Dynamics for
Computer Graphics:
A Tutorial

Jane Wilhelms

University of California, Santa Cruz

ABSTRACT: There is a move in computer graphics
toward more correctly simulating the world being
modeled in hopes of achieving more realistic and
interesting still images and animation. An
important component of this move is the use of
dynamics, i.e. considering the world as masses
acting under the influence of forces and torques.
Dynamics can be useful in providing inverse
kinematics, constraints, collisions, and, in general,
helping produce realistic positions and rates of
motion. However, it is computationally expensive,
involved to program, and complex to control. This
paper is a summary of some useful information
necessary for simulating the motion of bodies for
computer animation.

© Computing Systems, Vol. 1 » No. 1 - Winter 1988

63

64

What is Dynamics and
What can it buy us?

Dynamics refers to the description of motion as the relationship
between forces and torques acting on masses. If we treat the
objects modeled in computer graphics as masses and apply forces
and torques to them, we can use physics to find out the motion
these masses should undergo. This motion should mimic the
motion that would actually occur to such masses in the real world,
hence dynamics simulates the motion, rather than just animating
it.

Dynamics is useful for a number of reasons: it can help
restrict motion to that which is realistic in the world modeled;
it can automatically find many kinds of complex motion with
minimal user input (e.g., motion due to gravity); it can
automatically impose many kinds of constraints (e.g., preventing
intersection of colliding bodies); it can be used to move complex
bodies in natural way; etc.

Dynamics is problematic as a technique for motion control in
computer animation because it is (often) computationally
expensive, and because controlling the motion is (often) difficult.
However, it shows considerable potential for manipulating and
animating bodies, and merits further investigation. This paper
attempts to provide enough basic information to let anyone
simulate simple objects using dynamics.

This work was supported by National Science Foundation grant number
CCR-8606519 and UCSC fellowship 660177-19900. An earlier version of this paper
was presented at the 1987 USENIX Computer Graphics Workshop.

Jane Wilhelms

How to do it

To use dynamics to find the motion of objects, first the dynamics
equations of motion which describe how masses will move under
the influence of forces and torques must be set up. Though there
are a number of ways to formulate the equations, they all should
give the same solution (they refer to the same world). Second, the
equations must be solved for acceleration. Third, they must be
integrated to find the new velocity and position, given the
acceleration. Once the new positions are available, the object can
be animated.

There are many books discussing dynamics; unless some
specific reference needs to be made, most of the physics in this
paper relies upon these references.8 12.21,23,26 Robotics books are
often useful.!6.22 The following references pertaining to use of
dynamics for computer animation may also be
useful.1:2.3,27,28,29,30,31

A right-handed coordinate system with a right-hand screw rule
for rotations is assumed, and vectors are premultiplied by
matrices to change coordinate frames. (This is more in keeping
with robotics and physics usage than computer graphics.) Note
that considerable variation in conventions is found in the
literature; keep in mind which frame and which screw rule is
used.16.22

Matrices will be in upper case boldface type (J), vectors in
lower case boldface (f), and scalars in italic type (m). Subscripts
will be used to describe the axis for vectors (c, is the position of
the center of mass along the x-axis), and to further describe the
value when necessary (f ., ; . is the force of gravity acting on the
i-th segment along the x-axis). Superscripts will be used to
indicate the frame of reference being used, when necessary (c¢/ is
the above seen in terms of the instantaneous position of the j-th
coordinate frame).

Table 1 is a handy reference for the meaning of terms.

Dynamics for Computer Graphics: A Tutorial

65

66

Table 1. Meaning of Terms

Matrices
J

R topar

R frompar
R toworld
R Sfromworld

D
I
K
M

3D Vectors
f

f grv

f son

f topar

p

Terv

Text

Tson

Ttopar

Scalars

m

ot

L.L,I,
Ixy:Ixz’Iyz

Jane Wilhelms

inertial tensor matrix
rotation matrix segment to parent
rotation matrix parent to segment

= rotation matrix segment to world

rotation matrix world to segment
rotation matrix seen as direction cosines

= identity matrix
= recursive coefficient matrix

recursive coefficient matrix

= force

force due to gravity

= external applied force

= force applied by child of a segment through a joint

force applied onto parent of a segment through a joint
torque

torque due to gravity

external applied torque

torque applied by child of a segment through a joint

= torque applied onto parent of a segment through a joint

position

= linear velocity
= linear acceleration

gravitational acceleration

= change in angular position

angular velocity

= angular acceleration
= vector to joint of son segment from parent frame
= vector to segment center of mass defined in segment frame

recursive coefficient
recursive coefficient

mass

= time step between samples

moments of inertia
products of inertia

Particles: Point Masses

To illustrate the method on a very simple object, consider the
motion of a point mass (a particle) in three-dimensions.
Dynamics can be done in two dimensions and it’s much easier,
but also much less interesting.

Some simple bodies can be adequately modelled using
dynamics on point masses. It is also possible to effectively model
flexible bodies dynamically as masses connected by springs.!3.18
Flexible bodies can also be modelled using elasticity theory.2’

Information Needed

INVARIANT INFORMATION The only extra piece of
constant information necessary to dynamically animate particles is
the mass of the particle. (Dynamics can be done on a particle of
changing mass but it’s probable that, for computer graphical
purposes, constant mass is a reasonable assumption.)

VARIABLE INFORMATION Variable data needed for
dynamically animating particles include the present position p (a
3D vector representing X, y, and z-coordinates) and the present
velocity v (also a 3D vector representing the present motion of the
particle). (Again, other coordinate systems could be used, but the
Cartesian x,y,z system seems reasonable.) The fact that three
numbers are needed to specify the position implies that the
particle has three degrees of freedom of motion.

Also needed are the force f (a 3D vector with components
pulling along the x, y, and z-axes) being applied. If a number of
forces are pulling at once, the vectors representing the individual
forces are added to get a net force.

Equations

According to Newton’s Second Law, the dynamics of a particle
can be stated as

f = ma 1

where f is the force (a 3D vector representing the components of
the force along each Cartesian axis) acting on the particle, m is the
mass of the particle, and a is the acceleration that the particle will

Dynamics for Computer Graphics: A Tutorial

67

68

undergo. Typically, force is in Newtons (kilograms-meters/second?),
mass is in kilograms, and acceleration is in meters/second?.

This vector equation really represents three scalar equations,
one for each Cartesian axis. These three equations are

fx = m ay la
fy = ma, 1b
fz = ma; 1c

The Second Law Equation is a differential equation, because
the acceleration is a function of time. The equation can be also
stated

dv
= me——r 2
f m it
because the acceleration is really the derivative (rate of change) of
the velocity over time. (The force may also vary with time.)
Similarly, it could be stated

2
d 1] 3
dt?

because the velocity is the derivative of the position over time,
and, thus, acceleration is the second derivative of the position.

f = m

Solving the Equations of Motion

If the user provides the particle mass and the applied force, it is
easy to see that solving these three independent equations will
give the acceleration that the particle will undergo along each
Cartesian axis, by dividing by the mass. For example, for x

_ I 4

a
* m

Jane Wilhelms

Integrating to Find
the New Velocity and Position

The above equations provide the acceleration, but not the
position. A simple method of integrating this equation is referred
to as the Euler method. It is a numerical (= approximate)
solution whose inaccuracy increases as does the acceleration or the
time steps used. The Euler method assumes the present velocity
(e.g. at time {) is known and the velocity a bit (3¢) further on in
time is needed. The new velocity will be

Vigp = V; + aiét 5
Again, this is really three separate equations. For example, for x
Vielx = Vix t @50t 5a

This gives an approximation of the new velocity, but only an
approximation. See Figure 1, which represents how the velocity is
really changing over time. A point on the curve at time ¢
represent the velocity at a particular time ¢, The arrow leaving
the curve at a tangent represents the instantaneous acceleration at
that time, found from Equation 4 in the previous section. The
Euler approximation amounts to moving §¢ units along the time
axis and assumes the new velocity is where the arrow is at time
t; + ot. Note this is not on the curve. How far off the curve it is
depends on how much the curve is bending away from the arrow
and how large &¢ is. With reasonably small time steps this method
can be used without too much trouble arising.

Given the new velocity, the new position can be found by the
same method

1
Pis1 = P; + V0t + ‘2“3i5t2 6

Again, this is really three separate equations. For x,

1
Divix = Dix t vi,xat + Eai,xat2 6a

The same inaccuracy problem occurs when finding the new
position. There are better methods of numerical integration, such
as the Runge-Kutta method.¢

Dynamics for Computer Graphics: A Tutorial

69

70

Velocity

Time L t;+ot

Figure 1.

Controlling the Motion

Controlling particles is fairly simple. The user need only supply
an external force as one 3D vector, or as a normalized (length 1)
3D vector representing the direction of the force and a scalar
magnitude representing the strength of the force. It might be
desirable to have gravity act on the particle. The gravitational
force f ,,, is the product of a gravitational acceleration (about
9.81 meters/second* on earth, acting toward the earth’s center)
times the particle mass.

Others forces that might be of interest involve collisions with
other objects, and are discussed briefly below.

Rigid Bodies: Extended Masses

Assuming that the objects are extended masses, not point masses,
complicates things considerably. For now, assume that these
extended masses are rigid, and do not change shape or mass.

Jane Wilhelms

Information Needed

INVARIANT INFORMATION The necessary constant
information includes the mass m of the object, the center of mass
¢ of the object (the balance point), and a way to describe how the
mass is distributed about the center of mass. The mass is a
simple scalar.

The center of mass is a 3D vector describing a location in
space. This could be a vector from the origin of the world
(inertial) space within which all objects are placed, but then this
vector would change as the object moved. It is better to assume
some /ocal coordinate frame fixed to the object and describe the
center of mass relative to this local frame. As long as the location
of the local frame relative to the world frame is known, it is easy
to find the world space center of mass if necessary. Typically such
a local frame is already used to describe the geometry of objects
for graphics. If the center of mass is not known, picking a point
roughly at the center of the object generally is sufficient.

Describing the mass distribution can be more complex,
particularly if the mass of the objects is not symmetrically
distributed about the local coordinate frame. Mass distribution
for symmetrical objects requires three moments of inertia, one
about each axis.

I, = f(y2 + z%dm Ta
I, = f(x2 + z9dm 7b
I, = f(x2 + yHdm Tc

i.e., the sum of the masses of each particle making up the object
(dm) multiplied by the square of its perpendicular distance from
the axis.

For symmetrical bodies there are simple ways of calculating
these moments of inertia. For example, for a box with origin at
the center of mass with dimensions ¢ in x, b in y, and a in z, the
moments of inertia around the center of mass are2¢

I, = Tl—z—m(a2 + b?) 8a

Dynamics for Computer Graphics: A Tutorial

71

72

I, = %m(a2 + ¢?) 8b

I, = —l%m(b2 + b 8c
Often this bounding box is a close enough approximation.

If the object is not symmetrical, the three products of inertia
must also be found. (For objects symmetrically arranged around a
center of mass, the products of inertia relative to the center of
mass are all zero.) The products of inertia are shown below.
(Note that occasionally products of inertia are predefined as
negative quantities, making terms involving them change sign in
the dynamics equations.)!2

I, = fxy dm 9a
I, = fxz dm 9
I, = fyz dm 9¢

The units for moments and products of inertia in the SI
(metric) system are kilogram —meters>.

Often the moments and products of inertia are arranged in a
3x3 inertial tensor matrix for using in the equations of motion.

Ix _Ixy_Ixz
i = |-Ly I, -1, 10
N S

Xz Iyz z

Estimating the moments of inertia for simple symmetrical
bodies is not hard. It is also quite straightforward to find the
moments and products of inertia about any axes or points in
space given this information. For example, to find these values
for the axes of a second coordinate system whose major axes are
parallel to the previously described frame originating at the center
of mass, but displaced by (Ax,Ay,Az), the new values are

I, = I, + m(Ay? + AzZ?) lla
I, = I, + m(Ax? + Az?) 11b
I, = I, + m(Ax? + Ay?) llc

Jane Wilhelms

Iy, =1, + mAxAy 12a
I, = 1., + mAx Az 12b
r, =1L, + mAyAz 12¢

Suppose that the new frame is both rotated and translated
from the old. (Note that this case be may avoidable in
simulations, however, it is worth examining.) The values relative
to the new frame (/") can be derived from the original center of
mass frame (/") in two steps. The first step is to create a frame
(/) which is parallel to the original frame f but displaced so that
its origin is at the desired location of the origin of frame f”. This
new frame f° is created by using Equations 11 and 12. Next the
values for the rotated and translated frame f” can be derived from
f as follows. One needs the direction cosines describing how the
new x-axis is related to the old x-axis (agg,a10a20), the new y-axis
to the old y-axis (ag,a,1,a2;), and the new z-axis to the old z-axis
(@02, 12,a22).17-26

The 3x3 rotation matrix representing the orientation of a
frame can be thought of as three direction cosine (column) vectors
defining the axes of the frame. Column 0 represents the new x-
axis, column 1 the new y-axis, and column 2 the new z-axis. (To
be convinced of this relationship, try transforming the original
axes vectors ((1,0,0),(0,1,0),(0,0,1)) by the rotation matrix.)

Qoo Qo1 Qo2
Dy=| ap an an 13

azy 4z ax

Now, the new moments and products of inertia (Ix”, etc.) given
those found above in a frame parallel to that centered on the
center of gravity (Ix', etc.) are found by

I"=D, I D} 14
which, expanded, is
r, = xa(%O + ryagl + an§2 15a

= 2lag0a0 — 2La00a0; — 21001002

Dynamics for Computer Graphics: A Tutorial

73

74

I', = Ialy + I'yafy + Iab 15b

- 2Lyai0a1 — 2l a0a1; - 20.aa1

I', =I.a3 + I'a3, + I,a3 15¢
= 2L a0y — 21050y - 21, as; ay

I'y, = (agoay + anaio)xy + (oo 12 + a2 10 x; 15d
+ (@nmain + apa)y, - (@gpaiolx + apanl’y + apal;)

I'y, = (appa + an@x)y, + (@goa + ap2a20)! x; 15e
+ (@g1an + anagly, — (apaxnlx + apaxly + apaxl’)

I'y, = (aaz + anax)ly, + (@paxn + axa)l 15f
+(anay + apar)ly, — (apaly + ayaxnl’y + ajnanl’;)

This may seem like a drastic amount of trouble, but actually it
can be programmed as subroutines and made invisible to the user.
In fact, approximate quantities can be found by merely providing
a boundary box around the center of mass and assuming some
default density to the material (e.g. 1 kilogram /meter®). The
dimensions of the boundary box (a,b,c) can be used to find the
volume (axb xc meters®). Multiplying the density by the volume
gives the mass. The center of mass can be assumed to be the
center of the bounding box. The moments of inertia around the
center of mass can be found from Equation 8 above; the products
of inertia will be zero. If the frame is not at the center of mass
but translated away from it, Equations 11 and 12 can be used to
find the moments and products of inertia relative to this new
frame. If the frame is rotated, Equation 14 (or its equivalent
Equation 15) can be used to find the new moments and products
of inertia.

VARIABLE INFORMATION Rigid bodies have six degrees of
freedom. Three are translational degrees of freedom as with point
masses. Three are rotational degrees of freedom describing how
the body is oriented toward some frame of reference. Assuming a
local coordinate frame fixed to the object, the translational degrees
of freedom may represent displacement relative to a fixed inertial
world frame axes, or along the present local frame axes (or any
other axes). Similarly, the orientation degrees of freedom may

Jane Wilhelms

refer to rotation about the world space axes, or about the present
local frame axes.

Here the order of rotations will be fixed as x-rotation, then y-
rotation, then z-rotation. These are called Euler rotations. Euler
rotations can come in various orders; using the order x, then y,
then z, the x-rotation is relative to the original x-axis, the y-
rotation is about the y-axis created by the x-rotation, and the z-
rotation is about the z-axis created by the former two rotations. It
is often sensible to assume the local z-axis represents the
longitudinal axis of the body, when there is an obvious
longitudinal axis.

The other variant information involves the forces f and
torques = which cause motion to occur. If a number of forces are
acting on the body, their total translational effect can be found by
merely summing them. The center of mass of the body will move
translationally as if it were a particle mass influenced by one net
force.

A torque is similar to a force, except that it causes a rotational
motion about a particular axis. Torques can be represented as 3D
vectors describing their components about an x, y, and z-axis.
Torque vectors’ net action can be found by summing them.

If all forces are applied at the center of mass, they produce no
torque; however, a force acting at a point on the body other than
the center of mass will also cause a torque. To find a torque
about a coordinate frame’s axes due to a force f (f,.f,.f.) applied
at point p (x,y,z) (both defined relative to this frame), compute
the cross product:

r=pxf 16

This gives:
™ = [V = [z 16a
Ty = fxz = fx 16b
.= fyx - oy 16¢

Often the motion of the rigid body in terms of its body-fixed
frame is desired and the point of application of the force is in
terms of this frame, but the external force is more naturally given
in terms of the world inertial frame. An external force (or any

Dynamics for Computer Graphics: A Tutorial

75

76

other quantity) defined in the inertial frame can be converted into
the local frame by multiplying it by the matrix defining how the
world frame is oriented as seen from the local frame. This matrix
is the inverse (which in this case is the transpose) of the matrix
defining how the local frame is defined relative to the world
frame.

If multiple forces and torques are acting upon a body, these six
important net values (three force, three torque) can be easily
found (for motion relative to the local frame) by summing the
forces (in local terms) to find the net f, finding the torques caused
by these forces using Equation 16, and summing these torques
with any active pure torques to find the net torque (r). This
effectively removes the torque component from the forces. After
this is done, the net force effectively is applied to the origin of the
local frame. The local frame need not be at the center of mass for
this to be true.

Equations

With rigid bodies, dynamics become somewhat less trivial. There
are a number of formulations, and here a brief description of the
Euler method is presented. The Euler method is, perhaps, one of
the more intuitive formulations. The Armstrong method for
articulated body dynamics presented in the next section can, of
course, also be used for a simple non-articulated body.

The Euler method creates six equations: three are the
translational equations of motion relating the linear acceleration
and mass to the force, and three are the rotational equations of
motion relating the angular acceleration and mass distribution to
the torque. Altogether, they specify the behavior of the six
degrees of freedom of a free rigid body. Much of this discussion
comes from Wells.26

The 3D vector version of the translational equations describing
the motion of the center of mass is familiar, e.g.

f = ma 17

or, as 3 scalar equations,

fx=ma, ; f,=ma, ; f,=ma, 17a,b,c

Jane Wilhelms

where f is the net force and a is the linear acceleration of the
center of mass relative to inertial space. This is because the
center of mass acts as if the whole body mass were located there
and all forces are acting at that point. The effect of these forces
on rotation comes out in the rotational equations.

The force and linear acceleration could be expressed relative
to any axis, e.g. the instantaneous local axis fixed to the body, by
taking the proper components. However, they must both be
expressed relative to the same frame. This is an important point,
if the user inputs the force f ¥ reletive to the inertial world
coordinate frame and wants the linear acceleration a’ in terms of
the local frame, direction cosines (= rotation matrices) can be
used to find the components of the world space force relative to
the local frame. Another way of looking at this is to take the dot
product of the force vector (f,.f,.f,) with each axis vector (e.g., for
the x-axis, (agp,a10,a20)). The force component along the local x-
axis would be

fi = frag + fya + fYax 18

The rotational equations for motion about the center of mass
are also quite simple, assuming the products of inertia are zero
and that either the local frame is at the center of mass or the
origin of the local frame is fixed in world space. In this case,

7y = Loy + (I; — I))wyw,; 19a
Ty = Iy‘by + (U - Iwyw, 19b
7, = Lo, + (I, - I)ww, 19¢

where all values are assumed relative to the local body-fixed
frame. w is the angular velocity of the local frame relative to the
inertial frame but expressed in terms of local frame axes. w is the
angular acceleration. w is typically in radians /second and « in
radians /second?. 7 is the torque acting on the body.

Should one not be so lucky, the more general form of the
equations is below. All values are relative to a single coordinate
frame, which may be an inertial frame, but is (for our case)
probably the instantaneous position and orientation of a body-
fixed local coordinate frame. ¢ refers to the location of the center
of mass relative to this frame. a refers to linear acceleration of

Dynamics for Computer Graphics: A Tutorial

77

the origin of this frame. All other values are in terms of this
frame as well. First, the vector form of the equations is

f = ma-mecXxw+mwx(wxc) 20
T =Jw+ mexa+wxJo 21

Expanded this gives

fr = may - ey + @) + cl@y0r — &) + Clwxw; + &) 20a
fy = m(a, + clww, + &) = 60} + 0F) + Cwy0; — @y) 20b
fr = ma, + cgw, — @) + e, + o) = (0 + w})) 20c
Ty = m(a,c, — ayc;) + Loy, + (I,-1)wyw, + 2la

Ixy(wx‘-‘)z - wy) - Ixz(wxwy + w;) + Iyz(wg - w%)

Ty = m(ayC, — a;¢y) + Liwy, + (L~L)ww, + 21b
Iyz(wywx - w,) - Ixy(wywz + wy) + Ixz("-’)zc - wg)
7, = m(a,c, ~ ax0y) + Lo, + ([~I)w,w, + 21¢

Ixz(‘-‘-’y‘-')z - wy) — [yz(wxwz + <"’y) + Ixy(wz - "-’)26)

Solving and Integrating the Equations

Note the equations are simple to solve in the direct direction,
given accelerations, find the forces and torques; however, here one
wants to find linear and angular accelerations given forces and
torques (assuming the present position and velocity are known).
Thus, there are (at worst) six equations in six unknowns (a,,a,,4;,
@y, @;). Gaussian elimination or similar methods can be used to
solve for accelerations. The Euler method of numerical
integration is sometimes adequate for integration.

Controlling the Motion

Rigid bodies can be controlled by a combination of applied
torques and applied forces. Applied torques cause a rotational
motion about the axes they refer to (e.g. the body-fixed local
frame) and require a 3D vector. Applied forces involve a 3D force
vector (as with point masses) and also a 3D location vector

Jane Wilhelms

describing where the force is being applied. Typically the location
vector will be specified in the local frame.

Net force is found by summing force vectors irrespective of
point of application. Net torque is found by taking the torque
caused by these forces (using Equation 16) as well as any pure
torques and summing these. These six values are used in the six
equations of motion.

Articulated Bodies

Articulated bodies can be thought of as rigid segments connected
together by joints. There are numerous formulations of the
dynamics equations for rigid bodies, but again, they all come
down to the same thing. Some possible choices are the Euler
equations,?6 the Gibbs-Appell formulation,!421.27 the Armstrong
recursive formulation,!-2 and the Featherstone recursive
formulation.” The Euler method does not deal very nicely with
constraints at joints. The Gibbs-Appell equations, described in
appalling detail elsewhere,2” have been used for graphical
simulation but in a non-recursive form that is O(n%) in
complexity. This is computationally untenable, but if a recursive
formulation could be found it still might be a reasonable method,
as it allows considerable flexibility in designing joints. The
Featherstone method is recursive and linear in the number of
joints, and is flexible in the types of joints, and is worth exploring.

The Armstrong method is recursive and linear in the number
of joints and will be described in some detail here. It has the
slight disadvantage that it can only accommodate bodies with
freedom of movement relative to the world (6 degrees of freedom
from the body tree root and the world) and three rotary degrees
of freedom at each joint. Also bodies must be representable as
tree structures. This is fine for most animalistic figures, and
further constraints can be applied on top of the basic dynamics
using external forces or other more devious methods. The
Armstrong method has been used in graphics modeling and the
author is using it at present, using a modified version of code
originally provided by Bill Armstrong and Mark Green at the
University of Alberta.

Dynamics for Computer Graphics: A Tutorial

79

80

The Armstrong method can be thought of as an extension of
the Euler equations with multiple segments (connected rigid
bodies). Again, there are at most six equations for each joint (one
for each degree of freedom of motion). The real difference comes
in the components of the torques and forces. One must consider
not only applied forces and torques on the segment, but forces
percolating down onto the segment from the child segments, and
reaction forces at the joint between the segment and its parent.
The following equations are described in detail in Armstrong and
Green’s 1985 paper.2 They are repeated here in slightly different
terms to show their equivalence to the Euler formulations above.

Information

The same information is needed for articulated bodies made of
rigid segments as for non-articulated rigid bodies, plus a tree
describing how the segments are connected together. Each
segment can have at most one parent and zero or more children.
For convenience, the local frame should originate at the proximal
(nearer to the root) joint of a segment and the longitudinal axis of
the segment should be the local z-axis. If this convention is
followed, the third Euler rotation at a joint will always cause a
longitudinal rotation.

In simulating people and other animals, biology and
biomechanics books are useful sources of information on the
nature of organic tissue, dimensions, etc. NASA’s book on
anthropometry is also a handy reference.20

Armstrong Formulation

The Armstrong formulation is based upon the six Euler equations
described above as Equations 20 and 21. Everything is expressed
in terms of the instantaneous location and orientation of the
frame of the i-th segment.

fi = m;a; — mMm;¢; Xa')l-+m,vw,- x(wixc,-) 22

T; =Jl'(;)l'+ m,'c,»xai+w,-><J,-w,- 23

Jane Wilhelms

In Equation 22, the first term on the right comes from the
linear acceleration of frame i, the second from the angular
acceleration of frame i, and the third term from the centrifugal
force due to rotation of the frame. In Equation 23, the first term
on the right is the rate of change of the angular momentum, the
second is due to the acceleration of the frame. and the third is
due to the rotation of the frame.

If the body is articulated, the influence of neighboring
segments must be considered as well as external applied pushes
and pulls. The force can be further broken up into

fz' = miagrv,i + fext,i + Efson,i - ftopar,i 24

All these are expressed in terms of the i-th local frame. ma,,,
(= f 4y) is the force due to gravity acting on the mass of segment
i. f .y, 18 the net external force acting on frame i. f,,; is the net
force due to each son of segment / acting on segment / through
the joint joining them. f,,, ; is the net force that segment i is
applying to its parent. This force is applied by the parent back
onto the son to keep the two from separating (as described in
Newton’s Third Law), so it is negative in this equation.

The torques acting on segment i can also be broken into
components

Ti =M€y XAgy ;i + Texri + Z(Tson,i + lson X fson) ~ Ttopar,i 25

The first term on the right, m;c; x ag,; (= 7,4, ;), describes the
effect of gravity acting on the center of mass of the segment and
causing a torque at the proximal joint. 7., ; is the net external
torque applied to the segment i. ,; is the torque that a son of
segment / is applying to segment ; at the joint between them.
1,,,%f 5on 18 the torque due to the force a son segment is applying
onto segment i. 1, is a vector from the origin of segment i to the
joint between segment i and its son son in terms of frame i. 7,5, ;
is the torque that segment ; is applying to its parent segment.
Forces acting directly on segment i are assumed to have been
analyzed to find their torque component acting on segment i and
this added to the applied external torques 7;.

Finally, one more vector equation is needed that relates the
acceleration of the parent and son segments. The right side
describes the acceleration of the son’s proximal hinge due to the

Dynamics for Computer Graphics: A Tutorial

81

82

the acceleration, angular acceleration, and centrifugal acceleration
of the parent ;. All are in terms of the axes of frame ;.

Aon = A; — lgp X 0, + @; X (w; X Lson) 26

One thing to keep in mind is that though the motion is being
described in terms of the axes of frame i, the motion is relative to
inertial space, not the parent. That is, the velocity is not relative
to the parent, which may also be moving on its own, but an
inertial motion that includes the motion of the segment about its
joint to the parent plus any motion that parent may be involved
in relative to the world.

Solving the Equations Recursively

Because the body is limited to a tree structure, effects of other
segments on a particular segment is limited to effects of sons and
parent on this segment. This makes it possible to solve the
equations recursively. First the linear relationship between
angular and linear acceleration, and between linear acceleration
and the reactive force on the parent, must be recognized. K and
M are recursive coefficient matrices which relate linear
acceleration to angular acceleration (w) and to reactive force on
the parent (f ,,,,), respectively. d includes other constituents of
the angular acceleration and f’ includes other constituents of the
force on the parent. For each segment i,

‘;)i = K,‘ a; +d,‘ 27
ftopar,i = M;a; +1; 28

Note that the reactive force f ,,,,, ; acting on the parent j of
segment / is one of the f ,, ; forces seen from this parent (see
Equation 24). By some deft maneuvering (described in more
detail in Armstrong and Green’s 1985 paper), the dynamics
equations can be restated using this relationship. The four
recursive coefficients for each segment can be found in an inward
pass from the leaves of the body tree to the root. Then this
information can be used to find the accelerations of each segment
from the root back to the leaves. The root segment has no parent,
so it has no reactive force on a parent and Equation 28 can be

Jane Wilhelms

solved for the root’s linear acceleration. This can be used in
Equation 27 to find the angular acceleration of the root. This
process is repeated outward using the relationship in Equation 26
to find the linear acceleration of the son links and using this to
find their angular acceleration.

The actual steps are shown below.2 Note that R% signifies a
3x3 rotation matrix that takes vectors in a local frame into its
parent frame, and R/ gignifies a 3x3 rotation matrix that
takes vectors in a parent frame into a son frame, and that these
two are transposes of each other. R** signifies a 3x3 rotation
matrix that takes vectors in a local frame into the world frame,
and R/omvorld gionifies a 3x3 rotation matrix that takes vectors
from the world frame into a local frame, and these two are also
transposes of each other.

It is useful to compute the cross-product operation using a
tilde matrix. The tilde matrix for a vector a is a 3x3 matrix that
when postmultiplied by a vector b gives the same result as the
cross-product a x b. Thus,ab = a x b.

0 -a, a
a = a, 0 -a, 29
-a, a, O

INWARD PASS The inward pass computes the 4 recursive
coefficients and some other useful quantities that are used often.
(I have slightly simplified this step. Readers are invited to find
more quantities to efficiently precompute.) This step can be
divided into two passes: one (the slowband) need only be done
occasionally; the other (the fastband) needs to be done each time
through the dynamics loop. Remember subscripts indicate which
segment the value refers to, and superscripts indicate which frame
the value is in terms of (the default is frame i). The equations are
repeated for each segment. Summations are over all sons of
segment 7.

The slowband calculations for a segment ; are these:

A, 5on = Wi X (‘-‘)i X lson) 30
Quon = RIZIMRIomPar 31

Dynamics for Computer Graphics: A Tutorial 83

84

wson = l~son Qson 32

Ti = (Ji + 2 (Wson l~son))_l 33
Ki = Ti(2 Wson - miéi) 34
M; = (m&)K; - ml + 3 Q@ - 1,K))) 35

Along the way, torque and force information is accumulated
for each segment, 7, ,,, accumulates torques, and f, accumulates
forces. Note this assumes that external torques (r,,, ;) are being
defined in terms of the local frame (and include torques due to
external forces), but external forces (F,, ;) are in terms of the
world space frame.

Topart,i = —@iX(d;Xw;) + Téxt,i + (m;e;) x R{mmworldagr%r,lzd 36
foi = —w; x (@ X (mc;)) + Rfformworld(g world .y, worldy 37

The following equations are the fastband, and should be done
each time through the dynamics loop.

Toi = Toparty — Twopar, t 2 (Rfv%zarT?ggar,son) 38
di = Ti(Ta,i + 2 (1 son X (R.tsgli)zar ,ggﬁ + Qsonac,son))) 39
f’i = f(,’l-+(ml-cl-)><d,-+ 40

Z(R ;glr)zarf, son T Q san(a c,son I sonX d 1))

OUTWARD PASS This completes the work traversing the
tree inward. Now the tree is traversed outward; again the work
can be divided into a slow and fastband depending on whether the
information should be updated each time. First the important
accelerations of the root segment, the only one capable of
translating freely.

Arpor = _(M root)_ '’ root 41
":’roat = K root& roor + d root 42
For the rest of the segments on the way out to the leaves

a, = R{rompar(a + a;p)g; _ l%;ar P ik 43

Cslpar 'par

0:)1‘ = K,~a,»+di 44

Jane Wilhelms

ftopar,i = Miai + f’i 45

if needed to check the solution.

INTEGRATION Now integration can be performed to find
the new positions and velocities. This again consists of a step that
needs to be done each time period, and a step that can possibly be
done less often.

This step is done each time period. 6u signifies an angular
change vector accumulating orientation changes. Remember that
while these values are defined in terms of the local frame
orientation, they are inertial, including motion not only at the
joint to the parent but all motion of all ancestors back to the
world. For each segment,

Wpew = Wyig + Olw 46
Uppyw = OUyy + 0w 47

For the root segment, the linear motion is also of interest.
The linear motion of the other segments (here relative to the
world space frame orientation) can be calculated from their
angular motion.

v ;vgvcld = v gzl(zirld + (R toworld A pew 48
pl":}g‘flld = pg[%r]d + 0LV pew 49

Finally, the rotation matrices at the slowband rate arc updated
from distal to proximal (leaves to root). (Reset éu to zero after
this operation.)

RIZT = R + ou) 50

This matrix should be orthonormalized to reduce error
accumulation.®
Finally, each R"% and its inverse can be calculated

topar _ fromworldygy toworld
R new.,son R new,I R new,son 51

Armstrong and Green? suggest that the numerical instability
that sometimes accumulates and causes bodies to flail about can
be reduced by reducing the time step ¢ or by artificially
increasing the moments of inertia about longitudinal axes. The
latter method may produce some anomalous behavior, however.

Dynamics for Computer Graphics: A Tutorial

85

86

Control Issues

It is not terribly difficult to write subroutines to do the dynamics
explained above (or to borrow the code from a friendly spirit who
has done it before). The open questions involve how to use this
dynamic ability to get desirable motion and simulate constraints
nicely. Some hints at solving these problems are presented in this
section, but a great deal of work remains to be done before we can
watch simulated animals moving realistically about on our
computer screens under total dynamic control.

Clearly, the way to control the motion is to supply forces and
torques that cause or restrict motion, either directly or through
sophisticated preprocessors. Control could also be supplied in the
form of extra constraint equations that limit the degrees of
freedom involved. This method will not be discussed here.

Automatically Obvious: Gravity

The effect of gravity is easily calculated given the gravitational
acceleration (about 9.81m /sec? on the earth’s surface). Assuming
the y-axis points away from the center of the earth, the force
acting on the center of mass of each rigid body is

feoo = (0,-981,0)m 52

The torque due to this force acting in the body fixed coordinate
frame is

Toy = € X gy 53

Jane Wilhelms

External Dynamic Control

The user can shove the body about by applying forces and torques
directly.

External Applied Torques

A pure external torque causes rotation of the body about an axis,
and is specified by a 3D torque vector which is added to the net
torque vector = used in the dynamics equations for rotation.

External Applied Forces

Forces require both a 3D vector for the force itself and a 3D
vector for its point of application. If is often most convenient to
specify the force in terms of world space coordinates (converting
it to the coordinates of the local frame of the segment upon which
it is acting before doing the dynamics equations). The force itself
is added to the net force used in the translational equations of
motion f.

The position of the force is essential because the force may
also cause a torque, depending upon where it is applied. It is
usually most convenient to specify the torque in terms of the local
coordinate frame, e.g., pick a local point of application p. The
torque due to the force is found by Equation 16.

Internal Control

Internal control is mostly relevant to moving an articulated body
in the way robots and animals move themselves, by applying
torques and forces between neighboring segments. As the
dynamics formulation described for articulated bodies only
accommodates rotary joints, only internal torques, not forces will
be mentioned.

Dynamics for Computer Graphics: A Tutorial

87

88

Internal Torques

For the torque to be internal, e.g., simulating a muscle that acts
upon two neighboring segments in an equal and opposite fashion,
it should contribute to the net torque on one segment and its
negative should contribute to the net torque on its neighbor.

Internal torques are also useful for simulating joint limits, e.g.,
to keep the arm from bending backwards at the elbow. Rotary
spring and damper combinations or exponential torques can be
used to simulate them.

Positional Suggestions

Moving bodies about by suggesting forces and torques is less than
intuitive. Motion is usually imagined kinematically, as changes in
position. It is still possible to take advantage of dynamics but
have the user think in positional terms by providing a (more or
less) intelligent preprocessing step that converts positional
suggestions to forces and torques that will accomplish them.

Internal Positional Control

The user could suggest local positional changes at joints, e.g.,
rotate the elbow from 45 degrees to 60 degrees in 10 seconds.
The system could take into account the mass of the segments
moving and their present velocity and guess how much internal
torque will do this. Using super- or adaptive sampling or
feedback, reasonable torques can be found to accomplish the
desired motion. Before asking “why use dynamics at all,”
consider that only a few joints of the body need be under
positional control at any time. The rest may be left in a simple
state that is automatically dealt with, e.g., relaxed and hanging
loosely, or frozen into a local configuration.

External Positional Control: Goals

It is sometimes handy to pick a point on a body and then a point

in world space where you would like that point to be (a goal). In

this case, a force can be applied starting at the desired body point
and directed toward the goal. Finding the amount of force to pull
the body to the goal at a reasonable speed without overshooting it
or oscillating is sometimes tricky.

Jane Wilhelms

Environment Interactions

It would be nice if bodies were to react automatically and
realistically to their environment as well. Attempting this will add
to the cost of the system, because considerable collision detection
may have to be done. A simple brute force method of finding
collisions is to check for the intersection of all the bounding
vertices of an object with the bounding planes of all other objects.

Floors

Floors can be simulated with reasonable success by modeling them
as a combination of a spring and a damper. A spring supplies a
force dependent upon the amount its compressed, éc, times a
constant k.

Sopr = kbc 54

Similarly, a damper supplies a force dependent upon its velocity
times a constant.

For complex articulated bodies, it may be well not to use a
constant constant for these equations, but find some way of
automatically calculating a reasonable proportionality constant for
the body considering its total motion.

Other Collisions

Collisions with other objects are not fundamentally different from
floor collisions, though the objects’ shapes may be different and
they may be expected to move in response as well. In this case,
the collision should be recognized and the collisions forces found
before dynamics is done on the individual objects to find their
motion in response to the collisions. For simple bodies, one
might prefer to calculate the effects of collisions directly, rather
than simulating them with springs and dampers. It is also
possible to use analytic collision solutions for some bodies.!?

Dynamics for Computer Graphics: A Tutorial

&9

90

Numerical Issues

Dynamics is considerably more expensive than kinematics, but
not unreasonably so, given the rapidly decreasing cost of compute
power. Probably simple dynamics can be done on modern
personal computers without too much trouble. The bells and
whistles are costly, e.g. collision detection, joint limits, internal
preprocessed control, etc. Lots of work remains to be done on
this. Use of recursive dynamic formulations is a real boon. More
sophisticated numerical integration methods can also help,
Runge-Kutta integration is somewhat more complex to program
and takes longer per time step but much larger time steps can be
used than with the Euler method and results are more accurate.
Adaptive calculations can also help, e.g. use large time steps when
the body is falling freely but very small ones when it hits the floor.
A clever adaptive idea (thanks to Ralph Abraham, UC Santa
Cruz) is to do a 5th order and a 4th order Runge-Kutta integration
and if they deviate more than some allowed amount, redo them
with a smaller time step.

Who is doing it?

This is by no means a complete list, but the people and places that
are now involved in using dynamics for computer graphics include
the author and Matthew Moore!$:19.29 (at UC Santa Cruz), Bill
Armstrong and Mark Green (at the University of Alberta),!2.3.4
Dave Forsey (at the University of Waterloo),3! Michael Girard
and A. Maciejewski!%!! (at the Ohio State University), Dave
Haumann!3 (also at the Ohio State University), Isaacs and
Cohen!5 (at Cornell), Al Barr (at CalTech) with Kurt Fleischer,
John Platt, Dimitri Terzopoulos, and Andrew Witkin (at
Schlumberger Palo Alto Research or SPAR).525.32 (The last
reference, while not really dynamics, is intuitively similar and
could be integrated into a dynamic system.) There are no doubt
many others involved in engineering uses of computer graphics
who also use dynamic simulations, but the author has no specific
references to their work. There are also software packages

Jane Wilhelms

available for doing dynamics, though they tend to be expensive
and (being extremely general) slow.

Summary

Use of dynamics for computer graphics has reached the point
where it can be used usefully for animation and modeling. It is
possible not only to generate motion for flexible or articulated
rigid bodies using the dynamics equations of motion, but also, at
least simplistically, to model constraints, collisions, and control
the motion through positional suggestions. Certainly, more
sophisticated and efficient methods need to be developed. Beyond
these low-level issues of dynamic control, we now need to look
ahead to issues of high-level control and coordination.!0.24.33 For
this we should explore the related fields of robotics, mechanical
engineering, biomechanics, biology, and control theory.

References

1. W. W. Armstrong, Recursive Solution to the Equations of Motion of
an N-link Manipulator, Proceedings Fifth World Congress on the
Theory of Machines and Mechanisms, pages 1343-1346, American
Society of Mechanical Engineers (1979).

2. W. W, Armstrong and M. W. Green, The Dynamics of Articulated
Rigid Bodies for Purposes of Animation, Proceedings of Graphics
Interface ‘85, pages 407-415, Canadian Information Processing
Society (May 1985).

3. W. W. Armstrong, M. W. Green, and R. Lake, Proceedings of
Graphics Interface 86, pages 147-151 (May, 1986).

4. W. W. Armstrong, M. W. Green, and R. Lake, Near-Real-Time
Control of Human Figure Models, IEEE Computer Graphics and
Applications 7(6) pages 52-61 (June 1987).

5. A. H. Barr, Dynamic Constraints, SIGGRAPH 87 Tutorial Notes:
Topics in Physically-Based Modeling (1987).

6. S. D. Conte and C. de Boor, Elementary Numerical Analysis: an
Algorithmic Approach, 3rd Edition, McGraw-Hill Book Company,
New York (1980).

Dynamics for Computer Graphics: A Tutorial

91

92

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. R. Featherstone, The Calculation of Robot Dynamics Using

Articulated-Body Inertias, International Journal of Robotics
Research 2(1) pages 13-30 (Spring, 1983).

. R. P. Feynman, R. B. Leighton, and M. Sands, in The Feynman

Lectures on Physics, California Institute of Technology, Pasadena,
CA (1963).

D. T. Finkbeiner, II, Introduction to Matrices and Linear
Transformations, W. H. Freeman and Company, San Francisco,
CA (1960).

M. Girard, Interactive Design of 3D Computer-Animated Legged
Animal Motion, IEEE Computer Graphics and Applications 7(6)
pages 39-51 (June 1987).

M. Girard and A. A. Maciejewski, Computational Modeling for the
Computer Animation of Legged Figures, SIGGRAPH "85 Conference
Proceedings 19, pages 263-270 (July, 1985).

D. T. Greenwood, in Principles of Dynamics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

D. Haumann, Modeling Flexible Bodies, SIGGRAPH 1987 Tutorial
Notes: Topics in Physically-Based Modeling (July, 1987).

R. Horowitz, Model Reference Adaptive Control of Mechanical
Manipulators, PhD dissertation, Mechanical Engineering, University
of California, Berkeley (May, 1983).

P. M. Isaacs and M. F. Cohen, Controlling Dynamic Simulation
with Kinematic Constraints, SIGGRAPH 1987 (July, 1987).

C. S. George Lee, R. C. Gonzalez, and K. S. Fu, Tutorial on
Robotics, IEEE Computer Society Press, Silver Spring, MD (1983).

W. G. McLean and E. W. Nelson, Theory and Problems of
Engineering Mechanics, Schaum’s Outline Series, McGraw-Hill
Book Co., New York (1978).

M. Moore, A Flexible Object Animation System, Masters thesis,
Computer & Information Sciences, University of California, Santa
Cruz (September, 1987).

M. Moore and J. Wilhelms, Collision Detection and Response for
Computer Graphics, Submitted for Publication, 1987.

NASA, Anthropometric Source Book, NASA Scientific and Technical
Information Office (1978).

L. A. Pars, A Treatise on Analytical Dynamics, Ox Bow Press,
Woodbridge, CT (1979).

Jane Wilhelms

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

R. P. Paul, Robot Manipulators: Mathematics, Programming, and
Control, The MIT Press, Cambridge, MA (1981).

R. Resnick and D. Halliday, Physics Part I, John Wiley & Sons,
Inc., New York (1966).

C. W. Reynolds, Flocks, Herds, and Schools: A Distributed
Behavioral Model, Computer Graphics 21, pages 25-34 (July, 1987).

D. Terzopoulos, J. Platt, A. H. Barr, and K. Fleischer, Elastically
Deformable Models, SIGGRAPH 1987 (July, 1987).

D. A. Wells, Lagrangian Dynamics, Schaum’s Outline Series,
McGraw-Hill Book Co., New York (1969).

J. Wilhelms, Graphical Simulation of the Motion of Articulated
Bodies such as Humans and Robots, with Particular Emphasis on
the Use of Dynamic Analysis, PhD dissertation, Computer Science,
University of California, Berkeley (July, 1985).

J. Wilhelms, Virya - A Motion Control Editor for Kinematic and
Dynamic Animation, Proceedings of Graphics Interface 86, pages
141-146 (May, 1986).

J. Wilhelms, Using Dynamic Analysis for Animation of Articulated
Bodies, IEEE Computer Graphics and Applications 7(6) (June, 1987).

J. Wilhelms and B. A. Barsky, Using Dynamic Analysis for the
Animation of Articulated Bodies such as Humans and Robots,
Proceedings of Graphics Interface ‘85, pages 97-104 (May 1985).

J. Wilhelms, D. Forsey, and P. Hanrahan, Manikin: Dynamic
Analysis for Articulated Body Manipulation, Computer and
Information Sciences Board, University of California, Santa
Cruz (April, 1987). Tech. Report UCSC-CRL-87-2.

A. Witkin, K. Fleischer, and A. H. Barr, Energy Constraints on
Parameterized Models, SIGGRAPH 1987 (July, 1987).

D. Zeltzer, Motor Control Techniques for Figure Animation, IEEE
Computer Graphics and Applications 2(9) pages 53-60 (November,
1982).

[submitted Oct. 22, 1987; revised Nov. 9, 1987; accepted Nov. 19, 1987]

Dynamics for Computer Graphics: A Tutorial

93

