compute@node
Y%mname The name of the component bullx12
%type The type of the component compute
%category The category of the component node
Yruleset The current ruleset being processed smartstop
%rulename The current rule being processed compute_ off

Table 1: List of available variables.

The framework does not allow the specification of a
timeout for a given action for two main reasons:

1. Granularity: if such a specification was provided
at that level (in the sequencer table), the time-
out would be specified for all components type
specified by the *type’ column whereas it seems
preferable to have a lower granularity, per com-
ponent. This is easily achievable by the ac-
tion script itself for which the component can
be given as a parameter.

2. The action script, for a given component, knows
what to do when a timeout occurs much better
that the sequencer itself. Therefore, if a spe-
cific process is required after a command time-
out (such as a retry), the action script should
implement itself the required behavior when the
timeout occurs and returns the appropriate re-
turn code.

As an example we will consider the sequencer table
presented in table 2.

3.1.3 Algorithm

The objective of the Dependency Graph Maker is to
output the dependency graph based on the depen-
dency rules defined in the related table and on the
components list given as a parameter. The comput-
ing of the dependency graph involves the following
steps:

1. Components List Expansion: from the
given components list, the expansion should be
done. It returns a list of names of the form:
’name#type@category’. Such name is called id
in the following.

2. Dependency Graph Creation: the depen-

dency graph is created as a set of disconnected
nodes where each node is taken from the list
of ids. A node in the dependency graph has
the following form: ’id [actionsList]’ where
>actionsList’ is the list of actions that should
be executed for the component with the corre-
sponding ’id’. This graph is updated during the
process by:

(a) Node additions: when processing a given
component ’c’, through a dependency
rule (one row in the related ruleset ta-
ble), the command line specified by column
’depsfinder’ is executed. This execution
may return a list of components that should
be processed before the current one. Each
of those components will therefore be added
to the dependency graph if it is not already
present.

(b) Arc additions: for each components re-
turned by the *depsfinder’ script, an arc
is added between ’c’ and that returned
component;

(¢c) Node modification: ~when processing a
given component, the content of the column
Yaction’ of the ruleset table of the related
dependency rule is added to the node ac-
tions list.

3. Rules Graph Making: from the dependency

rules table, and for a given ruleset, the corre-
sponding graph — called the rules graph — is cre-
ated. A node in that graph is a pair (s,¢) where

44

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

"o[qeY) Ieouenbos e Jo ojdurexe uy :g o[qel,

- zapou
21072 I00p
pPTOD uo I=amod

JU=TT2 Yoes
103 =hess=u
putuiem
B JuTad

‘Buney

alojaq Aladoud
SJU UMOPINYS PLE
Alues wnowun

1Ie15I00PTOD

IO

UMoSIU

sd
2p UO=pOU PUTJ

HNON

aueuy sda
p IJo2pou puTy

Sureus

uoi=mod Tajzoapou

i pajunoum
SAN TONINAYM oy2=

i
J1012mod Tajospou

SWeuL apougainduos ug=pou 1aeas

1
TI¥ JOSgSdaNiunoun g AN Junoumn doas

SpougsIu
| spougainduos Jlo=pou doas

45

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

coldoorOff

y

nodeOff

/

nfsDown

» umountNFS

Figure 3.1: Rules Graph of the >stop’ ruleset defined
in the sequencer table 2.

s is the rule symbolic name, and ¢ is the com-
ponent types defined by the *types’ column in
the dependency rule table. This graph is used
for the selection of a component in the compo-
nents list to start the dependency graph update
process. From table 2, the rules graph of the
stop ruleset is shown figure 3.1. Note that cy-
cles are possible in this graph. As an example, a
PDU (related to a switch type in the sequencer
table) that connects (power) an ethernet switch
which itself connects (network) a PDU.

4. Updating the Dependency Graph: from
each ids (resulting from the expansion of each
initial components list), the corresponding rule
in the given ruleset of the sequencer table should
be found. For that purpose, a potential root
is looked for in the ids set. A potential root
is an id that matches one root® in the rules
graph. A match between an id of the form
’name#type@category’ and a rule ’R’ occurs
when type is in ’R.types’ and when id has
been filtered in. If such a match cannot be found,
then, a new rules graph is derived from the pre-

8 A node in the graph with no parent.

ceding one by removing all roots and their re-
lated edges. Then, the root finding is done on
that new graph, and so on recursively until ei-
ther:

in this case,
cannot be

e the rule graph is empty:
the given components list
started /stopped (entirely);

e the rule graph is only made of cycles: any
id can be used as the starting point;

e a match occurs between ’id’ and ’R’: in
this case, the dependency graph is updated
from the application of rule R’ to ’id’.
Each time such an application is made,
’id’ is removed from the initial id set.

As an example, consider a rack cooled by a bullx cold
door ’cd0’ containing an NFS server ’nfs1’ and
a compute node ’c1’. Consider also another NFS
server *nfs2’ that is not in the same rack. We also
suppose that:

e ’c1’ is client of both 'nfs1’ and ’nfs2’;
e ’'nfs1’ is client of 'nfs2’;
e 'nfs2’ is client of *nfs1’?,

Using table 2, and the component list:

‘nfsi#tnfsd@soft, cd0, nfs2’, objectives are:

e power off c1’ and ’nfs1’ before ’cd0’, be-
cause powering off a cold door requires that each
equipement cooled are powered off first;

e stop NFS daemons on 'nfs1’ because it is re-
quested (this should be done before powering off
‘nfsl’);

e power off ’nfs2’ because it is requested (but the
NFS daemon will have to be stopped before);

o for each NFS client'® a warning should be writ-
ten before the actual stopping of used NFS
server.

9¥es, it might seem strange here. This serves the purpose
of our example.

100ne might use the content of /var/lib/nfs/rmtab for an
(inaccurate) list of NFS clients, the ’showmounts’ command
or any other means.

46

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

nfs1#nfsd@soft ‘ cdO#coldoor@hwmanager ‘ nfs2#nfs@node

‘ch#co Idoor@ hwmanager‘ nfs2#nfs@node
[bsm_power -a off cd0]

nfs1#nfsd@soft

it.d/nfs stop]

Figure 3.2: The initial dependency graph.

‘nfs1#nfsd@soft‘ ‘ch#coIdoor@hwmanager‘ ‘nst#nfs@node

nodeOff ‘ nodeOff

v v

‘nfs1#nfs@node‘ |c1#compute@node|

nfs1#nfs@node

[nodectrl poweroff nfs1]

cl1#compute @node ‘

[nodectrl poweroff ¢1]

cl #unmountNFS@soft ‘ ‘nst#unmountNFS@soft

: NFS mounted!] [WARNING: NFS mounted!]

Figure 3.3: The dependendy graph after the call to
the ’cdO#coldoor@hwmanager’ depsfinder.

With the table, the ruleset and the component
list, the sequencer starts to expand the com-
ponent list into an id set: ‘’nfsi#nfsd@soft,
cdO#coldoor@hwmanager, nfs2#nfs@node’. Then
the dependency graph is initialized: each id in the
set has a related node in the graph as shown in fig-
ure 3.2.

Then the sequencer looks for a potential root
using the rules graph (shown on figure 3.1).
A match exists between rule ’coldoor0ff’ and
’cdO#coldooor@hwmanager’. Therefore, the se-
quencer starts applying rule ’coldoor0ff’ to
?cdO#coldooor@humanager’. The depsfinder of the
rule is called. For each id returned by the deps-
finder'!, the graph is updated: a node with an empty
action list is made and an edge from the current id to
the dependency is created. Each returned id is added
to the id set.

Then, for each dependency, the sequencer checks
if a match exists with one of the rules defined in the
’dependson’ column, and for each match, the match-
ing rule is applied recursively.

In our case, the cold door depsfinder returns
every cooled component: ‘’nfsi#nfs@node’ and
Ycl#compute@node’. Therefore, the graph is up-
dated as shown in figure 3.3. The ’coldoor0ff’ rule
defines a single dependency in its ’dependson’ col-

Note that it is not required that depsfinder returns ids
with a predefined category as soon as a match occurs in the
sequencer table. Predefined categories are used to ease the
mapping between a given component and a type. In a large
cluster (or data-center), it may not be easy to determine what
is the real type of a given component name.

Figure 3.4: The dependency graph after
the application of rule ’coldoor0ff’ on
’cdO#coldoor@hwmanager’ .

umn: ’node0ff’. Both components match, the rule
is applied. The application of the rule ’node0ff’
on 'cl#compute@node’ leads to the execution of the
depsfinder which does not return anything. There-
fore, the application of the rule ends by adding the
action ’nodectrl poweroff Yname’ to the related
node in the dependency graph and by the removal of
the related id from the id set.

This implies that a given rule is applied at most
once on a given id.

The sequencer continues with the next depen-
dency which is ’nfsi#nfs@node’. The applica-
tion of the rule ’node0ff’ leads to the execution
of the depsfinder which returns ’nfsi#nfsd@soft’.
This node is already in the graph (it is in
the initial id set). Therefore, the depen-
dency graph is just updated with a new edge.
This id matches the dependency rule specified
'nfsDown’ and this last rule is applied on that
id. The depsfinder on 'nfsi#nfsd@soft’ returns all
known clients which are ’ c1#unmountNFS@soft’ and
’nfs2#unmountNFS0soft’.

Finally both dependencies match the
’umountNFS’ but its application does not lead to
any new node in the dependency graph. However,
the graph is updated so each node is mapped to
its related action, recursively, up to the node the
sequencer started with: ’cdO#coldoor@hwmanager’
as show on figure 3.4.

At that stage, the id set contains only the
last element from the originial component list:

rule

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference

47

nodeOff

nfsDown

> umountNFS

Figure 3.5: The rules graph with first level roots re-
moved.

'nfs2#nfs@node’ (others were removed by preced-
ing rule applications). Unfortunately that id does
not match any root rule in the rules graph. Thus,
the rules graph is (virtually) modified so roots are
removed. This leaves us with the rules graph shown
on figure 3.5.

From that graph, id ’nfs2#nfs@node’ matches

root rule ’node0ff’ which is therefore applied.
The depsfinder returns 'nfs2#nfsd@soft’
which is new and therefore added in the de-

pendency graph. The rule ’nfsDown’ is applied
on that id (since a match occurs) giving us
two dependencies ’cl#unmountNFS@soft’ and
‘’nfsi#unmountNFSQsoft’.

The algorithm ends after the mapping of those new
ids with their related actions as shown in the final
graph shown on figure 3.6.

Remember that a rule is never applied twice

on a given id. Therefore, the action from
rule ’unmountNFS’ which is ’echo WARNING: NFS
mounted!’ on id ’cl#unmountNFS@soft’ is not,

added twice.

The sequencer displays this dependency graph
in an XML format (using the open-source python-
graph library available at http://code.google.
com/p/python-graph/) on its standard output. This
output can be given directly to the second stage of
the sequencer. Note that contrary to the rules graph,
the dependency graph should not contain a cycle (this
will be detected by the next stage and refused as an

‘cdo#coldoor@hwmanager‘

[bsm_power -a off_force cd0]

—

nfs1#nfs@node| nfs2#nfs@node
[nodectrl poweroff nfs1] [nodectrl poweroff nfs2]
c1#compute @node v
[nodectrl poweroff c1]
nfs2#nfsd@soft
[@/etc/nit.d/nfs stop]
| yInfs2#unmountNF S @soft|
[WARNING: NFS mounted]

‘ nfs1#unmountNFS @soft
c1#unmountNF S @soft |
[WARNING: NFS mounted!]

nfs1#nfsd@soft

[@/etc/init.d/nfs stop]

[WARNING: NFS mounted!]
Figure 3.6: The final dependency graph.

input).

3.2 Instructions Sequence Maker

(ISM)

The Instructions Sequence Maker (ISM) is the second
stage of the sequencer. Its role is to transform a de-
pendency graph into a set of instructions that can be
given as an input to the third stage, the Instructions
Sequence Executor (ISE).

A set of instructions is specified as an XML doc-
ument, within an <instructions> XML tag. Three
kind of instructions can be specified:

Action: defined by the <action> tag. It specifies
the actual command that should be executed.
Attributes are:

e ’id: Each action should be identified
by a unique string. This attribute is
mandatory. It is usually'? of the form
‘name#type@category!rule’

e ’deps’: a list of ids this action depends
on (explicit dependencies). This attribute
is optionnal. Default is the empty string.

e ’remote’: the command should be exe-
cuted using the current shell unless this at-
tribute is set to ’true’. In this case, an

121t is not required for the instructions sequence XMT, doc-
ument to be created by the Instructions Sequence Maker. It
may be created/modified by hand or by any other programs.

48

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

internal ssh connexion is made to execute
the given command on each components de-
scribed by the ’component_set’ attribute
(see below). This attribute is optionnal.
Default is *false’.

e 'component_set’: the set of com-
ponents this action should be ex-
ecuted on in the following format:

’name [range] #type@category’. This
attribute is ignored by the ISE unless
the remote attribute is set to ’true’.
This attribute is optionnal. Default is
’localhost#type@cat’.

Sequence: defined by the <seq> tag. It specifies
a set of instructions (hence, one of Action, Se-
quence or Parallel) that must be executed in the
given order. This defines implicit dependencies
between instructions as opposed to explicit de-
pendencies defined by the ’deps’ attribute of
an Action.

Parallel: defined by the <par> tag. It specifies a set
of instructions (hence one of Action, Sequence or
Parallel) that can be executed in any order. This
explicitly defines that there is no dependency be-
tween each instruction. The ISE is free to exe-
cute them in parallel. Note that the ISE may
or may not execute those instructions in paral-
lel. This is not a requirement for the successful
completion of a parallel instruction.

Transforming a dependency graph into an instruc-
tions sequence is straightforward if performance is
not the main goal. A simple topological sort [6] on
the input dependency graph returns a sequence of
actions where constraints are respected.

For example, on our example where the final de-
pendency graph computed by the DGM is given on
figure 3.6, a topological sort'? gives the sequence
shown on sample 1.

This sequence is valid, but not efficient: it requires
9 sequential steps. This transformation algorithm is

L3For a given directed acyclic graph, several valid topological
sort outputs can be found.

called ’seq’ in the sequencer and it can be selected.
Three other algorithms are provided within the se-
quencer:

e ’par’: this algorithm inserts each node in the
dependency graph using a single parallel (<par>
XML tag) instruction and explicit dependencies
(’deps’ attribute of the <action> XML tag).
Such an algorithm is optimal in terms of perfor-
mance, but it produces an instructions sequence
file that is difficult to read by a human because
of all those explicit dependencies.

e ’mixed’: this algorithm inserts each leaf nodes
in the dependency graph using a parallel instruc-
tion, then remove those leaf nodes from the de-
pendency graph and starts again. Every such
parallel instructions are included in a global se-
quence one (<seq> XML tag). This algorithm
tends to execute set of actions by steps: all leaf
nodes are executed in parallel. Once they have
terminated, they are removed from the graph,
and another batch of leaf nodes are executed in
parallel up to the end.

e ’optimal’: this algorithm produces an instruc-
tions sequence that is as efficient as the ’par’
algorithm but much more readable. It uses im-
plicit dependencies as much as possible!® using
sequence instructions. This algorithm is selected
by default.

Describing in details those algorithms with their ad-
vantages and constraints is beyond the scope of this

paper.

3.3 Instructions Sequence Executor

(ISE)

The Instructions Sequence Executor (ISE) is the last
stage of the sequencer. It takes in input an in-
structions sequence as computed by the ISM or cre-
ated/edited by hand or by any other means. It then
runs the instructions specified taking into account:

140ur XML instructions sequence format can only express
trees if implicit dependencies are used exclusively.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 49

Sample 1 Result of the topological sort on the dependency graph given figure 3.6.

<instructions>
<seq>
<action id="’cl#unmountNFS@soft!unmountNFS’>echo WARNING: NFS mounted!</action>
<action id="’nfsil#unmountNFS@soft!unmountNFS’'>echo WARNING: NFS mounted!</action>
<action id="’nfs2#unmountNFS@soft!unmountNFS’’>echo WARNING: NFS mounted!</action>
<action

/etc/init.d/nfsd stop

</action>

id=""nfsi#nfsd@node!nfsDown’’ remote="’true’’ component_set="’nfsl#nfsd@node’’>

<action id="’nfsl#nfs@node!nodelff’’>nodectrl poweroff nfsi</action>
<action id="’nfs2#nfsd@soft!nfsDown’ remote=""true’’ component_set="’nfs2#nfs@node’’>

/etc/init.d/nfsd stop

</action>

<action id="’cl#compute@node’’>nodectrl poweroff cl</action>
<action id="’nfs2#nfs@node!nodelff’’>nodectrl poweroff nfs2</action>
<action id="’cdO#coldoor@hwmanager!coldoor0ff”’>bsmpower -a off cd0</action>

</seq>

</instructions>

e parallelism: actions that do not have dependen-
cies between them might be executed in paral-
lel. There is a customizable maximum limit on
the number of actions that can be executed in
parallel by the ISE. This helps limiting the load
increase of the system due to a vast number of
forks in a large cluster.

e dependencies: an action is not executed unless
all its dependencies (explicit and implicit) have
completed successfully. An executed action is
considered successful in two cases:

— its returned code is 0 (alias OK);

— its returned code is 75 (alias WARN-
ING also known as EX TEMPFAIL in
sysexits.h) and the option ’--Force’ has
been given to the ISE.

The implementation of the ISE uses the Cluster-
Shell [7] python library as the backend execution en-
gine. Describing the implementation of the ISE is
beyond the scope of this article.

4 Scalability Issues

Using the sequencer on a large cluster such as the
Tera-100 can lead to several issues related to scala-

bility.

4.1 Complexity

Several complexity in space and time can be identified
for:

1. the production of the dependency graph pro-
duced by the DGM;

2. the production of the actions graph produced by
the ISM;

3. the execution of the actions graph by the ISE.

This last complexity was our first concern due to our
customer requirements. If theorical complexity has
not (yet) been formally determined, the execution
time of the sequencer for the production of the de-
pendency graph of the Tera-100 is:

e 13 minutes 40 seconds for the start ruleset with
9216 nodes and 8941 edges in the dependency
graph;

e 2 minutes 1 second for the stop ruleset with 9222
nodes and 13304 edges in the dependency graph.

The time taken by the ISM for the production of the
actions graph from the previously computed depen-
dency graph using the ’optimal’ algorithm is:

LISA °11: 25th Large Installation System Administration Conference

USENIX Association

e 4.998 seconds for the start with 4604 nodes and
8742 edges in the actions graph;

e 6.343 seconds for the stop with 4606 nodes and
9054 edges in the actions graph.

Finally, the time taken by the ISE to execute these
actions graph is:

e 4 minutes 27 seconds for the start with:

— 99.7% of actions executed (successfully or
not);

— 6.6% of actions that ends on error for vari-
ous reasons;

— 0.3% of actions not executed because some
of their dependencies ends on error or was
not executed.

e 9 minutes 23 seconds for the stop ruleset with:

— 96.7% of actions executed (successfully or
not);

— 15.3% of actions that ends on error for var-
ious reasons;

— 3.3% of actions not executed because some
of their dependencies ends on error or was
not executed

Explaining differences between those metrics is be-
yond the scope of this paper. However, from such
results, the sequencer can be considered has quite
scalable.

4.2 Mantainability

The maintenance of the various graph used by the
sequencer:

e rules graph;
e the DGM produced dependency graph;

e the ISM produced actions graph XML file;

is also an issue on large systems. Identifying wrong
dependencies in a flat file can be hard, especially
with large graph represented with several thousands
of lines.

The sequencer can exports those graph in the DOT
format. It therefore delegates to specific graph tools,
the identification of non trivial problems for mainte-
nance purposes. For instance, rules graph are usually
small and the standard ’dot’ command that comes
within the graphviz [8] open-source standard product
can be used for their vizualisation. This is fast and
easy. For other much larger graph, however, special-
ized tools such as Tulip [9] might be used instead.

4.3 Usability

In the context of large systems, giving correct inputs
to a tool, and getting back a usable output can be a
big challenge in itself. In the case of the sequencer,
inputs are the sequencer table and the components
list.

For the maintenance of the table, the sequencer
provides a management tool that helps adding, re-
moving, updating, copying and even checksuming
rules. For the components list, the sequencer uses
what is called a guesser that given a simple compo-
nent name fetches its type and category. This allows
the end user to specify only the name of a component.

Apart from the output produced by the first two
stages that have already been discussed in the previ-
ous section on maintanability, the last output of great
interest for the end-user, is the ISE output. To in-
crease further the usability of the sequencer, several
features are provided:

Prefix Notation: each executed action output is
prefixed by its id. When the ISE executes an
action graph produced by previous stages, those
ids contain various informations such as the type,
the category, and the rulename this action comes
from. This helps identifying which action pro-
duced which output (the bare mininum). More-
over, such an output can be passed to vari-
ous filters such as grep or even gathering com-
mands such as ’clubak’ from ClusterShell [7]
or ’dshbak’ from pdsh [10]. In the case of

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 51

’clubak’ command, the separator can be given
as an option. As a side effect, this allows the
end-user to group similar output by node, type
or category.

Reporting: The ISE can produce various reports:

e ’model’: each action with their dependen-
cies (implicit and explicit) are shown; this
is used to determine what the ISE will
do before the actual execution (using a
’——noexec’ option);

e ’exec’: each executed action is displayed
along with various timing informations and
the returned code;

e ’error’: each executed action that exited
with an error code is displayed along with
their reversed dependencies (their parent in
the dependency graph); this is used to know
which action has not been executed because
of a given error;

e ’unexec’: each non executed action is dis-

played along with its missing dependencies

a dependency that exited with an error

code and that prevented the action from

being executed; this is used to know why a
given action has not been executed.

5 Results

The sequencer has been designed for two main pur-
poses:

1. Emergency Power Off: this is the reason of the
three different independent stages;

2. Common management of resources in clusters
(and data-centers): this is the main reason for
the chaining mechanism.

Our first experiment with our tool shows that it is
quite efficient. Our main target was the powering
on/off of the whole Tera-100 system which leads to
the execution of more than 4500 actions in less than
5 minutes for the start and in less than 10 minutes
for the stop.

6 Related Works

Dependency graph makers exist in various products:

e Make [11], SCons [12], Ant [13] for example are
used for the building of softwares; they focus
on files rather that cluster components and are
therefore not easily adaptable to our problem.

e Old System V init [14], BSD init [15], Gentoo
init[16] and their successors Solaris SMF [17],
Apple launchd [18], Ubuntu upstart [19] and Fe-
dora systemd [20] are used during the boot of
a system and for managing daemons. To our
knowledge none of those products can be given
a components list as an input so actions are ex-
ecuted based on it.

Solutions for starting/stopping a whole cluster are
most of the time manual, described in a step-
by-step chapter of the product documentation and
hard wired. This is the case for example with
the Sun/Oracle solution [21] (command ’cluster
shutdown’). It is not clear whether all components
in the cluster are taken into account (switches, cool-
ing components, softwares, ...) and whether new
components can be added to the shutdown process.
IBM uses the open-source xcat [22] project and its
‘rpower’ command which does not provide depen-
dencies between cluster components.

From a high level perspective, the sequencer, can
be seen as a command dispatching framework simi-
lar to Fabric [23], Func [24] and Capistrano [25] for
example. But the ability to deal with dependencies
lacks in these products making them unsuitable for
our initial problem.

The sequencer can also be seen as a workflow man-
agement system where the pair DGM/ISM acts as
a workflow generator, and the ISE acts as a work-
flow executor. However, the sequencer has not been
designed for human interactive actions. It does not
deal for example with user access rights or tasks
list for example. It is therefore much lighter than
common user oriented workflow management systems
such as YAWL [26], Bonita [27], IntalioBPMS [28§],
jBPM [29] or Activiti [30] among others.

We finally found a single real product for which
a comparison has some meaning: ControlTier [31].

52

LISA ’11: 25th Large Installation System Administration Conference

USENIX Association

ControlTier shares with the sequencer various fea-
tures such as possible parallel execution of indepen-
dent actions and failure handling. However, the
main difference is in the way workflows are produced:
they are dynamically computed in the sequencer case
through dependency rules (depsfinder scripts) and
the component input list whereas they are hard wired
through configuration files in the case of ControlTier.

To our knowledge, our solution is the first one to
address directly the problem of starting/stopping a
whole cluster or a part of it, taking dependencies
into considerations, still remaining integrated, effi-
cient, customizable and robust in the case of failure.
We suppose the main reason is that clusters are not
designed to get started/stopped entirely. Long up-
time is an objective! However automated tools ease
the management of clusters, making start /stop proce-
dure faster, reproducible, and reducing human errors
to a minimum.

7 Conclusion and Future

Works

The sequencer solution presented in this article is the
first of its kind to our knowledge. It has been de-
signed with EPO in mind. This is the reason for its 3
independent stages and for the incremental mode of
execution. Still the sequencer provides the chaining
feature making its use pertinent for small clusters or
small part of a big one.
The sequencer fulfills our initial objectives:

e Predictive: the incremental mode allows a com-
puted instructions sequence to be verified, mod-
ified and recorded before being run.

e Easy: executing a recorded instructions
sequence requires a single command:
’clmsequencer < instructions.sequence’

e Fast: the sequencer can execute independent in-
structions in parallel with a customizable upper
limit.

e Smart: the order in which instructions are exe-
cuted comes from a dependency graph computed

from customizable dependency rules and a given
cluster components list.

e Robust: failures are taken into account by the
sequencer component by component.

Our solution is highly flexible in that most of its inner
working is configurable such as:

e the dependency rules,

e the dependency fetching scripts,

e the action to be taken on each component,

e the dependency graph,

e the final instruction sets.
The sequencer has been validated on the whole Tera-
100 system. A shutdown can be done in less than
10 minutes, and a power on takes less than 5 min-
utes (more than 4500 actions for both rulesets).
The sequencer framework will be released under an
open-source license soon. Several enhancements are

planned for the end of this year including;:

e smarter failure handling;

live reporting/monitoring;

performance improvement of dependency graph
generation through caching;

e post-mortem reporting;

replaying.

8 Aknowledgment

The author would like to thank Matthieu Pérotin for
his helpful review, Marc Girard for his support dur-
ing the development of the solution presented in this
paper and the reviewers for their very clear comments
and remarks.

USENIX Association

LISA ’11: 25th Large Installation System Administration Conference 53

References

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

W. Turner, J. Seader, and K. Brill, “Industry
standard tier classifications define site infras-
tructure performance,” tech. rep., Uptime Insti-
tute, 2005. 1

P. Grun, “Introduction to infiniband for end
users,” tech. rep., InfiniBand Trade Association,
April 2010.
http://members.infinibandta.org/kwspub/
Intro_to_IB_for_End_Users.pdf. 1

AMD, “Magic packet technology.” White Paper,
November 1995. Publication# 20213, Rev: A
Amendment /0
http://support.amd.com/us/Embedded_
TechDocs/20213.pdf. 2

N. D. Intel, Hewlett-Packard, “Ipmi v2.0 rev. 1.0
specification markup for ipmi v2.0/v1.5 errata
revision 4,” 2009.
http://download.intel.com/design/
servers/ipmi/IPMI2_0E4_Markup_061209.
pdf. 2

S. R. International, “Snmp rfcs.”
http://www.snmp.com/protocol/snmp_rfcs.
shtml. 2

A. B. Kahn, “Topological sorting of large net-
works,” Commun. ACM, vol. 5, pp. 558 562,
November 1962. 11

“Clustershell opensource project,” 2011.
http://sourceforge.net/apps/trac/
clustershell. 12, 13

AT&T Labs Research and Contributors,
“Graphviz.” Web page, June 2011.
http://graphviz.org/. 13

D. Auber, “Tulip : A huge graph visualisa-
tion framework,” in Graph Drawing Softwares
(P. Mutzel and M. Jiinger, eds.), Mathematics
and Visualization, pp. 105126, Springer-Verlag,
2003. 13

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Garlick, “pdsh: Parallel distributed shell.”
http://sourceforge.net/projects/pdsh/.
13

Free Software Foundation, “GNU Make.” Web
page, July 2004.
http://www.gnu.org/software/make/. 14

The SCons Foundation, “SCons.” Web page,
June 2011.
http://www.scons.org/. 14

The Apache Software Foundation, “The Apache
Ant Project.” Web page, July 2004.
http://ant.apache.org/. 14

Novell, Inc (now SCO), System V Interface
Definition, Fourth FEdition, Volume 2, June
1995.
http://www.sco.com/developers/devspecs/
vol2.pdf. 14

FreeBSD, FreeBSD System Manager’s Manual,
init(8), Sept. 2005.
http://www.freebsd.org/cgi/man.cgi?
query=init&sektion=8. 14

“Gentoo Initscripts,” Mar. 2011.
http://www.gentoo.org/doc/en/handbook/
handbook-x86.xml?part=2&chap=4. 14

R. Romack, “Service managemen facility (smf)
in the solaris 10 operating system.” Sun
BluePrints OnLine, Feb. 2006.
http://www.linux.com/archive/feature/
125977. 14

J. Wisenbaker, “launchd in depth.” AFP548,
July 2005.
http://www.afpb48.com/article.php?
story=20050620071558293. 14

M. Sobell, “Ubuntu’s upstart event-based init
daemon,” Feb. 2008.
http://www.linux.com/archive/feature/
125977. 14

L. Poettering, “Rethinking pid 1,” Apr. 2010.
http://Opointer.de/blog/projects/
systemd.html. 14

LISA ’11: 25th Large Installation