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ABSTRACT: We present techniques for analyzing
the effect of "copy-on-write" page management stra-
tegies on the performance of UNIX fork) opera-
tions. The analysis techniques are applied on two
workstations, the AT&T 3B2l3l0 and the Hewlett-
Packard HP9000/350 in order to determine the rela-
tionships between the amount of memory in the
parent's data segment, the fraction of this memory
which is written by the child, and the improvement
in execution time due to "copy-on-write." Since the
implementation of "copy-on-write" is straightfor-
ward with modern MMUs, our results for these
workstations are readily generalized to other
workstations.

The results show that the size of the parent's allo-
cated memory has little direct effect on perfor-
mance, due to the fact that only page table entries
are copied during the fork) operations. The execu-
tion time is most influenced by the amount of
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memory that must be copied, which can be deter-
mined from the product of memory allocated and
the fraction of memory written. Thus, the worst
case occurs when large address space programs
update much of their memory.

In order to observe what occurs in practice, we
measured two programs that have what are
currently considered large address spaces. These
programs, which we believe to be representative of
the sorts of programs which use large amounts of
system resources, updated less than half of the
memory in their data segments.

1. Introduction

"... the sole test of the validity of any idea is experiment."
[Feynman et al. 1963]

The UNIX fork) operation creates a copy of the calling process

which is differentiated from its creator by the return value of
fork). The two processes have separate address spaces. Tradi-
tionally, UNIX systems actually copied the contents of the caller's
address space to create the new process. Since the portion ofthe
address space containing executable code was read-only, copying
was not needed and an incremented reference count and text table
entry sufficed [Ritchie & Thompson 1978]. Clearþ, the fork)
operation can be expensive in system resources. Thus, some
attempts were made to take advantage of special cases. An exam-
ple is the 4.2BSD Uqy 19821 vforkA ca[, which does not make a
copy of the address space for the new process but instead allows it
to share the address space with its creator. The creator is not
runnable until the new process has replaced its image via an exec)
operation. The exec) operation replaces the caller's image with
an image derived from the contents of the named executable file.
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It is common for the operation which immediately follows afork)
operation (after some descriptor manipulation) to be an exec)
operation. In particular, this happens very frequently in the shell
[Bourne 1978], which is the main user interface to UNIX. Thus,
vfork), in not copying, avoids unneeded work. However, the
shared, rather than copied, address spaces force the programmer
to be very aware of the differences between fork) and ufork).

LI Copy-on-write

Another approach is to transparently alter the implementation of
forkQ to take advantage of favorable circumstances such as the
shell's usage. This is done with a so-called "copy-on-write" fork),
where portions of addressable memory are shared until such time
as they are changed. Similar memory management is done in
TENEX [Bobrow et aI. 19721and more recently, Mach
[Young et al. 1987]. Each process has a page table which maps its
virtual addresses to physical addresses; when the fork) operation
is performed, the new process has a new page table created in
which each entry is marked with a "copy-on-write" flag; this is
also done for the caller's address space. When the contents of
memory are to be updated, the flag is checked. If it is set, a new
page is allocated, the data from the old page copied, the update is
made on the new page, and the "copy-on-write" flag is cleared for
the new page. Thus, unexpected changes to shared state do not
occur, as independent copies are created'oon demand." This is
very effective in the special case of the shell, where almost no
copying has to be done before an exec) replaces the address space.
A thorough description of the mechanism as implemented in
UNIX is given by Bach [Bach 1986].

1.2 Motivation

In another paper [Smith & Ioannidis lgSS] we discuss an imple-
mentation of a mechanism to forkQ a process on a remote work-
station; the major cost in execution time is incurred by data copy-
ing. Thus, we were interested in reducing the amount of copying,
especially that which takes place over a communications channel.
One strategy which we devised (assuming either homogeneous
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software configurations on the workstations or NFS-available

[Sandberg et al. 1985] binaries) was to have program images avail-
able on the remote system and send only the changes [Maguire
1988] which have been made to the address space, i.e., those
which would be copied by a "copy-on-write" scheme. In order to
understand the engineering tradeoffs, we examined the local case

in some detail.
The arguments presented for "copy-on-write" have so far been

qualitative; we felt that detailed quantitative data were necessary.

The methodology and process of gathering these data are dis-
cussed in Section 2. Section 3 provides an analysis of the data.
Section 4 examines the memory-update characteristics of some
programs having desirable properties as described in Section 3,

and Section 5 concludes with a discussion of our results.

2. Data Acquisition

There are two parameters of interest, i.e., the size of the storage to
be "copied" in the new process and the fraction (between 0.0 and
1.0) of memory references which are writes. The number of times
each parameter was exercised was also made variable, in order to
remove various small-sample artifacts that can occur. Such

artifacts are illustrated by the plots in Figures 4 and 5. The
desired data were gathered with the C program presented as an
Appendix, doJork.c. A script was written in order to drive the
doJork) program with various values; the values used for the
measurements described in this report were gathered with this
shell script:

if t ! -f do-fork l
then

echo I'Mak i ng do-f ork. "
make do-fork

fi
if t ! -f do-fork l
then

echo rrNo do-fork. Exiting."
exit 1

fi
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echo Its i ze do-f ork:It
size do-fork
for forks in 0 1 3 10 32 100 31ó 1000
do

for heap-size in \
0 1000 31ó2 10000 31622 100000 316228

do
for write-frac in 0.0 0.1 0.3 0.5 0.7 0.9 1.0
do

echo 'ttime do-fork $forks $heap-size \
$wr i te-f racrl

time do-fork $forks $heap-size $write-frac
done

done
done

The script first ensures that an executable doJork binary is avail-
able, attempting to make one if not. Once doJork is available, it
is invoked in the innermost of three nested loops, which vary its
parameters controlling the number of þrk) operations to be exe-

cuted, the size of the heap to allocate, and the fraction of the allo-
cated heap which is to be written to. Prior to each invocation, a

message is written with echo, stating what the invocation parame-

ters of do;þrk are.
Data sets for analysis by S [Becker & Chambers 1984] are then

created using the shell script, by, e.g. for the 382,

script 2)&1 | \
grep rr^rea Irr | \
cut -f2 | \
awk'1 i=index($0,m); m=substr($0,1,i-1); \
s=substr($0, i+1, tength($0)-i-1 ); s=ó0*m+s; \
print s)' ) reat.3B2

and reading the list of numbers into an S vector. The following
data sets were extracted from the script output:

number The number of times an invocation of doJork was to
create a child process. The values 0, 1, 3, 10,32, 100, 316

and 1000 (0 plus powers of sqrt(l2) were selected in order to
make both order of magnitude induced effects (as we are

changing by orders of magnitude) and implementation
artifacts (because we start at small values, e.9., 0 and l)
visible.
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mem The number of bytes allocated to the process's heap, via
malloc). The values 0, 1,000, 3,162, 10,000, 31,622, 100,000
and 316,228 were chosen for both arfifaú and order of mag-
nitude visibility, as discussed previously; the extra factor of
1000 (over the values of number) is to compensate for the
page size, since otherwise it would require (for a Zt< pager) 8
values before we accessed a page other than the frrst one.
Clearly, there is no practical difference between 316,228 and
310K; it is merely aesthetically appealing to use the correct
digits.

frac The fraction of memory which is to be written (actually, we
write one byte per page in order that the memory access
loop not contribute to the response time beyond causing
faults). The interesting boundary values of 0.0 and 1.0 were
chosen, as well as the values 0.1, 0.3, 0.5,0.7, and 0.9, which
were chosen for their coverage of the input domain.

real The real time, in seconds, printed by an invocation of
time do-fort with the parameters as set in the other vec-
tors.

Ltser Likewise for user time.

s/s Likewise for system time.

3. Data Analysis

Given the data discussed in the previous section, we wish to
analyze the data in order that we can qualitatively discuss the
effects of "copy-on-write" page management on response time.
One of the difficulties is that by our experimental design, the
measured response time is a function of not one, but three quanti-
ties, number, mem, and frac. There are two obvious hypotheses
which we can use our analysis to refute or verify. First, that the
response time increases as the size of the data segment increases,
for a fixed fraction of write references. Second, that the response

1. HP-UX on our HP9000/350s uses a 4K pagesize, but given the instrumentation (e.g.,
doJork.c) the difference is rarely relevant; in fact, only when the offset ofa particu-
lar byte in the last page accessed causes an extra 2K b¡es of memory to be paged in.
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time increases as the fraction of write references increases, for a
fixed data segment size.

600
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Figure l: Effect of fraction of memory written

Figure 1 shows mem plolted on the x axis against real on the y
axis for an AT&T 3B.2/310 with 2 megabytes of memory (of which
1.2 megabytes are available to user processes), a 30 megabyte hard
disk, and running UNIX System V, Release 3.0, Version 2. All
times are given in units of seconds. We have flxed the value of
number to be 1000 to remove artifacts. The dependent variable,
plotted vertically, is the real time, in seconds. The independent
variable, the size of the data memory in bytes, is on the horizontal
axis. Regression lines are drawn through the plotted points
corresponding to frac values of 0.1,0.5, and 0.9. These regression
lines have equations

y:1.709e-4xx+31.4
y :7 .670e-4*x+ 30.5
y = L349e-3*x+30.7

for the respective frac vahæs. Thus, with these equations, we
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could estimate that a process with a I megabyte data segment
which writes into half of that segment would take about 800

(797.5 : 7.67e-4*1.0e6+30.5) seconds of real time to perform 1000

forkQ operations. It is obvious that the lines fit the plotted points
quite well, indicating that the relationship is quite close to linear.

The same data are plotted for a Hewlett-Packard HP9000/350

with 8 megabytes of main memory and a 70 megabyte hard disk,
running HP-UX 6.0 (same units, restrictions, and axis markings) in
Figure 2.
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time
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Figure 2: Effect of write fraction (HP-UX)

The equations for the lines withfrac set to 0.1,0.5, and 0.9 are

y:2.952e-5*x+ 12.7
y = 1.264e-4*x+12.4
y =2.124e-4*x+12.2

respectively. The effect of the faster processor in the HP9000/350
is clear from the extent of the y axis in this frgure versus that of
the previous one. In fact, the important parameter in comparing
processor speeds under this workload is memory-copying speed.
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In order to measure this, we wrote a short C program which took
the number of bytes to copy as an argument, the relevant frag-

ment of which is:

p = mattoc( size )i
pre-page( p );
clock = times( &tb1 );
memcpy( p, p, size );
clock = times( &tbz ) - clock;

For size set to 316,228 and a page size of 2K bytes (4K on the
HP9000) we measured 0.40 seconds of real time, 0.39 seconds of
user time, and 0.00 seconds of system time on fhe 3821310. The
values were 0.06 seconds of real time, 0.06 seconds of user time,
and 0.00 seconds of system time on the HP9000/350. These values

held true through several trials, and show that for memory-
copying the HP is about (to the limited accuracy of the measure-

ments) 6.7 times faster than the 3B2. They also provide an upper
bound on the memory copy rate which can be used to evaluate

overhead incurred by page management operations. For the HP,

we get 5M (5,270,467 -- 316,22310.06) bytes per second, or about
1,300 (1,286 : 5,270,467/4,096) 4K2 pages per second. For the 382,

we get 0.8M (810,841 -- 316,22310.39) bytes per second or about 400

(396 : 810,841/2,048) 2K pages per second.

We can use the regression lines we have presented for further
analysis. The y-intercept (about 31 seconds for the 3B2l3l0 and 12

seconds for the HP9000/350) should represent the time required
for 1000 forks which allocate 0 bytes of memory; examination of
the script output confirms that this figure is accurate. Since

doJork is written to be compact (no standard I/O, etc.) this should
in fact accurately indicate the cost of performing a fork when

divided by the number of operations performed. Thus, using the

computed intercepts we have given for number set to 1000, the

average 3B2l3l0 forkreqtires about 3l milliseconds of real time
(:(31.a+30.5+30.7)/(3*1000)). For a fixed numbet of fork) opera-

tions the y-intercept is not nearly as interesting as the slope of the

line. We should note that in reality, the function is not a line, as

the quantization of bytes into page size quantities forces a

2. For comparison purposes, this would be about 2,600 (2,573 = 5,270,467/2,048) 2K pages
per second.
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staircase function. However, for purposes of analysis we can
assume that a linear function exists. The slope of the line for
some known value of frac gives the relationship between changes
ín real caused by changes in mem. Hence, \rye can use the slope of
the regression line to estimate the rate at which page faults are
serviced. Mem . frac gives a fixed amount of memory, with which
we use the equation of the regression line to compute a real time
estimate. Then, the observed page fault service rate can be com-

puted with the simple formula ffi#. In fact, the slope of
the line can be used to compute the service rate directly, for a
known value oî frac and number; this rate is given by
number . fracf rg, which calculates a value in units of bytes per

slope
second. For the 3B2, these values are 585,13g, 651,g90, and 667,161
(286,319, and 326 2K pages per second, respectively) for the three
values of frac plotted. The corresponding values for the Hp9000
are 3,387,534, 3,955,696, and 4,237,288 bytes per second (927, 965,
and 1,034 4K3 pages per second, respectively). Using the best
observed page fault service rates for each processor, we calculate
the ratio of the page fault service rate and the time for memory-
copying, which is 0.823 (=667,161/810,841) for the 382, and 0.804
(=4,237,288/5,270,466) for the Hp. Values for the ratio can range
between 0 and 1;the best case is a value near 1, as this indicates
that the virtual memory management incurs very little overhead.
We can in fact estimate this overhead using the information we
have. Using r0 to measure time, we know that

r(fork) : r(copy one page). frac . # pages +

r(overheadfor page table entry).# pages +

r(overhead to create new process)

Now, r(copy one page) is really a function of the hardware com-
ponents (e.g., bus, processor, memory) comprising a system, and
we've shown how it can be gathered with a small auxiliary pro-
gram. But from our numbers and analysis we can get r(overhead
for page table entry) and r(overhead to create new process). Thus, for

3. For comparison, 1,655, 1,932, and 2,069 2K pages per second.
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any given fork operation, the time required is completely
parameterizedby r(copy one page), r(overheadfor page table entry),

r(overhead to create new process), frac, and mem (# pages). The key
is that the first three are determined by the system characteristics,
and they can thus be precomputed; the application-dependent
influences are completely encapsulated in the latter two parame-

ters. Thus, an application can be characterized on a given system

by its size in pages and the fraction of those pages which are writ-
ten to.

3.1 Relationships

The shapes of the plots we generated are quite similar for both
processors, with the HP9000 plots time values scaled because it's
signifrcantly faster than the 382. V/e'll use the 3B.2 to illustrate the
analysis in the remaining figures.

One of the failings of the x-y plots is that there are two
independent variables. The perspective plot shows that the real

Figure 3: Perspective plot, mem veÍsrus frac vetsas real
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time increases as a product of mem andfrac; the maximum value
is 505.82 seconds, for number at 1,000, mem at 316,228, and frac at
1.0. Figure 3 shows a 3-D perspective plot of real (z-axis), mem
(x-axis), and frac (y-axis). The point (316,228, 1.0, 505.82) is the
furthest, highest point on the graph. Thus mem is increasing from
our left to our right (it's exponential as the data values are chosen
to increase exponentially), andfrac is increasing from our right to
our left, moving away from us. Figure I would be then be over-
laid cross-sections taken from the perspective plot by intersecting
a series of y-planes with it. Of course, not all the data of Figure I
are available due to hidden line elimination. We've limited the
data shown in Figure 3 to that gathered with number set to 1000.

This was done after analysis of the raw data showed two things
which limited the value of the data gathered for a small number of
þrk opentions. First, there was very little opportunity for the
data to become evident against the overhead of executing the
parent program. This could, of course, have been removed by cal-
líng times) from inside do--þrk, but given our strong preference

Figure 4: Perspective plot, mem yeÍsus frac versus real
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for the shell as a measurement apparatus, this was not done.

Second, the timing data were apparently overwhelmed by other

sampling noise, such as that caused by various background
processes and network daemons (although the processors were oth-

erwise idle). These were not shut down due to the deleterious

effect on our working environment.
If we plot a 3-D perspective plot with parameters as before,

except that number is l, we get Figure 4, which demonstrates what

sort of artifacts, or "noise" can arise due to inadequate sample

size. In fact, the question might be raised as to why real time ís

used, rather than sys. Philosophically, the real time is what is

most relevant to an observer. Scientifrcally, analysis shows that
for number large, real is less than 20 percent greater than sys, and

that they are closely correlated. This is illustrated in Figure 5,

where the x axis has values of number, and the y axis is the value

real-sys . The plot shows that the relationship between real and
s/s

l0
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20
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0
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sys is not very good for small values of number; they differ by
almost a factor of 20. However, things improve as number gets
larger; a detailed graph is provided in Figure 6 by restricting
number to values of 100 or more. It's clear from this illustration
that for number at 1000, sys and real are reasonably good approxi-
mations of each other. Incidentally, we should note that for small
values of number (e.g., l), sys is subject to the same noise problem
that real suffers from; this is easily observed with a perspective
plot, which we will not present for space considerations.

*.

,ß

t
*

0 200 400 600 800 1000

number

Figure 6: Relation between real and sys

4. Write Fraction for Real Programs

In the last section, we saw that the factors mem and. frac
influenced the real time The biggest savings for the ..copy-on-

write" scheme would come from programs with large address
spaces which updated a small fraction of their data before exiting
or exec)ing a new binary. As discussed before, this works well for
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the shell, but the shell typically uses very little of its data segment.
While it may expand the address space as necessary to store new
variables or metacharacter expansions, this does not account for
many pages. V/e thus sought programs with large address spaces,

in order to see what effect the "copy-on-write" scheme would
have.

As they had the largest address spaces (of programs in com-
mon use in our department), we set out to take some measure-
ments of the memory utilization of two symbolic interpreters. We
chose 4.2BSD's IBSD 1982] Franz Lisp (Opus 38.92), as it is widely
available. Another less detailed set of measurements was taken
using the GNU Emacs [Stallman 1986] LISP interpreter, which is
also widely available. These measurements were taken on a DEC
VAX-111750, because both pieces of software were available there
(Franz Lisp is not available on our HPs and 382s, although GNU
Emacs is). Since we are measuring data segment utilization, and
the machines discussed in this paper all have 32 bit architectures,
the measurement results should be portable. This is particularly
true because we use relative measures, such as the fraction of the
data segment which has changed. While a particular architecture
may have a less efficient representation of the data, this should
not change the fraction ofthe data altered by the program
significantly.

4.1 Franz Lisp

Our frrst exercise was choosing a computationally intensive pro-
cess so that we could gather some statistics on the sort of
processes which one would want to improve the performance of
[Leland & Ott 1986]; that is, those that consume a lot of
resources. Experience with an ABSTRIPS [Sacerdoti 1974] imple-
mentation led us to use this system to gather statistics. ABSTRIPS
is a "planning" system which works by constructing increasingly
detailed series of actions at decreasing levels ("criticality levels")
of abstraction. There are primitives defrned (in predicate logic)
for each level of abstraction; as the levels are traversed, we gradu-
ally "flesh out" the details of a plan for achieving the goal.
ABSTRIPS relies heavily on the use of a theorem prover; hence, it
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is representative of much current AI computation. An example of
its output is given in Figure 7.

Franz Lisp,0pus 38.92
-) [toad abstrips. Lspl
t
-> critical.ity Level.: 4
skeIeton ptan : ((goal. c))
criticaI ity Ievet: 3
sketeton pIan : ((get-sl. ippers d)
(give-sl. ippers DOG ME) (goal. c))
criticatity Ievet: 2
skeIeton pIan : ((gothrudoor c b DOG)
(gothrudoor b a D0G)
(gothrudoor a d DOG)
(get-sL ippers d)
(gothrudoor d a D0G)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
(give-sl. ippers DOc ME) (goaL c) )
criticaI ity Ieve[: 1

skeIeton ptan : ((gothrudoor c b DOG)
(gothrudoor b a DOG)
(pushopen a d)
(gothrudoor a d DOG)
(get-sl. ippers d)
(gothrudoor d a D0G)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
( g i ve-s L i ppers DOc l4E )
(goaI c))
((gothrudoor c b D0G)
(gothrudoor b a DOG)
(pushopen a d)
(gothrudoor a d DOG)
(get-sL ippers d)
(gothrudoor d a DOG)
(gothrudoor a b DOG)
(gothrudoor b c DOG)
(give-sLippers DOc ME) (goal. c))

Figure 7: ABSTRIPS Output

The problem in our example was to have a dog fetch your
slippers from another room. This problem takes about 15 minutes
to plan on a VAX-lll750; the implementation makes heavy use of
recursion and maintains several large lists.
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The size of the Franz executable (from the UNIX size com-
mand) is 139,264 (text) + 511,488 (data). The data on memory
usage was obtained by using the UNIX system's ability to create a

core dump of a process's address space; since the text segment is

read-only, only the data and stack segments are dumped. Sending

the SIGQUIT signal to a process causes a core dump; this was

done at the following points in the execution of the ABSTRIPS

planner.

1. When the LISP interpreter was started. This gives us a base-

line value, with no program loaded and no code executed.

The core dump occupied 528,384 bytes.

2. Immediately after ABSTRIPS was loaded. This tells us how
much of the address space change is due to storage of the

ABSTRIPS program. The core dump occupied 556,032 bytes;

a bytewise comparison with the previous dump showed that
56,937 bytes had changed.

3. Immediately after ABSTRIPS execution is terminated. This
tells us how much of the address space has changed during
execution. The core dump occupied 613,376 bytes, and

differed from the previous dump at 77,910 bytes. The
difference between this dump and the first dump was a total
of 123,942 bytes changed. No garbage collection was

ánnounced.

An important issue is the locality of reference; our measurement
programs for the "copy-on-write" fork performance showed that
we could write every page by writing one byte on each page. The
byte comparison routine delivers addresses where it found
differences between two frles; the difference in bytes could then be

measured by piping the output to wc - t; if we divide each address

by the pagesize (512 on the VAX) and pass the results to
uniq I wc -[, we can find the number of pages that have changed;

in this case 270 of the 1,198 (=613 ,376/512) pages changed, for a
write fraction of 0.23.
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4.2 GNU Emacs

GNU Emacs provides a facility to dump the currently executing
image into an executable file. When this file is executed, the state
of the Emacs interpreter is restored to the state it had when the
(dump-emacs) was invoked. We took the following measurements
on the VAX/I I-750.4 The size of the GNU Emacs editor \rye meas-
ured was 437,248 (text) + 208,896 (data), determined with size.
We sought an example program which had the sort of behavior
(fairly computation-oriented) that we desired. We based our
desire for computationally-intensive examples on the observation
that as heavy resource users, these programs would demonstrate
the greatest effects from an optimization. GNU Emacs provides a
library of LISP code; one of the routines provides a graphic solu-
tion of the classic "Towers of Hanoi" problem. We ran the GNU
LISP interpreter on the following input:

(dump-emacs Itpre-hanoirr trlusr/[oca[,/emacstt )
(hanoi 10)
(dump-emacs trpost-hanoirr rrlusr/[ocat/emacsil )

(As might be expected, this requires patience at 9600 baud!) The
interpreter emitted several messages to the effect that it was per-
forming garbage collection.

At the completion of the computation, we performed a byte-
wise comparison on the two dump files:

S Ls -1. post-hanoi pre-hanoi
-rwxr-xr-x 1 jms phd 851968 Oct 2T 08:25 post-hanoi
-rwxr-xr-x 1 jms phd 752280 Oct 26 1ó:01 pre-hanoi

which showed that l B3,3l2 bytes had changed, which for the com-
puted data segment size of 414,120 (=851,968-437,248) is slightly
less than thirty-five percent of the dump; that is, almost the same
percentage we had observed with Franz Lisp and ABSTRIPS.
Several times during the computation and in the dump-emacs func-
tion the garbage collector was run. Thus the amount which

4. The results for GNU Emacs were checked on the workstations, and they are fairly
consistent. For the "Towers ofHanoi" problem discussed below, the fraction ofthe
data altered by the program was 0.30 on the 382 and 0.48 on the Hp9000. Much of
the difference is due to what features the runnable Emacs is pre-loaded with; the
vAx executable has large amounts of pre-loaded information, which is read-only.
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appears to have changed may include parts which did not change

but were relocated and thus appear to have changed. It also com-
pacted storage which appeared to be changed (since newly-
allocated storage is considered changed from the previous non-
allocated storage). The important point is that these changes
would be seen by a page-management mechanism in either case.

5. Conclusions

"Copy-on-write" paging strategies for address space inheritance
have been shown to be effective in reducing the real time required
to perform UNIX fork) operations. This qualitative assessment is
based on the quantitative data we gathered and analyzed. For
large processes,'the time required is proportional to the fraction of
write references, so that a child process which updates half (0.5) of
its address space will spend half the time doing copying that a
child process which updates all (1.0) of its address space will. For
a pair of interpreters with large address spaces, we showed that
the portion of the address space changed from process startup
until process termination was small, typically less than 0.5. These

measurements concur with those of Zayas lZayas 1987], who
measured program behavior in an Accent environment, and
confirm the desirable properties observed of a similar scheme for
fast state transfers to remote systems in the V [Theimer et al.
19851 system.

Thus, if these interpreters or programs which behave similarly
were to fork) child processes which executed tasks similar to those

described, a reduction of 50 percent or more of the system time
devoted to copying data might be achieved. This confirms that
the scheme for remote forkQ described in the introduction has

considerable merit.
This reduction in copying also reduces the amount of swap

space required, reduces the amount of time spent swapping,
increases the number of processes which can be run without pag-

ing, and decreases the cost of context switches (where the cost of
paging out the written pages and the paging in of pages which are

only read and have not been modifred is included). Thus the
advantages of the text table are extended to unmodifred pages (or
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viewed another way UNIX gains via "copy-oû-write" the ability to
elìminate the text table and improved/ork/ perlormance). With
respeot to these page management strategies, it should be noted
that the earlier TENEX had these advantages ten years earlier and
needed neither a distiuguished text table qor the confusion of two
varieties offork).

Notes

The paper was improved by thoughtful comments from John
Ioannidis and Nathaniel Polish.
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Appendix A:
doJork.c

#incIude (errno.h)
#inctude (sys/param. h)

#ifndef NBPC

#define PAGE-SIzE 2048
#etse
#define PAGE.SIZE NBPC

#end i f
#ifndef NULL
#define NULL 0
#end i f
main( argc, argv )
int argc;
char *argv[];
{

int count = 0, heap-size = 0, pid, status;
doubIe atof(), write-fraction = 0.0,

write-count = 0.0, write-size = 0.0;
register char *ptr;
char *mail.oc( );
extern int errno;
if(argc>1)
{

count = atoi( argv[1] >,
if(argc>2,
{

heap-size = atoi( argv[2] );
if( ( ptr = maItoc( heap-size ) )

== (char *) NULL )
error('rlnsufficient memory avaitabte. Exiting.\n'r );

if(argc>3)
{

write-fraction = atof( argv[3] >i
if( write-fraction ( 0.0 I I write-fraction > 1.0 )

error( trO.0 (= writes (= 1.0; Exiting,\n" );
write-size = wr ite-fraction * (doubte) heap-size;

)
)

)
¡lhil.e( count > 0 )
{
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sr.ritch( (pid = fork()) )
t
case -1= l* faiLed. If EAGAIN, wait. */

if( errno == EAGAIII )
uait( &status );

break;
case 0: /* chitd. make refs if needed, and exit */

white( write-count ( write-size )
t

rrp¡r = r\0r;
ptr = &ptrIPAGE-SIZEI;
uiite-count += 1¿sr6te) PAGE-SIZE;

)
exit( 0 );

defauI t:
count -= 7î

)
)
exit( 0 );

)
error( string )
chan *stning;
t

¡urite( 2, string, strIen( strins ) );
exit( 1 );

)
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