
Enhanced Resource Sharing
in UNIX

J. M. Barton and J. C. Wagner

Silicon Graphics Computer Systems

ABSTRACT: UNIX provides a programming model
for the user which gives an illusion of multiprocess-
ing. On uniprocessors, this illusion works well, pro-
viding communication paths, process security and a
simple programming environment. Unfortunately,
this model is not powerful enough to take full
advantage of modern multiprocessor hardware.
This results from a design which uses data queueing
and preemption to provide the multiprocessing
illusion.

Recent proposals for lightweight processes in UNIX
show that other programming models may be
effectively supported as well. These models provide
for virtual address space sharing between tasks by
breaking the process into several lightweight con-
texts that may be manipulated more quickly than a
normal process. Unfortunately, such models raise
questions about support for normal UNIX seman-
tics, scheduling performance, and kernel overhead.

This paper describes a new programming model
which goes beyond simple address space sharing,
providing a selection of shared resources while

An earlier version of this paper was delivered at the Winter 1988 USENIX Technical
Conference (Dallas).

@ Computing Systems, Vol. I . No. 2 . Spring 1988 111

retaining the key parts of the UNIX process model.
The concept of a process is retained along with
most of its semantics. The fundamental resource
shared is the virtual address space. In addition,
open file descriptors, user and group IDs, the
current directory, and certain other elements of the
process environment may be shared. This makes
for easy construction of useful servers and simple
concurrent applications, while providing high per-
formance support for more computationally inten-
sive applications.

This implementation, labelled process share groups,
allows normal process actions to take place easily,
such as system calls, page faulting, signalling, paus-
ing, and other actions which are ill-defined in other
models. The paper describes the philosophy which
drove the design, as well as details of the implemen-
tation, which is based on, and upwardly compatible
with, AT&T v.3 UNIX. Performance of normal
UNIX processes is maintained while providing sup-
port for high performance parallel programming.

I. Introduction

The success of the UNIX kernel is owed in part to the effective
way in which it hides the resource sharing necessary in a multi-
programmed environment. A UNIX process is a highly indepen-
dent entity, having its own address space and environment. Com-
munication paths are restricted to low bandwidth queueing

mechanisms, such as pipes, sockets and messages.

When moved to a multiprocessor, this model is overly restric-
tive. We would like to allow several processors to work on a
problem in parallel using high bandwidth communications (shared

memory, for instance). Even though this explicit sharing of data

Il2 J. M. Barton and J. C. Wagner

is thought of most often when working with parallel programing,

there are other resources that can be shared usefully. For exam-
ple, a network server could share frle descriptors with several chil-
dren. The server would perform security checks and open a
socket descriptor to the client, and then pass this descriptor to a
waiting child with a simple message containing the descriptor.

In order to provide a conceptual framework for resource shar-

ing among concurrent processes, we have introduced an additional
level of functionality into the normal UNIX process model. A
process may gain access to this additional level of functionality
through an interface called process share groups. Members of a
share group can potentially share many resources previously
thought of as private to a single'process.

This interface is frrst demonstrated in an AT&T System V.3

kernel, and relies on modifred region handling abilities to share a
virtual address space. New frle opens can be propagated to all
processes, as well as modifrcations to the environment of a process

(such as the ulimit(2) values). By extending the semantics of the
UNIX process in an upwardly compatible way, a powerful new
programming model has been developed.

2. The Road to Resource Sharing

In order to provide a simple model for multiprogramming, the
designers of UNIX chose a model of independent processes, shared

access to a file system, and limited communication using queues,

such as pipes or signals (Figure 1). Such a decision was appropri-
ate, since a queueing model simplifles multiprogramming support.
This gives the programmer a model where resource sharing is per-

formed at an abstract level outside the program. For instance,
UNIX programmers seldom concern themselves with running out
of disk space or memory, even though these are shared with many
other processes in the system. Soon the construction of multi-
process applications became necessary both to manage complexity
and to allow for higher performance. This need was especially
driven by the desire to program multiprocessors and distributed
systems effectively. In response, new and explicit resource sharing

capabilities were introduced into the system. The implementors

Enhanced Resource Sharing in uNIX 1 13

signals ---->

stack

datalbss

text

File I/O

Figure l: Version 7 Process Environment

of Berkeley UNIX were network oriented due to the desire to sup-
port Internet access in UNIX, and thus focused on distributed sys-
tems and advanced queueing schemes to support concurrent pro-
gramming. This resulted in the socket interface, which supports
well those applications whose synchronization requirements are
not strict in the time domain, and where parallel execution is not
necessarily required.

The implementors of System V, on the other hand, turned
inward, focusing instead on local IPC mechanisms such as shared
memory and semaphores, which support a more tightly coupled
concurrent programming paradigm. Potentially, such work could
avoid the limitations of queueing models and enhance parallel
execution.

Although these models introduced important new interfaces,
neither was adequate for support of tightly coupled parallel pro-
gramming. The BSD model sufers from the inherent performance
loss of any queueing and data copying model. The System V
model suffers from synchronization mechanisms which require
kernel interaction, which negates the impact of improved IPC
mechanisms. In both models, the synchronization and data pass-
ing paths must be explicitly set up and managed by the applica-
tion, which in many cases places awkward and unnatural

Il4 J. M. Barton and J. C. Vy'agner

messages =--->
signals +

semaphores +

System V Environment

stack

shared memory

datalbss

text

signals +

BSD 4.2 Environment

stack

datalbss

text

File Vo

Figure 2: System V and BSD Process Environments

Enhønced Resource Sharüig in UMX I l5

requirements on the progtammer. The key weakness here is that
kernel interaction is required for synchronization, which adds
significant overhead for any tightly-coupled application.

To address the performance needs of tightly-coupled parallel
programming, several lightweight processing models have been
introduced into UNIX. These models provide intensive resource
sharing by providing multiple threads of execution within a single
process context. As an example, consider the Mach [Accetta et al.
19861 kernel, which introduced an implementation of lightweight
processing labeled threads [Tevanian et al. 1987]. This model
allows an address space to be shared among several threads of
control. Each thread can execute independently in both kernel
and user mode. Although independent execution adds additional
cost for a threaded process, such as kernel context (the user area)

and a kernel stack for each thread, a useful concurrent program-
ming environment is provided (Figure 3).

Threads have serious limitations for many applications. An
additional layer of complexity is added to the normal UNIX inter-
face, requiring a totally new programming model and process

behavior model. The programmer is saddled with two entirely
different interfaces that must be managed, having little relation to
each other. Although a parallel programming paradigm has been

messages ---->

signals ---->

stack

mapped frle

shared memory

datalbss

text

Mach kernel

messages

File I/O

plpes sockets

Figure 3: Mach Process Environment

BSD 4.3 kernel

1 16 J. M. Barton and J. C. Wagner

added, inadequate interfaces are available for thread or process

scheduling control and sychronization support.
Finally, although threads purport to reduce the overhead of

task management, the resource overhead of extra stack and user
area pages and indirect access to the user area makes this unlikely.

Although concurrency support in the UNIX model has

improved dramatically over time, many of the proposed interfaces
are clumsy or difficult to use. Ideally, a resource sharing interface
should place little burden on the programmer while maintaining
"expected behavior" of the system wherever possible.

So far, concurrency and parallel programming support have
been presented as the driving forces behind improved resource

sharing facilities. The following section delves into this area more
deeply to give the reader a better understanding of why such

changes are necessary.

3. Parallel Programming

To take maximum advantage of multiprocessors, it must be possi-

ble to create and execute parallel algorithms, and to get truly
parallel execution of application code. Because of the data-
sharing bandwidth necessary for applications to gain performance
from parallelism, shared memory is usually the main data path.
Sharing memory isn't enough, however. The sharing and sychron-
ization mechanisms and other aspects of the environment must all
work together to provide a useful programming model [Barton
l e87 l.

A parallel programming model must take into account three
important areas:

l. Bandwidth. The spedd at which data can be passed between
processes is a limiting factor in many algorithms. If the
amount of data is small, and the rate of data passing low,
then models such as sockets or pipes are useful. On the
other hand, if the amount of data is large, or frequently
accessed in parallel, then a shared memory model provides
the highest bandwidth possible.

Enhqnced Resource Sharing in UNIX ll,7

2. Synchronization. Synchronization penalties limit the perfor-
mance of any parallel or concurrent application. Again, if
long delays are tolerable, sockets or pipes provide a useful
mechanism. If sychronization must occur quickly, some
form of hardware supported lock is usually best.

3. Environment. The environment should support parallel pro-
gramming easily. Powerful process scheduling control, ease

of using shared resources and multiprocess debugging capa-
bilites are all examples of the influence of the environment
on ease of parallel programming.

Shared memory is seldom useful without a synchronization
mechanism. For instance, pipes, System V messages or sema-
phores, sockets, or signals can be used to synchronize memory
access between processes, but are all much lower bandwidth
mechanisms than the memory itself, which is a liability in many
applications. The best performance is obtained using some form
of busy-waiting lor synchronization. With busy-waiting, a lock is
implemented which protects some resource. If the lock is free, the
process immediately acquires it, and other processes that attempt
to acquire the lock simply loop attempting to acquire the lock
until it is freed. Hardware or software mechanisms are used to
guarantee that only one process ever acquires the lock at a time.
The assumption of such a scheme is that the resource only needs
protecting for a short period of time. With hardware support for
busy-waiting, synchronization speeds can approach memory access

speeds.
The key component of the environment is the underlying

operating system which implements the abstract programming
model. Because a modern operating system such as UNIX must
constantly react to internal and external events, the scheduling
and context switching mechanisms are extremely important in
insuring that parallel programs progress efficiently. Even if a

multiprocess application limits itself to the number of processors

available, the best performance will occur only if all tasks in a
program are actually running in parallel for a significant amount
of time. The kernel needs to take steps to insure that such tasks
run in parallel whenever possible.

1 18 J. M. Barton and J. C. Wagner

Dynamic creation and destruction of processes must be possi-

ble, and getting an existing process started on a new task must
have minimal overhead. In a lightweight processing model, crea-

tion of a new task is often an order of magnitude faster than crea-
tion of a process. For instance, the Mach kernel can create and
destroy threads at l0 times the rate of the fork) system call. This
is irrelevant, however, since parallel programs tend to use a static
number of tasks, and these tasks can be preallocated, which avoids
dynamic startup costs. The scheduling model used in such appli-
cations is self-scheduling, in which an independent task waits for
work to be queued, and competes for that work with other tasks.
If normal processes are used [Beck & Olien 1987] instead of
threads, then the speed penalties of process creation are elim-
inated by creating a pool ofprocesses before entering parallel sec-

tions of code, each of which then selÊschedules as work becomes
available. If enough processes are not available, a new one may
be dynamically created, but this problem can be tuned out of the
application.

Lightweight processing models do have some advantages.
Other resources which might be usefully shared are available to all
of the processes, such as file descriptors. Unfortunately, these
models often promote too much sharing, making it difficult for the
programmer to manage his environment.

Ideally, then, we wish to pick and choose those resources
which should be shared to match the application task at hand. If
such sharing is integrated into the normal UNIX model, then the
programmer can expect most facilities to work as expected, i.e.,
the "principle of least surprise." Signals, system calls, traps and
other process events should happen in an expected way. By pro-
viding a control mechanism for sharing resources, a powerful pro-
gramming model can be developed which combines the perfor-
mance of lightweight processes with the rich functionality of the
normal UNIX interface.

The IRIX kernel implements an explicit resource sharing
mechanism which provides a simple programming model which is
based on the normal UNIX interface, meeting the requirements
above. The remainder of this paper describes this mechanism and
how it is implemented.

Enhanced Resource Shøring in I]NIX 1 19

stack

stack

stack

shared memory

mapped hle

datalbss
shared lib data

shared lib text

text

messages --->
signals ---->

semaphores ---->

File I/O

Figure 4: IRIX Programming Model

4. Share Groups

To address the failures and limitations of resource sharing when
applied to multiprocessors, we added a layer of process manage-
ment to the kernel that we call the share group. Such a group is a
collection of processes which have a comfnon ancestor and have
not executed the exec(2) system call since being created. The
parent-child relationship between processes is maintained, and
forms the basis for a hierarchical resource sharing facility, where a
parent can indicate what shared resources each child should share.

In general, the main resource shared is the virtual address
space associated with the share group, although it need not be.
Processes in the share group are free to pass pointers to data, and
to use high performance synchronization and data passing tech-
niques (mainly shared memory and spinlocks).

A small number of other resources may be shared in the initial
implementation. Chief among these are file descriptors. When
one of the processes in a group opens a frle, the others will see the

I20 J. M. Barton and J. C. Wagner

frle as immediately available to them. The descriptor numberr
may be passed between processes or simply assumed as part of the
algorithm. As an example, a user-level asynchronous I/O scheme
could be implemented by sharing the memory and file descriptors.
High level I/O calls are translated into an equivalent call in a child
shared process, which performs the I/O directly from the original
buffer and then signals the parent. Modifrcations to the file or
device descriptor are automatically used by the child, since it
shares the descriptor.2

The small set of shared resources was initially chosen to pro-
vide a wide range of applications while limiting the initial imple-
mentation to a reasonable amount of work. Shared file descrip-
tors provide obvious advantages; the ability to change the working
directory or root directory of an entire set of processes at once is
useful in multiprocess applications. Process lD, ulimit and umask
values are easily shared, and have potential for use in real applica-
tions.

5. System Call Interface

The share group interface is deflned through two new system calls,
sproc) and prctl). The sproc) call is used to create a ne\ry process

within the share group, and controls the resources which will be
shared with the new process. The prctl) call is used to obtain
information about the share group and to control certain features
ofthe group and new processes.

l. The descriptor number is an index into the file table for a process, which holds
pointers to open frle table entries. For example, standard input is by convention
descriptor number 0, while standard output indícates descriptor number 1.

This is the way most implementations of asychronous I/o are handled, only the extra
process is inside the kernel instead ofoutside.

2.

Enhanced Resource Sharing in UNIX I2l

5.1 The sp r o c System Call

The syntax of this call is:

int sproc(entry, shmask, arg)
void (*entry)()i
unsigned Iong shmask;
long arg;

returns -
-1 - 0S error in ca[[
)0 - new process ID

This call is similar to the fork(2) system call, in that a new process

is created. The shmask parameter specifres which resources the
child will share with the share group, each particular resource
being identifred with a bit in the parameter. A new stack is
automatically created for the child process, and the new process is
entered at the address given by entry. This new stack is visible to
all other processes in the share group, and will automatically grow
in size as needed. The single argument arg is passed to the newly
created process as the only parameter to the entry point, and can
be used to pass a pointer to a data block or perhaps an index into
a table.

The first use of the sproc) call creates a share group. V/hen-
ever a process in the share group issues the sproc) call the new
process is made part of the parent's share group. A new process

may be created outside the share group through the fork(2) system
call, and use of the exec(2) system call removes the process from
the share group before overlaying the new process image, thus
insuring a secure environment for the new program image.

All resource sharing is controlled through the shmask (share

mask) parameter. Currently, the following elements can be
shared:

eR-SADDR - share virtuaI address space
PR-SULIMIT - utimit vatues
PR-su!4AsK - umask vatues
PR-SDIR - current/root directory
PR-FDS - open fite descriptors
PR-srD - uid/Sid
pR-sALL - al.L of the above and any future resources

t22 J. M. Barton and J. C. Wagner

When the child is created, the share mask is masked against the
share mask used when creating the parent. This means that a pro-
cess can only cause a child to share those resources that the parent
can share as well, providing strict inheritance of those resources.
The original process in a share group is given a mask indicating
that all resources are shared.

Whenever a process modifies one of the shared resources, and
its share mask indicates that it is sharing the resource, all other
processes in the share group which are also sharing the resource
will be updated.

To avoid forcing complex sychronization schemes on the pro-
grammer, the kernel uses a simple rule for modiflcations to the
VM image: by the time control is returned to the process making
the VM modification, all other processes in the share group will also
see that modification. For instance, suppose that a subroutine is
called in one process, which causes automatic stack growth. That
subroutine then synchronizes with a client process and passes it a
pointer to a local stack variable. If the VM image is not synchron-
ized to the stack growth, the client may not be able to access this
perfectly valid address.

Ifthe virtual address space is not shared, the new process gets

a copy-on-wríte image of the share group virtual address space. In
this case, the new stack is not visible in the share group virtual
address space.

Certain small parts of a process's VM space are not shared.
The most critical of these is the process data area, or PRDA. This
is a small amount of memory (typically less than a page in size)
which records data which must remain private to the process, and
is always at the same fixed virtual location in every process, allow-
ing shared code to access private data. As an example, consider
the errno variable provided by the C library. Since the data space
is shared, if this variable were only in the data space it would be
difficult for independent processes to make reliable system calls.
The C library could locate a copy of errno in the PRDA for a pro-
cess. The format and use of the PRDA is totally within the scope
of the user program, and can be managed in any way appropriate.
Libraries (such as the C library) which need some private data

Enhanced Resource Sharing in uNIx 123

may use a portion of the PRDA, leaving a portion for direct use by
the programmer.

5.2 The prctl SystemCall

The second system call is the prctl) call, which allows certain
aspects of a share group to be controlled. Its syntax is:

int prctl,(option [, vatue [, vatue2]l)
unsigned option;
char *va [ue;
char *vatue2;

returns -
-1 - error in 0S cal. L

<>0 - request resutt

The following option values may be used:

PR-MAXPROCS - return Limit on processes per user
PR-MAxPPRocs - return number of processes that the

system can run in para[[et.
PR-sETsrAcKsIzE - sets the maximum stack size for

the current process.
PR-GETsrAcKsIzE - retrieves the maximum stack size for

the current process.

The PR-SETSTACKSIZE option allows the program to set the max-
imum stack size which it may have. This value is inherited across

sproc) and fork) system calls, and indirectly controls the layout of
the shared VM image.

6. Implementation

The implementation of share groups centered on four goals:

1. The implementation must work correctly in both multi-
processor and uniprocessor environments.

2. Synchronization between share group processes executing in
the kernel must be able to proceed even though one or more
of the processes are not available for execution.

3. The overall structure of the kernel must not be modifred.

I24 J. M. Barton and J. C. Vy'agner

4. The performance for non-share group processes must not be

reduced.

The multiprocessor requirement proved to be the major
difficulty in the design, since there are no formal interfaces for
synchronization between processes executing in the kernel. This is

not usually a problem on uniprocessor systems since a process

executing in the kernel cannot be preempted. Thus it may exam-

ine and modify the state of any other process, and know that the

state will not change. This isn't true in a multiprocessor environ-

ment. The process being examined may be running on another
processor, sleeping on a semaphore waiting for a resource (it could

even be waiting for a resource that the examining process con-

trols), or it may be waiting for a slow operation (e.g. read on a
pty, performing the wait(2)system call, etc.).

6.1 Data Structures

For each share group, there is a single data structure (the shared

address block) that is referenced by all members of the group:

typedef struct shaddr-s {
/* the f of towing are al. I' to handte pregions */
preg-t *s-region; /* processesr shared

pregions */
tock-t s-acclck; /* lock on access

to shared bLock */
sema-t s-updwait; l* wait for update lock */
short s-acccnt ì l* count of readers */
ushort s-waitcnt; /* count of waiting

processes */
handl.ing shared processes */

ushor t
ushor t
I ock-t

s-ref cnt;
s-f I ag;
s-[isttock;

/* generic f iel.ds for
struct proc *s-Pt ink; /* Link to shared

processes */
l* fl processes in tist */
lt flags */
/* protects s-pIink */

threading open fiIe

/* wait for opening fite */
l* copy of open fite

descr iptors */

/* semaphore for singIe
updat ing */

sema-t s-fuPdsema;
struct fiIe **s-ofite;

Enhanced Resource Shøring in zNIX 125

char *s-pofite; /* copy of open file
ftags */

struct i node 'ts-cd i r;
struct inode *s-rdir; /* current directory */

/* root directory */
/* tock for updating misc things that donrt need

a semaphore */
I ock-t s-rupdIock; /* update Iock *./

/* hol.d vatues for other sharing options */
shont s-cmaski l* mask for file

creation */
daddr-t s-Limit; /* maximum write address */
ushort s-uid; /* effective user id ,,1

ushort s-gid; /* etÍective group id *l
) shaddr-t;

This structure is dynamically allocated the first time that a process

invokes the sproc(2) system call. A pointer in the proc structrure
points to this, and the s-plink freld links all processes via a link
field in the proc structure. To protect the linked list during
searching, the lock s-listlock is used. A reference count is kept in
s-refcnt, and the structure is thrown away once the last member
exits (Figure 5). The rest of the fields are used to implement
resource sharing between group members and are explained in the
following sections.

Figure 5: Share Block Data Structure

Address
Space

126 J. M. Barton and J. C. Wagner

6.2 Virtual Spøce Sharing

The kernel in which this was implemented is based on System V.3,
and therefore uses the region [Bach 1986] model of virtual
memory. This model consists of 2 main data structures - regions,
which describe contiguous virtual spaces (and contain all the page

table information etc.) and pregions, which are linked per-process

and describe the virtual address at which a region is attached to
the process as well as other per-process information about the
region of memory. This model is designed to allow for full ortho-
gonality between regions that grow (up or down), and those that
are shared.

The most interesting (and difficult) part of resource sharing to
implement is sharing of the VM image, although the job is
simplified by using regions as a basis. Tlrle sproc system call shares

code with the standard fork call, the only difference being region
handling. If address space sharing is not indicated when the
sproc) call is made, then the standard fork) operations are per-
formed, providing copy-on-write acçess to the VM image. If VM
sharing is specified, any private pregions ofthe parent process are
marked as copy-on-write in the child, while all other regions are
shared (the debugger, for instance, may create a private text region
for a particular process when planting breakpoints). A point to
remember is that a fork) or non-VM sharing sproc) call leaves any
visible stack or other regions from the share group as copy-on-
write elements of the new process.

Algorithmically, the private regions for a process are examined
first when demand paging or loading a new process, followed by
examination of the shared regions. This provides the copy-on-
write abllities of a non-VM sharing share group member. It also
provides a basis for future enhancements to the manner in which
the VM is shared. For instance, it could be possible to share part
of the VM image and have copy-on-wrile access to other parts of
the image.

sproc) allocates a new stack segment in a non-overlapping
region of the parent's virtual address space. The new process

starts on this stack and therefore does not inherit the stack context
of the parent (though the child can reference the parent's stack).

Enhanced Resource Sharing ín uNIX L27

The child process starts executing at the address given in the
sproc) call.

With shared access to data regions, it must be possible to grow

and shrink such regions as needed, for instance if the user calls

sbrk(2). Unfortunately, the stock (V.3) region implementation
does not support growing or shrinking shared regions. The main
problem is that although regions have a well defined locking pro-

tocol, a basic assumption is made that only the process owning a

private region (one that has only a single reference) will ever

change it. Using this assumption, various parts of the kernel hold
implicit pointers into the region (i.e. pointers to pages) even
though they no longer hold a lock on the region. If a process

comes in and shrinks such a region, then any implicit pointers are

left dangling. Lack of adequate region locking also comes into
play when scanning a pregion list attempting to match a virtual
address reference with a region of actual memory (during a page

fault, for example). This list is not usually protected via a lock
since only the calling process can change it. V/ith growable shared
regions, information that is used during the scan could change.

The obvious solution to this is to use a lock on the pregion

list. Since all share group processes must obtain this lock each

time they page fault, the lock was made a shared read lock - any

number of processes can scan the list, but if a process needs to
update or change the list or what it points to, it must wait until all
others are done scanning. Unfortunately, to guard against the
"implicit" references mentioned above, the lock could not be hid-
den in the existing region lock routines, but had to be placed

around the entire sections of code that reference the virtual
address.

The shared read lock consists of a spin lock s-acclck which
guards the counters; s-acccnt and s-waitcnt. s-acccnt isthe
number of processes reading the list (or -1 if someone is updating
the list); s-waitcnt counts the number of processes waiting for the
shared lock. s-updwaít is a semaphore on which waiting processes

sleep. The shared pregion list is protected via the shared lock in
all places that the pregion list is accessed. In most cases the only
code change was to put calls to the shared lock routines around
the large sections ofcode that reference the pregion or region.

Since there is only one list, if one process adds a pregion (say

128 J. M. Barton and J. C. Vy'agner

through a mmap(2) call) all other share group members will
immediately see that new virtual region. Since operations that
require the update lock are relatively rare (fork, exec, mmap, sbrk,
etc.) compared to the operations that scan (page fault, pager) the
shared lock is almost always available and multiple processes do
not collide.

When a process first creates a share group (by calling sproc(2))
all of its sharable pregions are moved to the list of pregions in the
shared address block. Some types of regions are not currently
sharable. For instance, private text regions may be created for
debugging - that way breakpoints may (but are not required to) be
set in an individual share group member.

An interesting problem occurs when a process wishes to delete
some section of its virtual space either by removing or shrinking a
region. In this case it is important that the actual physical pages
not be freed until all share group members have agreed to not
reference those pages. Also important is that the initiating process
not have to wait for each group member to run before completing
its system call (some members may not run for a long time). To
solve this problem, we use the fact that the TLB (translation looka-
side buffer) is managed by software for the target processor (a
MIPS R2000 IMIPS 1986]). Thus before shrinking or detaching a
region, we synchronously flush the TLBs for ALL processors, while
holding the update lock for the share group's pregions. Thus if
any group members are running, they will immediately trap on a
TLB miss exception, come into the kernel and attempt to grab the
shared read lock and block. Since the lock is held for update, the
process will sleep until the lock is released. Fortunately, regions
are shrunk or removed only rarely.

6.3 Other Attribute Sharing

Unlike virtual memory, other process resources are not visible
outside of the kernel, thus it is only important that they be syn-
chronized whenever a group member enters the kernel. As with
VM synchronization, we don't want to force the calling process to
wait until all other group members have synchronized. To imple-
ment this, we keep a copy of each resource in the shared address
block: current directory inode pointer, open file descriptors, user

Enhanced Resource Sharing in UNIX I29

ids, etc. This also allows immediate updating of this data, as most
of it is kept in the user area and therefore inaccessible to other
than the owning process.

Those resources which have reference counts (file descriptors
and inodes) have the count bumped one for the shared address

block. This avoids any races whereby the process that changed

the resource exits before all other group members have had a
chance to synchronize. Since there always exists a reliable avail-
able copy of the data, all that remains is to synchronize the data

on each member's entry to the kernel. To make this efficient,
multiple bits in the proc structure pJaS word are used. When a

group member changes a sharable resource, it first checks its
p-shmask mask (the kernel version of the share mask) to see if it
is sharing this particular resource. If so, the share block is locked
for update, the resource is modifred (open the file, set user id,
etc.), a copy is made in the shared address block, each sharing
group member's pJaS word is updated, and the lock is released.

When a shared process enters the system via a system call, the col-
lection of bits in pjag is checked in a single test; if any are set

then a routine to handle the synchronization is called. Other
events that must be checked on entry to the system were also

changed to this scheme, thus lowering the system call overhead for
most system calls.

The above scheme works well except if two processes attempt
to update a resource at the same time. The lock will stop the
second process, but it is important that the second process be syn-

chronized prior to being allowed to update the resource. This is
handled by also checking the synchronization bits after acquiring
the lock.

7. Analysis

The resource sharing mechanism described above was imple-
mented and tested on a MIPS R2000 based multiprocessor. As

expected, the time for a sprocl system call is slightly less than a
regdar fork). The overhead for synchronizing virtual memory is

negligible except when detaching or shrinking regions. In practice

this only happens if a process shrinks its data space (fairþ rare) or

130 J. M. Barton and J. C. Wagner

if a process does considerable VM management activity (e.g. map-
ping or unmapping files).

As expected from the design, normal UNIX processes experi-
ence no penalty for the addition of share group support.

8. Future Directions

Although the set of features included in the first release is ade-
quate for many tasks, there are many other interesting capabilities
that could be added.

For example, the ability to selectively share regions when cal-
ling sproc) could be a useful facility, somewhat along the lines of
Mach shared memory, thus allowing some parts of the address
space to be accessed copy-on:write while others are simply shared.
This ability is a simple extension to the current scheme, as it only
requires proper management of the private pregion list and the
shared pregion list.

There are also other resources that could be usefully shared.
For instance, the scheduling parameters of a process could be
shared among the members of the share group. Since the shared
address block is always resident, it provides a convenient handle
for making scheduling decisions about the process group as a
whole. In a multiprocessor example, the programmer could
specify that at least two of the processes in the share group must
run in parallel, or the group should not be allowed to execute at
all. The priority of the whole group could be raised or lowered, or
a whole process group could be conveniently blocked or
unblocked.

Currently, calling exec(2) breaks the association with the share
group. By modifying the concept of pregion sharing to handle a
unique address space, it could be possible to have a group of unre-
lated programs managed as a whole for flle sharing or scheduling
purposes. If this is possible, then we can also consider allowing
an unrelated process to join a share group dynamically, which has
many interesting implications. From another point of view, such
sharing blurs the line between the fork) and exec) system calls,

Enhanced Resource Sharing in UNIX 131

with the difference determined by the amount of resource sharing

involved.
Finally, it might be useful to allow a process to stop sharing a

resource. For instance, the forkQ primitive already performs this
for the virtual address space if used within a share group. Addi-
tion of "stop sharing" requests for other resources is under
investigation.

9. Conclusion

This paper has presented a new and unique interface for the Sys-

tem V kernel, share groups, that allows an extremely high level of
resource sharing between UNIX processes. The programmer has

control of what is being shared, including whether the VM image

is shared or not. Familiar UNIX mechanisms for managing
processes are used for share group processes as well, providing
compatability and expected behavior.

Using these resource sharing abilities, it is possible to con-

struct simple yet powerful applications which use multiple
processes, or parallel applications which can take full advantage of
modern multiprocessors.

This interface has been implemented within a production ker-
nel, and meets the promise of its design. Processes not associated

with a share group experience no penalty for the inclusion of share

group support, while processes within a share group may take
advantage of a common address space and automatic sharing of
certain fundamental resources.

This interface also allows for a large degree of future exten-

sions, and shows how an additional layer of process management

may be added to the UNIX kernel without penalizing standard
programs.

132 J. M. Barton and J. C. Vy'agner

References

Mike Accetta et al., Mach: A New Kernel Foundation For UNIX
Development, USENIX Association Conference Proceedíngs, Summer,
1986.

Maurice J. Bach, The Design of the UNIX Operating System, prentice
Hall, New Jersey, 1986.

J. M. Barton, Multiprocessors: Can UNIX Take the Plunge?, Ul//X
Revíew, October, 1987.

Bob Beck and Dave Olien, A Parallel Programming Process Model,
USENI X Association Conference Proceedings, rù/inter, I 987.

MIPS R2000 Processor Archítecture, Mips Computer Systems, Inc., Moun-
tain View, CA, 1986.

Avadis Tevanian et al., Mach Threads and the UNIX Kernel: The Battle
for Control, USENIX Association Conference Proceedings, Summer
1987.

J. C. Wagner and J. M. Barton, Threads in System V: Letting LINIX
Parallel Process, ;login:, Vol. 12, No. 5, September/October 19g7.

lsubmitted May 10, 1988; accepted May 24, l9SSl

Enhanced Resource Sharing in UNIX 133

