GRAB - Inverted Indexes
with Low Storage Overhead

Michael Lesk Bellcore

ABSTRACT: A searching command (grab) for main-
taining indexes combines acceptably fast searching
with very low storage overhead. It looks like grep
except that it demands a preindexing pass, looks
only for whole words, and runs faster. As an exam-
ple of performance, consider the time to search for
single words in a 7.8 Mbyte file (the Brown corpus
of English). The times below are in seconds on a
DEC 8600 running Ultrix; the space overhead is
given as a percentage of the original file.

EGREP GRAB B-Trees
Word No. uses Time Space Time Space Time Space
Shakespeare 29 31.3 0.4 0.1
Dickens 3 31.6 O 1.2 7% 0.1 97%
Chaucer 1 31.4 0.8 0.1

Time and Space Costs

In these examples, grab gets 98% of the time savings
for only 7% of the space costs of using B-trees. The
preprocessing time for grab is also less, about 1/3 of
that required for the B-trees.

Grab contains the following three ideas: (a) storing
an inverted file by hash codes rather than words; (b)
keeping a bit vector of blocks in which the items
appear, rather than pointers to bytes; and (c) using a
fixed length codeword compression scheme on the
sparse vectors.

© Computing Systems, Vol. 1 « No. 3 * Summer 1988

207

1. Usage

Suppose you happen to have the full text of 4 Study in Scarlet in
a file H1, about 269,000 bytes long. If no one else has made the
index, you type imake H1 and about 1| minute later there is a file
H1.sg which contains 14,000 bytes. Then you type grab tobacco
H1 and, 0.28 seconds of CPU time later, two lines are typed on
your terminal:

019#06 the ground. You don’t mind the smell of strong
tobacco, I hope?”

033#23 at a glance the ash of any known brand either of
cigar or of tobacco. It is just in

If, instead, you had used egrep you would not have had to make
the index in advance, but the search would take 14 times as long
(That may sound bad, but is only 4 seconds. This file is really too
short to need grab). If, instead, you had used B-trees (a similar
package is available, with indexer named bmake and searcher
bgrab), the search would run in 0.08 CPU seconds but the index
file would take 201,750 bytes and making it requires 3 minutes.
Admittedly the search is faster, but can you tell the difference
between 0.3 seconds and 0.1 seconds when the shell overhead is
about 1.0 seconds? More important, would you rather have the
search go faster than 0.3 seconds, or save 187,000 bytes of disk
space?

There are a few options to these programs. When executing
grab, the -y option folds upper and lower case in searching.
Specifying -n prints the name of the file from which each printed
line comes. And timing information on the search is printed
when -r is specified.

208 Michael Lesk

For imake, the -bN option sets the block size to N, and the -
hN option makes N the hash table size (see below for an explana-
tion). The ordinary user shouldn’t need these options.

There is also a set of library routines using the same software.
This permits use of the same kind of data retrieval within a pro-
gram. The entry points and their usage are:

fd = gopen(filename); char *fd, *filename;

gopen opens a file which should have an associated filename.sg
index file, made by the imake routine. It returns NULL on
failure and nonzero on success.

p = gseek (word, fd); int p; char *word, *fd;

gseek returns a pointer to the first byte position within filename
where word is found. It returns -1 if word is not found in
the file.

p=gnext (fd); char *fd; int p;

gnext returns a pointer to the next byte position within the file
where the key is found. It returns -1 when it runs out of
places.

gclose (fd); char *fd;
gclose closes the files.

Thus a typical loop to find all references to cat in a file named dog
(and on which imake dog has previously been run) is:

int p;

char *gf;

gf = gopen("dog");
for (p=gseek("cat", gf); p>=0; p=gnext(gf))

gclose(gf);

As another example of timings, the full American Academic
Encyclopedia is 54 Mbytes long; making a set of indexes that use
4.7 Mbytes, or 8% more storage, results in the following search
costs:

GRAB - Inverted Indexes with Low Storage Overhead

209

No. CPU time (on an 8650)

Word Hits Grab Egrep Grep Fgrep
gwerty 0 5.8 131.9
quarto 3 9.8 127.5 224.1 281.2

Unfortunately, although the ration of real time to CPU time
(lightly loaded system) for egrep is about 2:1, the ratio for grab is
about 6:1, so that the response time advantage for grab is only a
factor of 4 or 5 instead of 15. Just finding out the line where the
word appears isn’t that useful; you’d really like to know the title
of the encyclopedia article. Using the grab library routines, a 76
line C program sufficed to look backwards for the article name,
and it finds the article reference plus the contents of the line in a
similar 1.1 minutes of CPU time. That may not be real-time
response, but it is a lot better than grep, and the output is more
useful.

2. Introduction and Discussion

We have a number of large text files in which we would like to
look up words quickly. These include the Brown corpus of
English (7.8 Mbytes), the World Almanac (10.6 Mbytes) the Ameri-
can Academic Encyclopedia (56 Mbytes), the LATA Switching Sys-
tem Generic Requirements (4.7 Mbytes), and two collegiate-level
dictionaries (15.6 Mbytes for the Webster’s 7th New Collegiate and
6.5 Mbytes for the Oxford Advanced Learner’s Dictionary).

The traditional UNIX solution is to use grep. The UNIX reli-
gion teaches that grep is all you need for a DBMS, except for really
large files where you might need egrep. However, “large” in that
sense does not include the files above. Even on a DEC 8600, for
example, to egrep through the Brown corpus on an idle machine
takes 32 seconds. Thus it is desirable to have some kind of index.
This is not exactly new, and various packages have been written
in the past (including by the author) to make and maintain such
inverted indexes [Lesk 1977].

The usual inverted index, however, roughly doubles the
storage space required. The Weinberger B-tree package, [Wein-
berger 1981] for example, is easily adapted to store a word index

210 Michael Lesk

to large texts, but the overhead of the tree is roughly equal to the
size of the text file originally being stored. Since most UNIX sys-
tems are always running out of disk space, it is desirable to avoid
such high space overheads. The uses of bit vectors for such pur-
poses has been studied before, although usually with the aim of
imitating edge-notched cards for modern hardware. A good study
of a comparable system to this one is given by Choueka [Choueka
et al. 1986].

Thus we come to grab. It combines low storage overhead
(<10%), fast response time (a square root function, able to search
a 36 Mbyte file in less than 1 second), and simple code.

Some basic facts about grab:

1. It requires preprocessing to make an index; thus it is best on
relatively static files, and is not appropriate for files which
are changing frequently.

2. It only looks up words. It does not do substring searches.
(Since some suffixing is done, grab is on occasion better
suited than grep).

3. It uses very little additional storage; about 5% of the file size
suffices for an index to a 1 Mbyte file.

4. Response time is quite fast. Usually grab searches less than
10% of the text and it can do that in a few tenths of a
second on megabyte-size files.

3. How It Works

What grab tries is to do a grep through part of a file. Thus it
trades time for space savings. The index file stores a bit vector
indicating in which blocks in the file the words appear; thus, only
those blocks need be searched to answer a query. The remainder
of this section is very detailed bit-level description, and may not
be of interest to readers only interested in using the program.

The details of imake, the procedure which produces the index
file, are as follows:

1. Isolate each word in the initial file. Convert upper case
letters to lower case.

GRAB ~ Inverted Indexes with Low Storage Overhead 211

2. Determine if this is one of the 287 most frequent words in
English. If so, ignore it (below it is explained that should
one request a search for such a word, grab just invokes
egrep).

3. Remove the suffixes -s, -es, -ed, -ing, and -ly. If appropriate,
a final -e is restored or a doubled final consonant made sin-
gle.

4. Compute a hash code for the word, typically in the range 0-
1009.

5. Compute the current block number. Typically the blocks
are 1024 bytes long; they should not be made much smaller
if efficiency is to be preserved.

6. Sort the resulting list, to make a list of block numbers in
which each hash code can be found. Represent this list as a
bit vector, with one bit per block. If the bit is 1, the hash
code is found in the corresponding block.

7. Since the resulting bit vectors are sparse (see next section
for why), compress them using a 10-bit to 4-bit fixed voca-
bulary code table. The compression is optimized for sparse
vectors: it uses the 16 possible code words to represent the
cases of (a) all bits in the original 10 zero; (b) one bit on, all
others zero (10 cases); (¢) however many bits are on, they
are in half of the 10-bit string (4 cases); (d) some other com-
bination of 1-bits, represented as all bits on. Note that
when the vector is not sparse, the mistakes are fail-safe; grab
may have to search too much of the file, but it will not mis-
takenly skip a block.

8. Store the resulting compressed vectors.

It should now be clear how the search is going to work. The
steps involved in grab itself are:

1. Take the search word, convert to lower case, and see if it is
a common word. If it is a common word that was not
indexed, invoke egrep to do the search.

2. Suffix the word, compute the hash code, and find the
appropriate bit vector.

212 Michael Lesk

3. Decompress the vector coding and find the blocks that con-
tain the right hash code (and therefore may possibly contain
the word sought).

4. Fetch each such block, and scan through it for the word
actually wanted, checking the upper/lower case distinctions
(if the -y option was not given).

5. When a match is found, print the containing line.

Note that the results of searching with grab are not the same
as searching with grep. Grab looks for whole words; thus it will
not find words that are substrings of longer words, the way grep
will. On the other hand, it will find suffixed versions of the words,
even if slightly changed (groping from grope). Also, the behavior
of grab under certain exceptional circumstances (enormously long
lines) may not be the same as that of grep.

4. Performance Estimates

The following section contains estimates of performance and can
be ignored by ordinary users. It is an explanation of how fast it
ought to run. Grab is designed to process English files; hence, all
the estimates for performance are based on English. They will not
be enormously different for programming languages, but may be
quite inappropriate for tables of numbers or other kinds of data.

There are three main variables in this section: N, the number
of bytes in the original file; H, the number of distinct hash slots;
and B, the size of a block in bytes. N is not under our control, but
H and B are parameters the program can choose.

The average English word (including one space) is about 6
bytes long in running text. Thus, the number of words in N bytes
is N/6. However, many of these words are on the common word
list; so the number of surviving words to hash is about N/10. For
those wanting justification for back-of-the-envelope calculations,
here are actual numbers for several text files:

GRAB - Inverted Indexes with Low Storage Overhead 213

Text N No. words No. non-common

A Study in Scarlet 268,000 51,000 27,000
Pride and Prejudice 687,000 124,000 51,000
Moby Dick 1,242,000 218,000 103,000

How should B and H be chosen? Well, B, the block size, should
be chosen to be large enough that the overhead in reading blocks
is low. Here is a table of the time, in microseconds per byte,
required to read from a file using various block sizes:

CPU time vs. block size
Block size 11/780 11/785 Pyramid

16384 1.5 1.3 1.2
8192 L5 1.3 1.4
4096 1.5 1.3 1.3
2048 2.0 1.5 1.6
1024 2.4 2.1 2.1

512 3.8 2.8 3.1
256 6.5 4.8 4.9
128 12.0 9.6 9.7

64 21.8 16.9 17.2

32 43.2 32.3 32.8

Clearly, B should be at least 1024, which is the default. Making B
too large is no good either, because it increases the amount of file
to be scanned after the hash table has identified a block.

As for H, it has to be large enough to give reasonable disper-
sion of the words over hash codes; after all, the increase in search
speed comes from the need to examine only 1/H of the stored
items. Making it too large, however, creates a risk that the hash
table will be so sparse that space is being wasted. For files of the
sizes intended for grab, there are likely to be a minimum of
several thousand different words; but not more than several tens
of thousands. A value of H in the range of 1,000 to 10,000 is likely
to be effective.

Then how big is the index file? The number of blocks in the
file is N/B, and for each block H hash code bits must be remem-
bered; but these have been through a 10-bit to 4-bit compression,
so the size of the index in bytes is Hx N/20B. A simple strategy is
to take H about the same as B. It can not be exactly the same,

214 Michael Lesk

since B should be a power of two (to match system block sizes)
while H should be prime (to simplify dispersion in hashing). But
for B of 1024 choosing H of 1009 makes sense. If H is about the
same size as B, the index file can be expected to be about 5% of
the original file.

And how long will it take to search? It takes some time to
fiddle around with the index file, but the major contribution to
search time is looking through part of the main file for the actual
words. How much has to be looked through? There are N/10
words, of which 1/H are likely to have the right hash codes; for
each of these, however, we have to look through a whole block of
B bytes. Thus the number of bytes to examine is B+ N/I0H.
Again, if B = H, the expected amount of searching is N/10. So,
compared to grep, for a 5% space penalty we get a 90% speedup,
on average.

Is the choice of B = H sensible as the files get larger? Not
really. As the search time increases, we are likely to care more
about it, and to be more willing to give up a little more space to
get faster searching. Shrinking B, although in theory increasing
search speed by decreasing the number of blocks to look at, costs
too much in system overhead (see the table above). It makes
more sense to increase H. A reasonable choice is to take H
roughly equal to the square root of N. This gives H = 1,000 for
N = 1 Mbyte, a reasonable choice (and also a reasonable
minimum H). For larger files, taking H as the square root of N
and B as 1024 gives space costs of N°/20,000 with search times of
100« N3 (in terms of the number of bytes to be examined).

Remember that making H too big is not efficient either, since
the hash table will waste space if it is not reasonably full. Here is
an indication of the number of distinct words in some texts. To
use all the spots in the hash table the number of distinct words
should be at least double the size of the table.

Text Size (bytes) No. words No. roots
Pride and Prejudice 687,000 7,144 4,601
Tristram Shandy 1,236,000 16,348 11,740

The second column gives the number of distinct words before
eliminating common words and removing suffixes; the last column

GRAB - Inverted Indexes with Low Storage Overhead 215

gives the number of words after those operations (the number
which will actually be presented to the hashing function).

The reader may also wonder why the code compression chosen
was 10 bits into 4. Why not some other values? The reason for a
target size of 4 bits is for convenience in manipulating 8-bit bytes,
of course. But why 10 bits to start with? Clearly, the longer the
input data segment to be coded, the greater the compression; but
also, the greater the probability that you will have to search a
whole block because two bits were on instead of 1 bit. Here is a
table showing this tradeoff. The first column is the length of the
bit string used for input to the compression algorithm. The
second column is the resulting size of the final index file (this is
merely the first column divided by 9). The third column is the
total number of bits signalled as ‘on’ in a typical file (it is thus
related to the fraction of the file you might have to search, except
that the program does somewhat better because it does not waste
the unused code bits in the code words, using them to represent
some of the possible 2-bit combinations). The last column is the
fraction of code words that represent the ““all bits on”
configuration because more than one bit was on. The actual data
are from a 1.2 Mbyte file, the text of Tristram Shandy.

Length Size F-s

8 0.50 0.145
9 0.44 0.156
10 0.40 0.168
11 0.36 0.180
12 0.33 0.192
13 0.31 0.204
14 0.29 0.214

From this table it appears that the tradeoff curve is smooth, and
therefore there is no best value; it depends on the importance
given to space vs. time. The 10-bit input string seemed like a
good compromise, and 10 is a nice round number. The actual
compression vector used allocates the possible 16 codewords to
the bit patterns in the list below (with . representing any bit),
using the more restrictive patterns in preference to the ones lower
down:

216 Michael Lesk

o 0 o o 0o O O 0 0 O
0 0 0 0 O O O 0 0 1
0O 0 o 0 0 O O O 1 O
o 0 0 0 0 0 O 1 0 O
6 o o 0 o0 o0 1 O 0 O
0 0 0o o0 o 1 O O O O
0 0 6 0o 1 O O 0 0 O
0o 0 0o 1 O O O O 0 O
0o 0 1 0 O O O O0 0 O
601 0 0 0O O O O O O
1 o 0 0 0 O O O O O
. 0 0 0 0 O
0 0 0 0 O
0 0 0O 0 0

5. Performance Data

In contrast to the estimates, here are some numbers showing
actual performance on a CCI Power-6 machine. The tests were
run on 5.6 Mbytes of data (the First Folio text of Shakespeare,
stored as two files). In the next table, the average time required to
search for words is shown as a function of hash table size.

Hash Space CPU time for word frequency...
size cost Not found Few Some Many Total

503 25% 9.42 7.23 7.78 11.98 890 7.65 5.52 21.97 80.45
1009 5.0% 1.88 0.82 1.57 5.68 4.83 1.20 1.57 10.55 28.10
2003 9.8% 6.29 0.42 2.15 0.20 3.52 0.99 0.81 10.02 24.40
3001 14.7% 0.90 0.49 0.24 0.20 3.49 0.99 0.81 15.21 22.33
4001 19.6% 0.86 5.75 0.18 0.29 5.29 0.99 0.84 10.01 24.21
5003 24.5% 0.80 0.35 0.17 0.18 3.60 1.17 0.93 10.37 17.57
6007 29.5% 0.74 0.46 0.18 0.18 3.28 0.93 0.78 9.87 16.42
7001 34.4% 0.76 0.49 0.17 0.18 3.49 0.98 0.77 9.95 16.79

The words not found are railway, airplane, steamship, spaceship,
and shuttle; the next three columns represent searches for cat (5
occurrences), dagger (16 occurrences) and sword (144 occurrences).
Note from this table that

GRAB - Inverted Indexes with Low Storage Overhead 217

1. The times required to search for words are quite variable.
Because of the hash table effects, a search for a not found
word can take quite different amounts of time and it is not
possible to say which words will be fast and which slow; it
varies for different hash numbers.

2. Having many hits greatly slows the program. The efficiency
advantages are greatest when looking for something that’s
not there.

3. Overall, for these files of several megabytes there is little
advantage to hash tables more than 3000 or so slots long.

Another interesting question is whether it is important to have
prime values as the size of the hash table. Here are some paired
comparisons: in general prime numbers are better, but the
difference is not always large and there is considerable variability
from word to word.

Hash Prime? CPU time for word frequency
size Not found Few Some Many Total

501 No 1394 897 6.93 7.69 10.04 2.38 11.76 15.36 77.07
503 Yes 9.42 7.23 7.78 11.98 890 7.65 5.52 21.97 80.45

1001 No 3.24 234 6.02 9.49 391 1.88 3.44 10.57 40.89
1024 No 5.73 13.35 18.32 19.00 15.03 22.20 13.55 15.32 122.50
1009 Yes 1.88 0.82 1.57 568 483 120 1.57 10.55 28.10

2001 No 1.41 047 0.18 0.24 3.37 0.88 229 9.62 18.46
2048 No 587 6.22 1.73 428 8.72 9.00 4.63 10.23 50.68
2003 Yes 6.29 042 2.15 020 352 0.99 0.8 10.02 24.40
2011 Yes 643 034 120 0.16 345 0.89 077 9.81 23.05

4096 No 083 265 070 392 7.72 1.78 2.18 10.20 29.98
4001 Yes 0.86 575 0.18 0.29 529 099 0.84 10.01 2421

5001 No 0.79 1.82 0.85 3.09 326 0.88 0.92 971 21.32
5003 Yes 0.80 0.35 0.17 0.18 3.60 1.17 0.93 10.37 17.57

6001 No 0.75 0.49 3.27 0.20 3.29 098 0.83 9.87 19.68
6007 Yes 0.74 046 0.18 0.18 328 093 078 9.87 1642

Opening files is expensive if they are short, but not too bad when
they are megabytes. In all the data above, the Shakespeare text
was stored as two files; in the following table this is compared
with one 5.6 Mbyte file.

218 Michael Lesk

Hash No. CPU time for word frequency...
size Files Not found Few Some Many Total

1001 2 3.24 234 6.02 9.49 3.91 1.88 3.44 10.57 40.89
1001 1 3.35 2.08 6.10 9.75 3.55 1.90 3.82 10.72 41.27

2001 2 1.41 047 0.18 0.24 337 0.88 2.29 9.62 18.46
2001 1 1.15 0.47 0.20 0.18 2.98 1.00 2.03 995 17.96
3001 2 0.90 0.49 0.24 0.20 3.49 0.99 0.81 15.21 22.33
3001 1 0.67 0.48 0.10 0.17 2.92 0.82 0.87 15.50 21.53
4001 2 0.86 5.75 0.18 0.29 529 099 0.84 10.01 24.21
4001 1 0.73 5.63 0.12 0.23 5.00 1.08 0.83 10.25 23.87
5001 2 0.79 1.82 0.85 3.09 3.26 0.88 0.92 9.71 21.32
5001 1 0.45 1.78 0.83 2.95 280 0.83 0.80 9.85 20.29
6001 2 0.75 0.49 3.27 0.20 329 098 0.83 9.87 19.68
6001 1 0.60 038 2.75 0.18 3.17 0.98 0.73 9.90 18.69
7001 2 0.76 0.49 0.17 0.18 3.49 0.98 0.77 995 16.79
7001 1 0.58 0.35 0.12 0.22 2,90 0.97 1.00 9.88 16.02

And, of course, this is all still faster than egrep:

Program CPU times
Test No hits Few Some More
grab -h3001 09 0.5 02 02 35 1.0 0.8 15.2
egrep 38.4 39.9 41.4 40.8 40.9 39.2 38.7 39.3

6. Miscellaneous Comments

This program is not a panacea. If you need a DBMS, get a DBMS.
If you need to find “lexicographically closest” items instead of
exact matches, get B-trees. If your files are not at least several
hundred Kbytes, you might as well use grep.

Because this program is intended for use with big files, some
warnings about imake and what it requires. The final output files
are only about 5% of the input, so there is probably enough space
for that. But the program makes and sorts a temporary file about
50% of the size of each input file. Thus, there must be enough
space on /tmp to hold the biggest input file; and there must be
enough space on /usr/tmp to hold just about the size of the biggest

GRAB - Inverted Indexes with Low Storage Overhead 219

input file. If you need these directories moved, you can
recompile.

Grab is written in C and contains about 600 lines of source
code. The imake routines are about the same size (and have a 200
line suffixing program in common).

As a side effect of this project, the programs bmake and bgrab
were written. They look like the grab the newer routines, but use
B-trees. If the additional secondary storage is of no concern, they
are faster and simpler. The bmake program requires enough space
on /tmp to hold about the same size file as the largest file you are
indexing; and it requires twice as much space on /usr/tmp. These
routines require Weinberger’s B-tree package.

References
M. E. Lesk, Inverted Indexes on UNIX, UNIX manuals, Version 7 and
4.2BSD, part 2 (Supplementary Documents), 1977.
P. J. Weinberger, UNIX B-Trees, 1981.

Y. Choueka, A. S. Fraenkel, S. T. Klein, and E. Segal, Improved
hierarchical bit-vector compression in document retrieval systems,
Proc. 9th ACM SIGIR conf. (1986).

[submitted Jan. 14, 1988; revised June 7, 1988; accepted Sept. 23, 1988]

220 Michael Lesk

