
Language and
Operating System Features
for Real-time Programming

Marc D. Donner and David H. Jameson
IBM Thomas J. Watson Research Center

ABSTRACT: The adjective reql-tíme when applied
to a computer system means that the system in
question was designed to perform a task that, by its
very nature, has firm deadlines that must be met for
the system to be considered to be performing the
task. Real-time does not mean simply fast oi .urn
very fast.

The design features that make a programming
language or operating system efficienl and efféctive
for information processing are often exactly the
features that make it useless for real-tim. .ystr-
programming. This paper discusses severai of these
design mismatches and offers a language and
operating system designed specifically ior building
real-time systems. This language and operating
system, named ORE, is being designed and conitruc_
ted for the immediate purpose of þrogramming our
frigh-performance juggling robot [Donnerg6];

-
however it is intended to be useful for a broader
range of problems.

33
@ Computing Systems, Vol. I . No. I . Winter lggg

Design Mismatches

When an engineer or programmer designs a system, he has one or
more applications in mind for it as he refines the design from

original rough outline to final complete implementation. At every

step of the process there are decisions that must be made:

selections of algorithms, choices of techniques and data structures,

and definition of features. Good performance for the task at hand

is usually the criterion by which candidates are compared.

Most existing programming languages and operating systems

are designed with information processing tasks in mind. These are

tasks in which there is a flow of information from some input
through some processing out to some outpul. It is rare in this

context to see active feedback, that is to say the output of one

computation directly affects the input to the same computation at

some later time. The primary applications of such information
processing systems are economic in nature: for example, banking

and other business applications where there is a strong emphasis

on guaranteeing the correctness of every calculation so that no

economic resource is wasted. The same force also drives

economically the designers of these systems to try to make the

most efficient use of the computing resource. In recent years' as

the cost of computer time has fallen and as the cost of labor has

risen, the efficient utilization of human resources, both
programmer and user, has shifted the emphasis to modern
programming techniques and user interface design. The next four

sections will describe four design criteria that drive computational

and real-time systems in opposite directions: throughput, privacy,

abstraction, and verification. This paper will seek to show that
the conventional notions of all four of these ideas are inadequate

tools for the guidance of real-time system design and

implementation. It will also exhibit the features and some of the

implementation details of the ORE language, designed explicitly to

address some of the demands of real-time system building.

34 Marc D. Donner and David H. Jameson

Throughput Versus
Guaranteed Response Time

The goal of efficient usage of the computing resource drives the
designers of languages and operating systems to try to maximize
throughput. This usually means trying to minimize the number of
cycles spent on putatively unnecessary resource management
operations. In a timesharing operating system, where the
processor resource is multiplexed among some number of
competing users, the goal of maximizing throughput results in an
effort to make the time slices awarded to individual processes as
long as possible, that is do as little resource management as
possible per cycle delivered to work on the problem.

In addition to the influence of throughput maximization on
operating system design decisions, there is a similar influence on
programming language design and implementation. A good
example is the compiler optimization known as loop unrolling, in
which the compiler reduces the loop closure overhead by
concatenating several copies ofthe loop body and looping around
that rather than around a single instance.

The loop unrolling example highlights the design mismatch
quite well. one of the most common loops in a real-time system
waits for a condition to become true. The loop body, as a
consequence, does little more than compute its termination
condition. For good response time this needs to be done
frequently but more importantly it needs to be done regularly. A
thousand tests performed in 100 milliseconds, followed by 900
milliseconds with no tests averages to one test per millisecond, but
the worst case response time is 900 milliseconds. Loop unrolling
might squeeze 1100 tests into that r00 milliseconds, but it does
nothing to ameliorate the 900 millisecond dead time while the test
is not being executed at all.

Many architectural features introduced to computers in recent
years are designed to capitalize on the statistical properties of
programs to improve average throughput. Examples include
caching and virtual memory, both of which take advantage of
locality of reference and of branching observed in most programs.
These techniques make a large slow memory perform on average
like a much faster memory. The important point, as far as

Language and Operating System Features for Real-time programming 35

real-time systems are concerned, is that in the absence of
guarantees that a specific piece of code will be in the cache when

needed, the only thing that can be gtaranteed is the performance

of the larger, slower memory. In general, optimizations designed

to capitalize on the statistics of resource usage are useless in real-

time system building. In the worst case they are harmful.
In contrast to maximizing throughput, the goal of the language

and operating system for implementing a real-time system is

guaranteeing response time. Response time is the time interval
between when an event becomes observable by the controlling
computer and when the software running actually notices it and

acts. In a time-sliced operating system, the response time can be

as long as the product of the number of active processes and the

maximum timeslice length. This is an unacceptably long time
because of the way systems are typically tuned.

Process Privacy Versus
Fast Communication

In the earliest days of computing, computers were private
machines. You signed up for time, came to the computer room,

cleared the machine's memory, and loaded in your program.

While you were there you had the entire machine to yourself.

This made debugging relatively straightforward, since you never

had to worry about any code or data but your own. The designers

of operating systems quickly discovered that it would be a good

idea to expend effort to provide each user with the illusion that he

still had the entire computer to himself. This resulted in the
evolution of a variety of schemes to make each user's world
private and inviolable. In early machines there were a collection
of separately addressable regions and one was assigned to each

user. When switching from one user to another, the hardware was

told which regions to make addressable and which to make

invisible. Swapping systems were built on top of that, allowing
the number of addressable regions to be increased beyond the
physical memory limits of the machine. Virtual memory and
demand paging made it possible to free the users from the

addressing limits of earlier systems. Through it all the basic

notion has been that each user has a private address space all to

36 Marc D. Donner and David H. Jameson

himself. As in the single user/single computer case, the private
address space made debugging more tractable, since there was no
one else on whom to blame errors.

Recently people have discovered that complex interactive
systerns are often better expressed as a collection of
communicating concurrent processes. The problem is that
communication is a violation of the address space privacy notion.
After all, what is a message? It is a piece of data that one process
wants to send from its address space to another's. The result of
policing address space privacy is that communication between
address spaces is expensive, typically requiring one or more
system calls by each party to the communication for each packet
of data transmitted. The consequence is a very large latency for
communication between processes in a traditional timesharing
operating system. When the communicators are humans, the
delay is unnoticeable, but when the communicators are control
programs trying to deliver millisecond response times the cost is
unacceptable.

Of course there are things that can be done to speed up inter-
process communication, such as using the virtual memory system
to remap a page of data from one address space to another, hence
eliminating at least one copy operation. Nonetheless, there is a
clear contradiction between process privacy and communication
speed. A designer can always improve one at the cost of the
other.

Abstraction Versus
Pr e dic t ab I e P erfor manc e

The notion of hardware architecture, of providing a written
specifrcation of what a computer will do and promising to satisfy
that specification, has probably done more to make computers an
important technology in the modern economy than anything else.
By separating the instruction set from the hardware details,
manufacturers made it feasible to invest major resources in
software development without the fear that the entire effort would
be rendered worthless when a new and more powerful computer
had to be purchased. Of course, in the modern world it is
high-level programming languages that have become the

37Language and Operøting System Features þr Real-time progrømming

interchangeable interface, but that doesn't really change the issues.

The problem for real-time programming that architecture
introduced was abstraction. When trying to estimate the time
required to execute a specific piece of code, it helps to have a

cleanly defrned and simple model of the underþing computational
engine. When the instruction set is implemented by
microprogramming of some lower level machine, it quickly
becomes difficult to model the execution cost of the code. The
worst case is illustrated by several recent mainframes in which
there is so much microcode that some-of it is paged.

Another place where abstraction tools conflict with real-time
system design goals is in the provision of constrained types in
modern programming languages. Being able to say:

var foo :2..17;

is certainly very elegant and often quite interesting both
pedagogically and theoretically, but such constrained types rarely
can be checked at compile time. As a consequence, checks must
be inserted into the executable code to verify the satisfaction of
the constraints at run time. This can be quite expensive. In
addition, all that is gained by discovering that a constrained type
has gone out of bounds at run time is an opportunity to crash the
code.

Ill-chosen abstraction is particularþ evident in the design of
the Ada runtime system. The interface to the Ada runtime system

is so opaque that it is impossible to model or predict its
performance, making it effectively useless for real-time systems.

Most of the existing implementations are extremely slow and offer
no facilities for examining, analyzing, or modifying the
performance [Baker87]. lt is not the case that abstraction is bad
per se, but rather that it fails to penalize a host of bad practices

that can make the job of the real-time system builder much more
difficult. The key point is that abstraction is, as with most other
good things, best taken in moderation.

38 Marc D. Donner and David H. Jameson

Correctness Versus
Expressiveness

The author's experience with programming complex physical
systems for real-time performance has shown that decomposing
the task into many simple asynchronous threads of control is an
extremely effective way to design software for such systems. one
bar to the design of languages expressive for this kinâ of
programming is the lack of tools for reasoning about either the
correctness or the temporal performance of programs written in
such languages. The problem as far as correctness is concerned is
that there is nothing that a concurrent language can compute that
cannot be computed with a sequential language. If correct
computation of some result were the only point of a programming
language, then there would be no need of concurrency features.
The value of concurrent expression of a program is in the leverage
it gives the programmer, in the simplification and the abstraction
power.

Without adding any computational power, however,
concurrent languages add substantially to the difficulty of
reasoning about the correctness of systems. Adding råal-time
constraints to the problem takes the problem from merely
intractable to downright ludicrous. That the problem of reasoning
about the temporal performance of programs is intractable can be
shown easily by the following argument. If you courd anaryze a
program and predict its temporal performance, let's say its
response time for worst case input, you could use the tlchnique to
answer the question of whether or not a given program would
halt. Since the halting problem has been proven to be
undecidable, it is by contradiction impossible to provide a general
tool for temporal reasoning about real-time progrã-r.

Modern language design concerns itself with, among other
things, the ease of writing verification axioms and prool rules.
The theoretical underpinnings for concurrent programming are
not yet well developed, but that should not prevent the design,
construction, and use of concurrent languages and systems now.
Recently there has been a growth in interest in languages
expressive for concurrent programming [Stroustrup g4 bonner g 3

39Languøge and Operating System Features for Real_time programming

BrinchHansenT5 Jones86 SwinehartS6], so the prospect for the

development of tools is good.

Other Traditional
Operating System Features

Most of the facilities traditionally provided by a timesharing
operating system have to be redesigned for real-time applications.
The considerations for these systems including file systems,

networking, and a variety of specialized I/O are beyond the scope

of this paper. Suffice it to say that for hard real-time problems it
is not enough for something to be fast; it must provide guaranteed

performance.

Language Features

So far we have argued that design criteria for real-time system

programming are such that many of the decisions manifested in
existing programming languages and operating environments
require reexamination when designing and building tools for
constructing real-time systems. In the next section we will
examine the design and implementation features of a
programming language and runtime system named ORE. ORE is

explicitly designed with real-time system programming in mind.
It has many features in common with traditional languages,

including a type system, tools for defining procedures and

functions, assignment of expressions and so on. We shall discuss

here the ways in which it differs from traditional languages and

motivate each language feature by arguing its need for expressing

real-time programs or its superior implementability to comparable

facilities in other languages. ORE is derived in many of its details

from the OWL language [Donner83 DonnerS4] that was designed

for programming a walking robot.
A sequence in ORE is marked as a list of statements enclosed

in angle brackets:

40 Marc D. Donner and David H. Jameson

Semantically every sequence is an indefinite loop, with
termination expressed by explicit execution of the break
statement:

< ... ; ifB then break; ... >

The traditional notion of a sequence, which executes once straight
through, is expressed with an unconditional break at the end of
the sequence:

< ... ; break; >

oRE also has a syntax to identify sequences of code that should be
considered indivisible and unpreemptable. This is done by
enclosing the statements in braces:

{stmt; stmt; stmti};

This marking enables the programmer to specify critical sections
and be assured that the runtime system will respect that
designation.

Concurrency

several projects have demonstrated that concurrency is useful in
the design and implementation of complex software systems.
Most of these examples have involved heavy-weight ctncurrency,
systems for which a process switch is a relatively expensive
operation. This has resulted in designs with a relatively small
quantity of concurrency, with the number of concurreni threads
being at most in the tens. Several recent systems have
demonstrated the efficacy of finer grained, lighter-weight
concurrency [stroustrup g4 Donner g3 BrinchHansenT5 Jones g6
swinehartS6l. This style of concurrency has very different
applications to those to which heavy-weight concurrency is suited.
with light-weight concurrency it is possible to structure a system
with hundreds or more threads executing concurrently, offering
the system builder entirely new ways of organizing laige programs.

The syntax for concurrent execution in oRE is a tiit ór
processes enclosed in square brackets:

Language and Operating System Features þr Real_time programming 4l

process I
process

2

process,

I

The concurrence terminates after all of the compontent threads

have been terminated.

Preemption

Techniques for managing threads of control in concurrent systems

can be classified into two groups. The first technique is to give

each thread a name and require the application programmer to
manipulate threads by name. This offers a lot of power, but the

costs include:

. unpleasant bookkeeping burdens on the application
programmer

. difficult comprehension of the resulting system

. almost impossible debugging

. validation by the runtime system of process names, since

they might be corrupted or become invalid while under the

control of the application code.

The second technique attempts to manage concurrency with
fork/join notions like cobegin-coend in Concurrent Pascal

[BrinchHansenT5] and path expressions [CampbellT3]. These

notions are an improvement, but they also reduce the available
power unacceptably. The problem with fork/join systems is that
there remains a bookkeeping problem if a cluster of threads is to

terminate before all of them have agreed to do so. A deadlocked

thread can keep the entire fork/join construct from completing.

A solution to this problem is offered by preemption; a
mechanism by which the scope structure of the active processes

can be exploited to enable one process to control the execution of
others, but without any process name bookkeeping required of the

user. A primitive form of preemption was provided by OwL

IDonner84].

42 Marc D. Donner and David H. Jameson

In ORE simple preemption
statement. For instance:

t
<...>;
<...>;
< ... ; preempt; ... >;
<...>;

I

Figure l. Before preempt.

t
x
x
<... >;
x

is implemented with the preempt

/* dead*/
/* dead*/
/* executing */
/* dead*/

l
Figure 2. After preempt, only one process survives.

when the third process in the example above executes its
preempt statement, the runtime system terminates the other three
processes and then permits the third process, the preempting one,
to proceed. The runtime system arbitrates in the case when
preemption is requested by more than one sibling process
simultaneously. This is, of course, only signifrcantin a
multiprocessor implementation.

Actual experience with the walking robot has demonstrated
that this total preemption is sometimes too brutal. In controlling
a physical system it is sometimes desirable to stop a collection of
threads from executing just long enough to make some minor
adjustment or repair to the system and then permit the other
threads to go on from where they were halted. oRE has a softer
preemption named freeze that is useful for this. when a thread
executes rreeze, the runtime system causes all of the siblings of
that thread to be suspended. As soon as all are suspended, the
requester is permitted to continue. v/hen the requester has
completed its job, it executes the thaw statement, telling the
runtime system to permit its siblings to resume. This can be
viewed as a selective priority enhancement in a dynamic priority
system, but without any need for special bookkeeping of priorities.

43Language and Operating System Features for Real-time programming

<...>;
<..'>;
< ... ; freeze; ... >;
<.'. >;

l

Figure 3. Before freeze.

t
<->;
<->;
< ... ; ... ; thaw; ... >;
<->;

/* suspended */
/* suspended */

/* suspended */

I

Figure 4. After heeze and before thaw.

t
<'..>;
<...>;
<...>;
<...>;

I

Figure 5. After thaw.

Uses of Preemption

There are several ways in which preemption has proved useful.

One is in permitting a control program to be constructed as a

simple-minded business-as-usual thread running concurrently with
one or more problem handling threads. Another is by letting
several threads run concurrently, each producing progressively

better estimates of some function, with the computation being

terminated by the arrival of the deadline and returning the best

result so far completed. A third is a construct we call the
concurrent whíle.

44 Marc D. Donner and David H. Jameson

Busíness as Usual

The business-as-usual technique results in code that looks like:

t
< business-as-usual >;
< when problem , do preempt; rtxup r >;

< when problem, do preempt; rtxup,>;

A language like Ada with an explicit exception mechanism can
achieve some of this kind of structure, but not as easily. This
mechanism lets the code that is looking for trouble have its own
execution thread before the exception is raised. This relieves the
business-as-usual code of the responsibility for detecting and
raising exceptional conditions.

A particular intent of providing this mechanism was to make
it possible for the author of the fixup code to be able to ignore any
potential bad behavior by the business-as-usual code. If this were
to be mediated with exclusive locks on the key resources, a
problem would arise when the business-as-usual code held the
locks, a common occurrence, because it would prevent the flxup
code from executing until the business-as-usual code relinquished
the locks. This problem has previously been recognized and
named the priority inversion problem [shag6] because it can cause
a higher priority task to wait for a lower priority task to complete
and release its locks. Priority inversion could be resolved by
establishing a meta-lock that the preempter would assert when it
needed to preempt and which the business-as-usual code would
observe, relinquishing all its locks whenever it observed the meta-
lock asserted. Such a solution increases the burden on the
business-as-usual code, since it must watch the meta-fl ag at all
times and hence cannot use blocking operations. on the other
hand, preemption permits the higher priority process, the fixup
code, to force the termination of the process holding the locks,
thus avoiding the problem completely. Thus, while the semantics
of preemption can be achieved with more traditional techniques,
it is clear that they are far more comprex to program and far less
easy to get right.

45Language and Operating System Features for Real-time programming

Concurrent While

The construct known as the concuruent while arose from the use of
preemption in the construction of a complex robot program

[Donner84]. Code of the form:

t
< when done do preempt; break; >;
< body, >;

< body,>;
I

appeared in a large variety of places in the program. The
attraction of such a construct is that the termination condition is
awake continuously, not just at the end of each execution of the
loop body. This permits the body to be written without any
regard for the termination condition. In normal circumstances
code of this type must be written using non-blocking I/O to protect
the termination test from deadlocks or large delays. With the
concurrent while this problem is bypassed.

Multiple Resolution Computation

Multiple resolution or imprecise computations have recently
attracted the attention of the real-time community as a potential
way to frnd design tradeoffs that take advantage of the statistical
properties of real-time systems [Lin87]. With lightweight
concurrency and preemption, multiple resolution computation
looks like this:

t
var best: answer-type;
< when time-to-stop do preempt; return(óesl); >;
< low-resolution; best;= result; break; >;
< medium-resolution; best;= result; breah >;
< better-resolution; best;= result; break; >;
< highest-resolution; best ;: result;

time-to-stop:: true; break; >;
l

This assumes, of course, that each computation takes strictly
longer than the lower resolution computations. If that is not so,

46 Marc D. Donner and David H. Jameson

then the assignment or result to best must be protected by some
arbitration.

of course, the code for the multi-resolution computation could
make the intermediate values available before the deadrine and
the design of the system could take into account the availability of
lower resolution results. An example of this might be a
frequency-agile radio receiver in which the tuning of the
narrowband tuner to the vicinity of the target frequency was
initiated in response to low resolution estimates provided before
the final, ultimate resolution, measurement was complete.

Last Will and Testament

An inadequacy in the early design of preemption facilities was
that the responsibility for taking control of all resources
relinquished by a terminated process devolved on the preempter.
This problem nullified the bookkeeping advantages offered by not
having to manipulate process names. The solution to this
problem, a new feature in the ORE system, is the provision of a
last will and testament (LWT) facility. This facility enables a
process to establish a strip ofcode to be executed ifthe process is
preempted and before the process is considered to have
terminated. In order to prevent priority inversion, the LWTs have
to be executed at high priority. This might be used as follows:

t
< ... ; {start-dangerous-action;

LWT {stop-dangerous-action};} ... >;

< ... ; preempt; ... >;
I

Notice that starting the dangerous action and establishing the
LWT are done indivisibly so that no race condition is permitted in
which the action has been started but the LWT has not yet been
established. of course, it will often be possible to establish the
LWT before executing the statement that it is intended to undo,
but not always. A situation in which the LWT should not be
executed unless the preceding action has defrnitely been initiated
we call the toxic antidote case. Lest the reader imagine that the

Language and Operating System Features þr Real-time programming 47

toxic antidote case is imaginary or frivolous, consider the case in
which the dangerous action is the launching of a nuclear missile
and the stop action is the detonation ofrange safety charges.l

Note that in ORE each Lv/T established supersedes any
previously established LwT. Each sequence has a single LWT
associated with it, which may be null. There are limits on the
complexity of the code associated with each LWT, about which
more will be said in the section on implementation.

Watch and When

The threads of control from which a real-time program is

composed usually alternate between waiting and running. Most
programming technology is very good at running, but waiting is
often a very expensive operation. If the waiting is well
understood, then hardware provisions can be made to wake the
program up when the wait is done. These hardware provisions

are usually cast in the form of interrupts to the processor. If the
pause is not well understood, as is typically the case during the
development of a system, then it must be done by means of some

form of polling or busy waiting. If a large number of threads are

waiting, the cost of the regular reevaluation of the conditions can

become a signifrcant load on the system.
ORE possesses statements named watch and when that permit

waiting to be done very efficiently. The key observation is that a
Boolean expression that may terminate a wait can only change

when one of the variables on which it depends changes. Thus the
ORE compiler can add side effects to assignment to wake up any
threads that are waiting on a change to a specifrc variable.

Preemption enables a process to terminate or suspend another
without knowing the name of that process. Watch and when

enable a process to wake up another process without knowing its
name.

Watch and when both put a thread to sleep. Wakeup of the
sleeping process happens when one of a list of variables named in
the watch or referred to in the when receives an assignment.

l. Of course, for security reasons nuclear missiles don't have range safety
charges.

Marc D. Donner and David H. Jameson48

Syntactically watch is as follows:

... ; watch(u r tt ... , v,); ...

When a process encounters a watch it goes to sleep, removing
itself from any eligible-to-execute queue. It is awakened after the
first subsequent assignment to any of the watched variables.

... ; when E(v, v, ... , v,); ...

A process executing a when goes to sleep, as in the case of the
watch. Each time any of the watchable variables named in the
expression in the when receives an assignment, the expression is
reevaluated and if it has become true the process is awakened.

There is a potential for race conditions with watch and when.
For instance, if we have the code:

< ... ; when E ; S; ...>;

and it is possible for the process to go to sleep between the when
statement and S, it could happen that the action of some
concurrent process during that interval invalidates E. In order to
provide a way to avoid that race condition, ORE guarantees that
when marked with the following syntax:

< ... ; when E do S; ... >;

the statement S will be executed immediately after the condition
is asserted, without giving any other processes an opportunity to
execute. The statement in question may be an indivisible
sequence:

< ... ;when E do {stmt,; ... ; stmt}}; ... >;

This still does not guarantee that race conditions cannot occur in
the handling of the watch and when primitives. If there are two
whens active concurrently with conflicting subsequent actions,
there is no deterministic guarantee of the results:

t
< ... ; when.B do {... ;B := false;i ... >
< ... ; when,B do {... ; B:: false;} ... >

I

Language and Operating System Features for Real-time Programming 49

This code has the property that one of the two sequences
following the whens will start executing with the variable B false.
Since the purpose of the semantics of guaranteeing high priority
execution to the succeeding statement in a watch or when is to
enable the construction and proof of invariants, we can see that
there is a relatively easy way to invalidate this guarantee.
Techniques to protect against this problem include forbidding
multiple processes from waiting on the same condition, something
that the with directive proposed by Hoare [Hoare85] does, or
providing a queue of wakeups for each variable. Rather than
handicap all watchable variables with a queue of wakeups, ORE
permits a variable to be marked as one that only wakes up one
waiting process on each assignment, rather than all of them. This
preserves the efficiency of the watch mechanism and makes the
implementation of exclusion simple and straightforward.

Watch and when are useful in a variety of situations. A
common need in real-time programming is to be able to attach
some code to an interrupt. If the deadline requirements for the
handling of that interrupt aren't too short, it may suffice to
schedule the associated code for execution rather than execute it
directly in the interrupt handler. An easy way to achieve this is to
have a watchable variable associated with the interrupt and have
the interrupt handler perform an assignment to the variable:

var Timerlnterrupt : watchable integer;
IntHandler(Timer, {Timerlnterrupt :: Timerlnterrupf+ 1; });

< watch(Zi merlnÍ,errupt); ... >;

so that the code after the watch gets scheduled each time the
Timerlnterrupt is assigned. Of course since ORE wakeups are not
queued, if the code associated with the watch is too slow, the next
timer tick may be missed. This problem must be resolved by
means of verifrcation of real-time deadline guarantees [Mok85].

Another use of when is to enable two processes to synchronize
or rendezvous using a watchable boolean as a semaphore:

50 Marc D. Donner and David H. Jameson

var Flag: watchable boolean:= true;
I

< ... ; Flag:= not(FlaÐ;when Flag; ... >;
< ... ; Flag := not(Flag); when Flag; ... >;

l

whichever process reaches the assignment to flag frrst changes it
from true to false and then waits because the value is false. v/hen
the other process arrives at the synchronization point it toggles the
flag back to true, thus permitting itself and the other process to
proceed together. Similarly, multiway synchronization can be
achieved using an n-stage semaphore.

Finally, efficient data driven code may be constructed using
watch:

t
< ... ; commodity;= produce0; ... >;
< ... ; watch(commodity);

consume(commodity); ... >;
l

watchability is an attribute of the type of a variable in oRE. Any
object or component may be declared to be watchable:

var x : watchable integer;

Or we may say that an array is watchable:

var y: watchable array[O..31] of integer;

or we may designate that the array and its elements are
independently watchable:

var z: watchable array[1..10] of watchable real;

So that the user may write the following code:

t
/* any change to the array wakes up here */

< watch(z); ...>;
/* assignment to z[l] wakes up here */

< watch(zIl]);...>;

Language and Operating System Features þr Real-time programming 5l

And similarly with records and pointers. A design question is
raised with watchable pointers and arrays. Should the process

watching a pointer be awoken when the object pointed to is
assigned? The simple answer is no, but how does a piece of code
watch a dynamic structure like a tree or a list? We have not yet
reached a frnal decision on which way to resolve this question.

I mplement ati on C onsi der ati ons

When designing a language for real-time system building,
implementation issues must be considered earþ in the design.
The consequence of putting implementation considerations off
until the end is a design that may not be efrciently
implementable. As a result, the design of the ORE language,

compiler, and runtime system have proceeded together, with the
semantics of the language being influenced by what was feasible
for the runtime system and the design of the runtime system being
directed by the needs of the language. This is in contrast to the
traditional operating system design philosophy in which the goal is
to provide a clean virtual interface, making absolutely no
assumptions about the behavior of the application code that will
be executed.

The benefits of designing the language, compiler, and runtime
system together are a tremendous reduction in the cost of
concurrency. Since the compiler constructs the schedulable units,
the amount of state that has to be saved at each context switch
can be kept to an absolute minimum. Since the application is
assumed to be a collection of cooperating threads with no
incompetent or antagonistic code, the cost of address space

separation and protection may be dispensed with. Since the
runtime system's internals are known to the compiler, the
compiler can generate code to manipulate directly runtime system

data structures rather than going through the costly protections of
a system call interface.

52 Marc D. Donner and David H. Jameson

Compiler Generated
Schedulable Units (strips)

The programmers of the Pluribus multiprocessor [OrnsteinT5]
devised the notion of code strips, segments of code of guaranteed
execution time that could be interleaved by a special piece of
hardware to achieve high performance multithreaded execution.
For Pluribus the strips were constructed by hand and their execu-
tion bound was to be proved by hand. The limitation was the fact
that since the strips were hand constructed in a low-level language,
it was extremely difficult to build a strip and even more difficult to
prove its execution bound. The TOMAL compiler [HennessyTT]
improved on this situation substantially by enabling the applica-
tion programmer to insert markings in the code that defined the
strip boundaries. O'WL [Donner83] took this technique one step
further with a compiler that constructed the strips automatically,
with the strip boundaries inferred from an analysis of the code.

The ORE compiler generates code strips and the ORE run-time
system multiplexes them for execution. Some of the advantages
of this approach include:

. Minimal state saving required at process switch. This
results from the fact that no partially evaluated expressions
or other state information will be found in registers at
context switch time, thus reducing the amount of informa-
tion to be saved in a process to a single pointer to the heap-
allocated block of memory from which it is executing. In
addition, since all the threads execute in a single address
space, no virtual memory management is associated with
context switching.

. Compiler derived performance information. Since no strip
may exhibit unbounded looping or recursion, the worst case

execution time for a strip can be calculated at compiler or
link time. This information is valuable for scheduling algo-
rithms that seek to provide deadline guarantees.

In addition, ORE'S explicit strip notation {...} permits the
application writer to designate critical sections and guarantee that
they will be treated as such. The compiler, since it knows about
the schedulable units, is able also to reject strips designated by the

s3Language and Operating System Features for Real-time Programming

programmer that are illegal, for instance because they contain
blocking operations.

A strip generated by the ORE compiler consists of statements
from a single thread of execution. Strip boundaries come either
when a blocking operation is encountered or when the worst case
execution time of the strip exceeds a given limit. Blocking opera-
tions include I/O and the ORE parallelism and waiting constructs.

Runtime Scheduler

On a uniprocessor the illusion of concurrency is achieved by
interleaving strips from the live processes in some order. The
program that determines the order of execution of processes is
known as the scheduler. On a multiprocessor it is often
convenient to have a scheduler on each processor so that the
number of processes is not limited by the number of processors.
ORE is designed to run on a heterogeneous multiprocessor, with
an instance of the scheduler on each machine.

The default scheduler in the ORE runtime environment
implements a simple round-robin policy. In a round-robin policy,
each live process gets a chance to execute a strip once before any
process gets to run again. This policy is simple and is known not
to be optimal for most applications, however it is sufficient for a
variety of applications.

Extensive research has been conducted into scheduling
policies, the results of which are beyond the scope of this paper.
The seminal paper by Liu and Layland in 1973 [Liu73]
demonstrated the optimality of a policy called rate-monotonic
under certain assumptions. Subsequent research, of which a good
summary is presented in a paper by Ramamritham and Stankovic
[Ramamrithams4], has developed and analyzed a variety of other
schedulers, many of which are optimal for certain evaluation
criteria.

In an the absence of a scheduler that is optimal in all
circumstances, the best strategy is to provide to the application
programmer as much flexibility as possible. In ORE that is
achieved by permitting the interception of the scheduler by the
application. The programmer does this by defining one data
structure, the UserArea, and writing four routines: InitUserArea,

Marc D. Donner and David H. Jameson54

FreeUserArea, GetNextPid, and PutAwayPid. Basically, the
activation record describing an active process contains a user
word that may be used as data or may be used as a pointer. The
InitUserArea routine is called by the CreateProcess code in the
operating system, at which time a user area data object may be
allocated, initialized, and linked to the activation record. If the
needs of the system are satisfied with a small amount of data, the
user area word in the activation record may be used directly as

data instead of as a pointer to a larger area. The FreeUserArea
routine is called by the KillProcess routine to return the data
structure to its free list or storage pool.

The scheduler has the following structure:

vat ActivationRecord : ^p;
while true do

p = GetNextPid0;
RunStrip(p);
PutAwayPid(p);
end;

Where the code for GetNextPid examines the tree of activation
records and user areas and determines which process should run
next. RunStrip is a kernel routine that executes the strip
associated with the process p and performs any cleanup operations
associated with termination or preemption that may have
occurred during the execution of the strip.

The code for GetNextPid and PutAwayPid is assumed to be
written using kernel primitives that permit read access to the
process data structures. This includes things like Sibling(pid),
Parent(pid), Child(pid), and so on. It is assumed that the
UserArea structure will be used to hold such items as deadlines,
priorities, elapsed times, and any other data that the application
programmer deems to be of use in the computations in
GetNextPid and PutAwayPid. The application programmer will
presumably also write functions to provide the ORE code with
access to the UserArea data structure. These functions might
include SetPriority, ReadPriority, SetDeadline, IncreasePriority,
or what have you.

Language and Operating System Features for Real-time Programming 55

Watch and When

The semantics of watch and when are relatively simple to
describe. The implementation, however, requires considerable
attention to detail if it is to perform well. There are two places in
a program that the compiler needs to insert watch and when code:

. the watch or when site

. the assignment of each watchable variable

In the rest of this discussion we will concentrate on the
implementation of watch. When is very similar, with the addition
of some code to evaluate the expression and put the process back
to sleep if the wakeup condition is not satisfied, so we will omit it
here.

The data structure that points at a PID must have a pair of
pointers to link it into the list of watchers on a variable, a pointer
to the PID in question, and a fourth componen! incarn, whose
use will be described later.

type Pidltem =
up
down
incarn
pid

record of
^PidItem;
^PidItem;
integer;
^ActivationRecord;

end;

Figure 6. Type defrnition of the piditem data structure.

Each process instance will have on its stack the object

v ar PidI temArr ay : array fl..WatchedByProcl of Pidltem;

which has a Pidltem for each distinct watchable variable ever
watched by that process.

In addition to this structure, there are two compile-time data
structures available:

v[i] a mapping from indices of the Pidltem array to the
corresponding watchable variables

list(w) a list of all the indices of items watched by watch
statement w.

56 Marc D. Donner and David H. Jameson

Now we can exhibit the code inserted at each watch statement

foreach í in list(w) do
/* it is not linked in, do so now */

ff PidltemArrayfil.up = null then
InsertlnVariableQueue (vlil, PidI temArrayÍil);

/* We are in watch number w now */
PidltemArray[i].incarn = w;
MyAc t iv ati o n Re c ord.incatn = w;
RemoveFromReadyQu eue (MyAct iv at i onRe c or d);
end

Figure 7. Code to establish a watch.

Notice that it is possible that the Pidltem for that variable may
still be linked in to the list associated with its variable, so that
there may be no need to link it in. That is the reason for the test
of the up against NULL before linking in the item.

The following example illustrates the kind of situation that
might result in an item remaining linked in:

< watch(a, b); ...; watch(å, c); ...>;

If the first watch is terminated by assignment to the variable a,
then the Pidltem hooked to b will remain unless it is removed.
Rather than do the work of removing items from lists, we leave
linked but unassigned items in place. If the b variable should be
assigned after the expiration of the first watch in the example
above, we would detect it by comparing the incarnation number
in the activation record with that in the Pidltem. If they match,
then the wakeup is valid, if not then the assignment is to a dead
watch and may be discarded.

In view of the preceding, the code for assignment is:

Language and Operating System Features for Real-time progrømming 57

/* Do the actual assignment */
objecf .thing :: Expression;
p:: objecf .pid;
whilep#nulldo

/* is it still valid? */
if p^.incarn = p^.pidî.incarn

/* yes, perform the wakeup */
then do

MoveToReadyQueue (p^.pid);
p^.pid^.incarn :: AWAKEi
end;

q:: p;
p = f .next;

/* prune it out of the list */
f .ttp:= q^.down ;: null;
end;

If the cost of moving the process to the ready queue from the
sleep queue is prohibitive, we can simply mark the awakened
processes and process them from the scheduler.

The amount of work done by the watch establishment code is
limited to examining each Pidltem, relinking those that have
become unlinked by a previous assignment, and updating the
incarnation number for each Pidltem and the activation record of
the watching process. The work done by the assignment is
proportional only to the number of processes watching that
variable at the time of the assignment.

Compiling
for a Real Multiprocessor -
Export/Import and Expose/See

Most non-trivial programs are partitioned into several modules.
Each module implements some particular aspect of the system and
contains its own procedures and variables for that purpose.
Ultimately, all the modules are linked to form a complete
program. If compile-time type checking is available then the
compiler needs type information of objects referenced in one
module but defrned in another. This can be done by separating

58 Marc D. Donner and David H. Jameson

the defrnition and implementation parts of a module and making
the definition part available during compilation of some other
module depending on that module. In Modula-2, for example,
deflnition modules defrne and export objects. These exported
objects may then be imported into other modules.

Now suppose that we wish to reference an object that is
located on a specific machine, perhaps because it is associated
with some physical device attached to that machine. The code in
question may exist in a library or in a machine module, but we
need to be able to have that code run on our behalf on the
machine where it makes sense for it to execute. rJ/e would also
like to retain the compile-time type checking mechanism. In ORE,
this is done with see and expose, which are to interprocess access
what import and export are to code.

For each processor there exists a main module called the
machine module. This is the module where execution starts. This
module can import code from library modules using an import
mechanism similar to that of Modula. At link time, imported
code is physically linked with the executable machine module. In
addition, a machine module can see objects on another machine.
The other machine must expose the object. Analogous to a
definition module for library code, a machine module wishing to
expose objects must have a corresponding interface module.

For example, suppose machine M has a procedure named P
that machine N would like to run as a process. The code for
machine N is

machine N;
see p on M;
process main;

I
<... >;

/* start 3 processes */
/* local process */

M.p(arguments); /* runs on machine M */
<...>; /* local process */

t;

Since P is exposed, M must have an interface part as well as a
machine part.

Language and Operating System Features þr Real-time Programming 59

60

interface M;
expose p; /* p is allowed to be seen */
process p(a, b, c); /*by another machine */

while in the machine module ...

machine M;
process p;

/* code to implement p here */

A machine module can also expose an object that comes from
a library module. In this case, the interface module first imports
the object and then exposes it.

Reasoning about
Temporal Properties of Programs

At the outset of this paper we mentioned the fact that real-time
systems had hard deadlines that had to be satisfied. For a system
to truly satisfy real-time requirements, then, it must be able to
provide performance guarantees. High performance is not
sufficient. Satisfying the deadline most of the time is rarely
satisfactory.

The astute reader will have noticed that the ORE language
does not possess any features for describing or reasoning about the
temporal properties of programs. There has been substantial work
in the area of reasoning about the temporal properties of programs

[Mok85] and of attempting to guarantee the performance of
programs run under a variety of scheduling disciplines [Liu73
RamamrithamS4l. ORE is intended to be a practical testbed for
these techniques. The mechanism for replacement of the
scheduler with code written by the user is intended to support
experimentation with scheduling techniques. ORE will eventually
also have a notation for marking the code with events and
expressing assertions about the temporal constraints on those
events.

Marc D. Donner and David H. Jameson

References

T. P. Baker, Implementing Timing Guarantees in Ada, Fourth Worlahop
on Real-time Operating Systems, pages 129-133, IEEE, July 1987.

P. Brinch-Hansen, The Programming Language Concurrent Pascal,IEEE
Transactions on Software Engineering,l(2), June 1975.

R. H. Campbell and A. N. Habennann, The Specification of Process
Synchronization by Path Expressions, Lecture Notes in Computer
Science Number 16, pages 89-102,1973.

M. D. Donner, The Design of Owl: a language for walking, Proceedings
of the Sigplan'83 Symposium on Programming Language issues,
pages 158-165, ACM, June 1983.

M. D. Donner, Control of Walking: local control and real-time systems,
PhD dissertation, Carnegie-Mellon University, 1984.

M. D. Donner, Real-time Control of Walking, Birkhauser, Boston MA,
1987.

M. D. Donner and D. H. Jameson, A Real-time Juggling Robot,
Proceedings of the Real-Time Systems Symposium, pages 249-256,
December 1986.

M. D. Donner, Language and operating system integration for real-time
systems, Fourth Workshop on Real-time Operating Systems, pages
106-109, IEEE, July 1987.

J. L. Hennessy,l Real-Time Language þr Small Processors: Design,
Definition, and Implementation, PhD dissertation, SUIIY Stony
Brook, August 1977.

C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall,
Englewood Cliffs NJ, 1985.

M. B. Jones and R. F. Rashid, Mach and Matchmaker: Kernel and
Language Support for Object-oriented Distributed Systems, Object-
oriented Programming Systems, Languages and Applications, AC}'4,
I 986.

K. J. Lin, S. Natarajan, J. W. Liu, and T. K¡auskopf, Concord: A
System of Imprecise Computations, Submitted for publication, L987.

C. L. Liu and J. W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Journal of the
ACM, (20)l:46-61, Jantnry 1973.

A. K. Mok, SARTOR - a Design Environment for Real-Time Systems,
Proceedings Compsac, October I 985.

Language and Operøting System Features þr Real-time Programming 6l

S. M. Ornstein, W. R. Crowther, R. D. Kraley, A. M. Bressler, and F. E.
Heart, Pluribus - A reliable multiprocessor, /4FIP^S 1975 Conference
Proceedings, pages 551-559, AFIPS, 1975.

K. Ramamritham and J. A. Stankovic, Dynamic Task Scheduling in
Hard Real-Time Distributed Systems,IEEE Software, pages 65-75,
July 1984.

L. Sha, R. Rajkumar, and J. P. Lehoczþ, The Priority Inheritance
Protocol - An Approach for Real-Time Synchronization, Submitted
for publication, 1986.

B. Stroustrup, The C++ Programming Language - Reference Manual,
AT&T Bell Laboratories Computing Science Technical Report 108,
1984.

D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann, A
Structural View of the Cedar Programming Environment,
Transactions on Programming Languages ønd Systems, (8)4:419-490,
October 1986.

lsubmitted Aug. 9, 1987; revised Oct. 20, 1987; accepted OcL 23, 19871

62 Marc D. Donner and David H. Jameson

