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ABSTRACT: SOS (SOMIW Operating System) is the
result of a four-year effort at INRIA to define an
object-oriented operating system. SOS provides sup-
port for arbitrary, user-defined, typed objects. The
system implements object migration; this mechan-
ism 1s generic, but can be tailored to specific object
semantics thanks to the prerequisite and upcall con-
cepts. SOS also supports Fragmented Objects (FOs),
1.e. objects the representation of which spreads
across multiple address spaces. Fragments of a sin-
gle FO are objects that enjoy mutual communica-
tion privileges. A fragment acts as a proxy, i.e. a
local interface to the FO.

All the other mechanisms of SOS are built upon
these basic abstractions. Thanks to prerequisites,
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migration of data may cause the migration and
dynamic type-checking and linking of the
corresponding code. A distributed object manager,
an object storage service, a naming service, as well
as a protocol toolbox and some applications, have
been built as FOs.

This paper gives a detailed account of the architec-
ture and design decisions of the SOS prototype on
UNIX. We examine both good decisions and prob-
lems. The basic good decision is our simple object
model, and its ability to map user-defined semantics
(policy decisions) on system-implemented mechan-
isms. The most important problem is the dynamic
nature of Fragmented Objects, and inadequate sup-
port for them.

1. Introduction

Object-oriented programming methodology is becoming increas-
ingly popular for all sorts of applications. Many object-oriented
programming languages exist, such as Smalltalk [ Goldberg & Rob-
son 1983], Eiffel [Meyer 1987], C++ [Stroustrup 1985], CLOS
[Gabriel 1989], etc. Each compiler enforces its own object model,
and deals with the inadequacies of existing operating systems in
its own way.

The main goal of the SOR (French acronym for Distributed
Object-Oriented Systems) group of INRIA is to implement an
object-oriented distributed system which offers an object manage-
ment support layer common to all applications and languages.

- This should:

« offer a more simple universe for the development of applica-
tions;

« facilitate the implementation of object-oriented language
compilers;

288 M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot



« make applications more efficient;

« allow independent applications to communicate and share
objects, without prior arrangement.

The services of the common object management support layer
include support for creating, deleting, migrating, storing, localiz-
ing, and invoking objects. If these services are sufficiently com-
plete, low-level, generic, language-independent, application-
independent, and efficient, then they can legitimately be called an
object-oriented operating system.

Within the office-workstation Esprit project SOMIW (Secure
Open Multimedia Integrated Workstation), from 1985 to 1988, we
have built a prototype called SOS. It has been used for the
SOMIW applications, such as BFIR2, a multimedia document tool-
box, and Images, an user-interface management system. SOS is
written in C++ and prototyped on top of UNIX.

SOS supports an elementary object model which is both simple
and powerful. A reasonable granularity is of the order of a hun-
dred bytes and up per object. Composite objects are built on top
of elementary object mechanisms.

SOS is designed to encourage the use of the proxy principle
[Shapiro 1986] for structuring distributed applications. It extends
the object concept to distributed, or “fragmented” objects. Exter-
nally, a fragmented object appears to be a single object. Its inter-
face is provided by its local fragments or proxies, which are ele-
mentary objects. Internally, the many fragments are distributed.

SOS is built using its own mechanisms: all the SOS system ser-
vices are implemented as fragmented objects with local proxy
interfaces.

This paper presents SOS, the decisions we made in designing
it, and an assessment of the prototype.

The next section provides an overview of the main concepts of
SOS. Section 3 is about elementary objects. It is followed by sec-
tion 4, an explanation of fragmented objects. Follows section 5,
which discusses object migration. Sections 6, 7, 8, 9, describe the
main services of SOS: communication, dependencies, persistence
and naming. Finally, in section 10, we give an assessment of the
design and implementation of the prototype.
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2. Overview of SOS

SOS is an object-oriented operating system. It provides support
for arbitrary user-defined objects, including object creation, des-
truction, migration, storage, localization, communication, naming,
support for Fragmented Objects, etc.

2.1 SOS concepts

An Elementary Object is some user-defined set of data and code.
Elementary Objects don’t need to be known by the system, if they
are not intended to be migrated, stored or remotely accessed. For
such objects, which we call plain objects, the system doesn’t keep
any information. In this paper we are only interested in the
objects managed by SOS which we call SOS objects; we will con-
sider that all Elementary objects are SOS objects.

Elementary Objects have a system descriptor.! Considering
the overhead due to the descriptor existence and its management,
a reasonable granularity for the object data part is a size of 50 or
100 bytes and up.

We assume that the data part is accessed only via its type-
checked procedural interface. An object accesses system services
by calling the appropriate primitives; we call this a downcall.
Conversely, the system can invoke, with an upcall, a few well-
known procedures of an object.

An object is mapped into a context. A context is an address
space. It may contain any number of Elementary Objects. Ele-
mentary Objects may migrate between contexts; at any point in
time, an Elementary Object is active within a single context, or
stored on disk.

Each object has an unique identifier called its concrete OID.
An object is designated by its address (within the context), or glo-
bally by a reference containing an OID and a location hint.

SOS extends the object concept to distributed or Fragmented
Objects. A Fragmented Object is implemented as a group of Ele-
mentary Objects which can be located in several contexts, on

1. Composite objects, with multiple data segments connected by pointers, are built on
top of Elementary Objects, but will not be considered here.

290 M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot



different sites; its representation is the reunion of the local “frag-
ments.” Just as an Elementary Object can access its own
representation, bypassing the procedural interface, similarly the
individual fragments of a Fragmented Object are allowed to use
untyped communication to each other: invocation of fragments
belonging to different contexts, called cross-context invocation,
shared memory, etc. Objects which are not fragments of a same
Fragmented Object are not permitted to communicate in this
manner.

A fragment may create and add a new fragment to the group,
and export it to another context. Group membership is preserved
across migration; thus the Fragmented Object grows by spreading.

Applications on SOS are designed according to the “proxy
principle” [Shapiro 1986]: services are composed of three kinds
of Elementary Objects: servers, proxies and providers. The server
is an object which is able to serve requests. The proxy is a local
Elementary Object, which represents the service. Each client
which wants to access a service, must have a proxy of this service
in its context. The provider is in charge of providing proxies on
client request. For clients, the proxy is the only interface to the
service. A proxy can process requests locally, or forward them to
the remote server (see figure 1).

The proxy principle is a powerful and flexible tool to structure
distributed applications. The use of proxies allows to enforce
security in the system and ensure a large location transparency.

2.2 The SOS prototype

Our prototype is implemented in C++ on top of UNIX (SunOS).
This article describes SOS Prototype Version 5.

SOS comprises a kernel and system services running on top of
it. The kernel provides separate address spaces (contexts), light-
weight threads in a context (tasks), and inter-context communica-
tion. Programming for SOS requires the use of predefined
libraries and a modified C++ compiler.

SOS objects are instances of the predefined class sosObject (or
of a compatible class). C++ has so-called virtual procedures [ Gau-
tron & Shapiro 1987]. A class may override the pre-defined
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Figure 1: The proxy principle:
A service implemented as a fragmented object

actions of these procedures. Upcalls are performed by calling
sosObject’s virtual procedures. Unfortunately, this is not
language-independent.

Separate address spaces are provided by UNIX. Tasks are
implemented as a library (the task library of C++ [Stroustrup &
Shopiro 1987] with some additions). Context management is per-
formed by a UNIX process called sos. Inter-context communica-
tion uses UNIX-domain stream sockets. Remote communication
uses the SOS protocol toolbox [ Makpangou 1989].

On each machine and for each system service, the program
sos automatically starts system-service contexts set. Applications
are run from the UNIX shell or the debugger.

The system services are structured as Fragmented Objects.
Four basic system services are available:

The Acquaintance Service. This is the distributed object manager.
It deals with localization, migration of objects, in coopera-
tion with the communication and storage services. Each
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context has an Acquaintance Service proxy at instantiation
which yields to the context the basic operations on Elemen-
tary Objects (see section 3).

The Communication Service. The Communication Service pro-
vides communication between sites, and a set of invocation
protocols allowing remote procedure calls and multicast (see
section 6).

The Storage Service. The Storage Service handles the generic
aspects of object persistence. It defines a minimal set of
simple and generic tools to make storage of typed composite
objects handled quasi-automatically by the system (see
section 8).

The Name Service. The name service manages the binding of
internal names to symbolic names. Any object can be
named in the same manner. The name service allows
clients to build their own view of the name space (see
section 9).

After a comparison with similar work, we will take a deeper
look at the design and implementation of the SOS prototype, and
evaluate it in the light of our experience. For more detailed infor-
mation about SOS, see SOR [1989] and SOR [1988].

2.3 Comparison with similar work

Emerald is an object-oriented language for distributed program-
ming, featuring fine-grained mobility [Jul et al. 1988]. The com-
piler transforms the user-defined object representation in order to
facilitate migration: its first few bytes are a standard descriptor,
and all fields of a similar type are grouped together. Conceptually,
all objects live in a single, network-wide address space. An object
reference is global, but a local reference is optimized into a
pointer.

In contrast, the SOS approach is operating-system based. We
do not assume any standard representation. Instead, system infor-
mation is well separated from programmer-defined data, and the
system performs upcalls on objects. Instead of a single address
space, we stress structuring the universe.
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Choices [Campbell et al. 1989] is a family of operating systems
built using object-oriented design. The services it exports to
applications are fairly conventional. The emphasis in SOS was not
its internal design, but providing new services to facilitate the
implementation of distributed object-based applications.

Clouds [McKendry 1985] is another object-oriented OS. Its
emphasis is on integrating support for reliable objects in the low
level of the system (Our current design has no particular provi-
sions for reliability.). Their objects are presumably much larger-
grained than ours, since a Clouds object executes in its own
address space.

Guide/Comandos [Decouchant et al. 1989] is a language-
driven distributed programming environment. The universe is
structured in separate, multi-machine address spaces called
domains. When a domain needs access to an object located on a
remote machine, it extends itself to that machine, and maps the
object in. This structure is easier to use than SOS’s Fragmented
Objects; however the latter scales better, and deals better with
replication.

Gothic [Banatre et al. 1986], a language and system for reliable
distributed programs, is based on a theory of Fragmented Objects
invoked via “multi-functions” (side-effect-free invocations, with
co-ordinated distributed threads), supported by the language. Our
Fragmented Objects are ad-hoc but more flexible.

3. Elementary Objects

The basic entity managed by the SOS Acquaintance Service (AS)
(i.e. the object manager) is the Elementary Object. We have made
the Elementary Object as simple as possible, a “least common
denominator” for all uses.

An Elementary Object is a single user-defined data segment,
with a system descriptor. (Composite objects, with multiple, arbi-
trary data segments connected by “permanent pointers” are built
on top of Elementary Objects; we deal with them in section 8.)

At any point in time, an Elementary Object exists in a single
context on a single machine. Each Elementary Object is different
from all others; it is characterized by its own unique identifier
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called its concrete OID. An Elementary Object is known to SOS by
its descriptor, called Acquaintance Descriptor (AD). There is a
table of ADs per context, managed by the context’s AS proxy.

An AD for some object contains the following information (the
items in italics have to do with migration and groups, and will be
defined later):

« Its concrete OID and (possibly) a list of group OID’s,

« The reference of its code object and (possibly) a list of
prerequisites,

» The address and size of its direct segment,
o (Possibly) Its list of channels.

The class code is a predefined class of Elementary Objects. A
code instance holds the compiled code for some class. For
instance the code for some user-defined class X is managed by the
code instance code for X. The reference from the AD to the
object’s code is necessary for migration. Modeling the code as a
separate object is an example of uniformity and reuse: the system
treats a code instance just like any other object.

The following table gives the downcall interface for
elementary-object management. There are no upcalls.

In this and the following tables, we use a pseudocode notation
for simplicity. The clause “a.b(c)—->d”” means: invoke procedure
b of object a, with argument c, and returning value d. Object AS
is the proxy of the Acquaintance Service.

new sosObject () — obj Object creation
obj . delete ) Object destruction
obj . setCodeRef (ref) Set code reference of object

AS . find (ref1, radius) - ref2 Search for object location

AS . getAddress (ref) - obj Translate global reference to
local address
AS . getReference (obj, 0ID) Translate address to global
- ref reference

Downcalls for elementary-object management
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3.1 Creation and destruction of
Elementary Objects

In C++, creating an object triggers a chain of calls to constructor
procedures, starting from the actual implementation class, up to
the root of the inheritance tree (in this case, sosObject), and back
down to the implementation class. A constructor is a mix of
compiler-generated and user-defined code. Memory for the object
is allocated (by malloc) in the compiler-generated part of the
implementation class constructor; its address passed up, as the
object’s address, to the sosObject constructor.

Thus, there is no explicit primitive for object creation: it is
implicit in the sosObject constructor, which allocates an unused
AD, and fills it with a newly-allocated OID, and with the address
and size of the data.

The size of the data is not explicitly available to the sosObject
constructor: it is taken from the malloc header. The reference to
the code object is not available either; the constructor sets it to
nil. The other parts of the AD are also initialized to nil.

The implicit AS interface for object deletion is the destructor
procedure of sosObject, called automatically when an instance is
deleted, similarly to the constructor. The destruction of a context
or a processor crash deletes all the contained instances, but the
destructor may not be called. We have designed a new mechan-
ism to reliably propagate object-destruction events to dependents
of an object (see section 7).

3.2 Miscellaneous Elementary Object
management procedures

The find procedure of the AS, given a reference to an object,
finds the actual location of the object (possibly by asking all the
AS proxies within the specified radius), and returns a reference
containing that exact location. If the argument is a reference to a
group (see section 4), the returned value is the reference of its
closest fragment.

AS.getReference and AS.getAddress translate between local
object addresses and global references. If getAddress is passed a
reference of a group (see section 4), it returns the address of its
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local proxy, if any. The 01D argument of getReference allows to
pick between a reference to the Elementary Object itself, or to its
group.

3.3 Elementary Objects: assessment

3.3.1 Code objects

The code of an object is modeled as a separate object, an instance
of class code, attached to its Elementary Object by a call to
setCodeRef. The system treats it just like any other object. This
is an example of the power of our elementary-object model. As
we will see (in section 5.3), dynamic type-checking and linking is
performed automatically. They are not wired into the system, but
are performed by the class code reinitializer. This is an example
of uniformity of treatment and reuse of generic functionality at
the service of specialized semantics.

3.3.2 Creation and destruction

An object is created either as a plain object or an SOS object, and
remains such for all its existence. A useful degree of flexibility
would be to allow an existing object to become known to the sys-
tem dynamically.

The object-creation scheme outlined in section 3.1 is con-
venient for the C++ application programmer, because the compiler
automatically takes care of calling the object creation and destruc-
tion primitives.

One drawback is that the system interface is not clearly
identified and not language-independent. Another problem is that
the sosObject constructor does not have all the necessary infor-
mation; for instance the size of the data is obtained by the
mal Loc-header hack. Similarly, the code reference can not be set
by the constructor; a separate call to setCodeRef is necessary prior
to migration.

The convenience of automatic creation should be kept, but
more information is needed from the compiler to make it
effective. Furthermore, convenience for C++ programmers is no
excuse for not defining a language-independent interface.
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4. Fragmented Objects, or groups

A Fragmented Object is the structure for a distributed application.
The purpose of a Fragmented Object is distributed communica-
tion and cooperation, without interference from other objects.

It is implemented as a group of Elementary Objects, called its
fragments. Alternatively, a group can be viewed as is a single
object with a fragmented representation. Clients of the group may
access it locally by its strongly-typed procedural interface, pro-
vided by the proxy fragments. The group’s public interface is a
sort of a union of its fragments’ interfaces.

Just as an Elementary Object may access its own representa-
tion directly, bypassing its public interface, similarly a fragment
may access the group’s internal representation. Therefore frag-
ments may communicate, via untyped shared memory or by mes-
sages for instance.

A group is conceptually a protection domain, entered by
invoking one of its local proxies.

The following table shows the interfaces for group manage-

ment.
AS . addGroupOID (obj, OID) Create a new group
— index
obj1 . giveMyQID (obj2, index1) Put obj2 in same group as
obj1
new channel (obj1, objo0, Establish channel from obj1
opaque) — chi1 to objo
new channel (obj2, ch1, Duplicate channel
opaque) — ch2
ch . invoke (callMsg) Remote invocation
— replyMsg
ch . send (callMsg) — inv Asynchronous remote
invocation

Group downcall interface

obj . stub (callMsg) — replyMsg Invoke object, return reply

ch . receivelnvoke (callMsg) Channel receives invocation
- replyMsg

Group upcall interface
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A group is characterized by the fact that each fragment carries
the OID of the group, in addition to its concrete OID. An Elemen-
tary Object can be a fragment of zero, one, or more groups.

Members of a group enjoy mutual communication privileges,
which are denied to non-fragments. An invocation channel is a
unidirectional RPC connection between two Elementary Objects
on the same machine, materialized by a field in the source object’s
AD pointing to the target. (Channels to remote machines, and
channels implementing other protocols, are explained in
section 6.)

Other types of communication within the group, such as
shared files, are also available, but will not be detailed here.
Shared memory should be possible, but we never implemented the
appropriate interfaces.

4.1 Group management

The primitive addGroup01D assigns a fresh group OID to an object,
in order to start a new group. It returns the index of the new OID
in the object’s AD’s identifier list.

A group is created implicitly by giveMy01D, which gives away
an existing concrete or group OID (designated by its index in the
list of OID’s of obj1), to some object.

A group disappears when its last fragment goes away.

4.2 Channels

A channel may be created only between fragments of a same
group. The first channel creation procedure creates a channel
between its argument objects, which must be located in the same
context. Objects connected by a channel can be migrated. The
second channel creation procedure duplicates an existing channel:
before the call, obj1 has a channel ch1 to some fragment, say
objO0; after the call, obj2 also has a channel ch2 to the same
receiver. This is the only way to create a channel to an object in
another context.

As its name implies, the opaque argument is not interpreted by
the system. It is simply stored at the sender end of the channel,
and will be automatically prepended to every invocation sent on
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it. The receiver may test the opaque field of remote invocations
to distinguish between its callers, for instance to establish their
access rights.’

4.3 Using channels for cross-context
invocation

The channel operation invoke sends an invocation on a
fragment’s channel to some other fragment, possibly located in
some other context, and returns a reply. The send operation is
similar, but executes asynchronously; it returns an invocation
object which can be queried for results. Discussion of invocation
objects is deferred to section 6.1.2.

Remote invocation arguments must be “marshalled” [Birrell &
Nelson 1984] by the calling proxy, and passed to invoke or send
as a message. A message is composed of a header and of a list of
segment access rights. The message header is of limited size (1024
bytes); any larger data is to be stored in a segment and passed as a
segment right.> Available rights are read, write, and create. A
reply is also made of a limited-size message and, possibly, segment
rights. '

A cross-invocation causes an upcall to the stub procedure of
the receiver within a fresh task. The receiver gets a copy of the
invocation message, and may access the segments according to the
rights passed. Stub returns a return message which is copied back
to the caller. '

It is up to stub to unmarshall the call message and segments,
call the appropriate procedure, and marshal its results into the
reply message and segments. It plays the role of Nelson’s “server
stub” [Birrell & Nelson 1984].

A channels’ receiveInvoke procedure may perform some local
processing of the message at reception. It is the counterpart of
invoke, for end-to-end protocols. The receivelnvoke of a receiv-
ing channel is called before the stub of the receiver object.

2. The opaque attribute of a channel is similar to the rights field of a capability in
Amoeba [Mullender & Tanenbaum 1986].

3. This is modeled after the V-System RPC [Cheriton 1984].
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4.4 Fragmented Objects: assessment

4.4.1 Cross-context communication

This is our second design for the cross-context communication
interface. Our previous one (see for instance [Shapiro 1989]) was
much more primitive and exposed the kernel data structures. The
new design uses channel and invocation objects to smooth the
kernel interfaces. The use of objects allows us to overload the
basic invoke and send, for instance for multicast protocols (see
section 6).

4.4.2 Constructing a group

Currently each fragment type is programmed “by hand,” and
there is no guarantee of consistency even within a particular type
of group. We are working on a new tool, a “fragment generator”
(similar to an RPC stub generator). It will take care of the com-
mon aspects of programming fragments and providers (viz. allo-
cating group OID’s, setting up channels, and message marshalling
and unmarshalling). It will also allow to define group types with a
well-defined structure, and enforce their internal consistency at
compile time. Finally, it will provide help in coordinating state
changes between fragments.

4.4.3 Protection

Only the currently-executing Elementary Object should have
access to its own channels; similarly for other primitive opera-
tions. The kernel attempts to enforce this, taking advantage of the
fact that the C++ compiler adds the address of the invoked object
as a hidden first argument to all invocations. When invoke or
send is executed, the kernel checks that the sender identification,
in the channel data, is equal to the current object argument of the
penultimate stack frame.

The situation is similar with many system primitives.

Getting the current Elementary Object from the stack is a
weak way of enforcing the group protection domain at run-time.
Given our environment (vanilla UNIX and standard hardware),
and the granularity of objects, it was unfeasible to implement a
stronger form of run-time protection at a reasonable cost. A
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stronger enforcement would be desirable, but weak enforcement is
acceptable, because groups are intended as a program structuring
concept, not a confidentiality mechanism.

To provide some protection of the group against spurious
membership, giveMy0ID and channel creation can only connect
objects within the same context. The normal way of creating a
group is to create proxies locally and migrate them (see below) to
another context; group membership and channels are preserved
across migration.

4.4.4 Non-uniform object identity

An Elementary Object has two different identities: its address;
and a location-independent reference (containing its OID). An
address is not meaningful outside of its instantiation context. It
needs to be explicitly translated into a reference (by
getReference) in order (for instance) to be embedded in a mes-
sage.

A client of some service need not be aware of these distinct
identities, as the service is accessed using the address of the local
proxy.

In contrast, the programmer of a Fragmented Object must
cope with them. Within the Fragmented Object, some Elementary
Objects are local to each other, and others are in remote contexts.
Communication between the former use addresses and local invo-
cation; between the latter, references and cross-context invocation.

SOS offers tools to bridge this gap. Permanent pointers (sec-
tion 8) automatically convert between references and addresses.
Channel objects help hide the distinction between different modes
of invocation. Finally, dependencies (section 7) replace explicit
invocation by a more uniform mechanism for broadcasting state
changes.

Some other systems, such as Emerald [Jul et al. 1988] and
Amber [Chase et al. 1989] provide a more uniform view. In these
systems, the local-address / global-reference distinction exists but
it is hidden to programs, by providing a single, network-wide
address space, and compiler support for trapping remote access.
Similarly, Guide [Balter et al. 1987] supports multiple network-
wide address spaces. An object is identified only by its global
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reference. An object used by many applications is simultaneously
mapped into each corresponding address space.

These systems are more tightly integrated than SOS, but
require a close coupling between compilers and the run-time sys-
tem. They are often restricted to a single, specially-designed
language.

4.4.5 Future work

The problems of run-time object protection and non-uniform
object identity are two symptoms of inadequate memory organiza-
tion.

Proposals for the evolution of SOS include merging references
and permanent pointers.

A structured memory organization, like that offered by capa-
bility machines, might improve run-time protection. A more
attractive idea is to enforce the integrity of the group at compile
time. Our proposed “fragment generator” (section 4.4.2) is a step
in this direction.

An intriguing alternative would be to implement a Fragmented
Object as a network-wide virtual address space. This should sim-
plify the programming of Fragmented Objects considerably.

5. Migration of Elementary Objects

A Fragmented Object implements some distributed service. Its
public interface is provided locally by its fragments, which act as
proxies for the service. In order to get access to a service, a client
must acquire an appropriate proxy. This is done dynamically by
migrating a fragment into the client’s context.

Migration is completely generic, thanks to appropriate upcalls
(an upcall to giveProxy initializes an importation; an upcall to a
reinitializer finalizes migration), and to the code and prerequisite
objects.
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5.1 Migration interface

The migration interface is given in the following table.

AS . import (key, importReq, Request import of obj of type
"class", service) — obj class
obj2 . ch . export (desc?) Export object 1 along channel
of obj2
obj . giveSelf () - desc Use “move” semantics for
migration of obj
obj . giveCopy () — desc Use “copy” semantics for

migration of obj

Migration downcall interface

obj . giveProxy (importReq) Import request
— desc
obj . re-init (...) Finalize migration

Migration upcall interface

There are two possibilities for migration: import and export.
Both use the algorithm exposed below, in section 5.2: migrate
descriptor and data, recursively import code and prerequisites,
call reinitializer.

We will first detail export, the simpler of the two. In section
5.1.2 we detail import. Finally in section 5.1.3 we give a typical
SOS example: importing a proxy for a screen window.

5.1.1 Exporting

The call ch2.export (desc1) migrates an object obj1, described
by desc1, along the channel of obj2 indicated by ch2. Either
obj1.giveSelf() or obj1.giveCopy() is used to prepare desc1.
Export uses the migration algorithm of section 5.2; using giveSelf
implies “move” semantics whereas giveCopy implies “copy”
semantics. The object on the other end of the channel will receive
a special invocation message, signalling the arrival of an exported
object.
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5.1.2 Importing

To acquire a proxy for a new service, a client will request an
import from a proxy provider for that service, via the Acquain-
tance Service call import, which upcalls the provider’s giveProxy.
This procedure prepares a local object, which is then migrated
back to the caller.

An easy-to-use import interface is implemented by a C+~+ com-
piler extension. The following extended C++ construct:

new dynamic (service) class (importReq, ...) — obj

generates a call to As.import followed by a call to the proxy’s re-
initializer. Its arguments are: service, the reference of an object
which will be requested to provide a proxy for the service, and
impor tReq, an import request message carrying untyped request
parameters. The AS automatically adds to the import request the
reference of the requestor. Possible extra arguments (indicated by
the ellipsis) will be passed to the re-initializer.

The other arguments to AS. import are automatically generated
by the compiler: key describes the expected type of the imported
object; and “class” is the name of the class in the new dynamic
declaration, which is used to select a default provider, but is not
otherwise used.

The mechanics of importation are the following. The AS
proxy of the requestor performs a find based on the service
reference. This yields the location of the provider object (or of
one of its fragments if the provider is a Fragmented Object). The
AS proxy at that location then performs the giveProxy upcall on
the provider, with a copy of the import request, carrying sufficient
information to identify the requestor.

After verifying the request and the requestor’s credentials in
some service-specific way, the provider’s giveProxy selects some
object M to be migrated, and calls either giveSelf or giveCopy, as
above, to prepare a description which it returns; alternatively, it
may return an error indication. The object M could be the pro-
vider itself, or some other object of its context, or a stored object.
In the latter case it must be of the same group. When giveProxy
returns, M is migrated to the requestor, according to the algorithm
of section 5.2.
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Figure 2: Before migration:
the Window Manager has created a Window Proxy and
a Window Server and has connected them

At the end of a migration (step 5) a re-initialization procedure
is up-called, to allow finalization. A typical use of the re-
initializer is to set pointers to meaningful values, or to request
more importations.

5.1.3 Importation example

Consider the example of a request to open a window on the
screen. In SOS this will be an import request for a window proxy,
addressed to the window manager. The window manager is the

306 M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot



proxy provider. It will create a window proxy P, which will be
exported to the requestor as its window interface, and a window
server S, which will do the graphics. This example is illustrated
by figures 2 and 3.

The giveProxy code of the window manager will: put P and s
into a newly-created group; connect them with a channel; and
return P as a result.

The provider code will look some thing like the following.*

windowMgr :: giveProxy (importRequest) — desc {
- check requestor’s rights and arguments
if (notOK (importRequest))
then raise (refused)
fi

- create proxy and server, put them in a group
P: windowProxy :=

new windowProxy (importRequest.args)
S: windowServer :=

new windowServer (importRequest.args)
i: integer := addGroupOID (P, mew OID)
P . giveMyOID (S, i)

- prepare P for migration: set code, create channel
P . setCodeRef
( NS . lookUp ("/export/windowProxy.code™) )

- suppose P has a field chan of type channel
P . chan := new channel (P, S, "my proxy")

- migrate P
return (P . giveSelf())

5.2 Migration algorithm

Suppose Elementary Object X is to be migrated from source con-
text s to destination context b. The algorithm starts when the
decision to migrate X has been notified, and all access rights have
been checked; we will ignore error cases. The algorithm is the fol-
lowing.

1. Make X unavailable to users in S.

4. The lookuUp operation of the Name Service (see section 9) maps a symbolic name to
a reference.
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the Window Proxy is in the client’s context and remains
connected to the Window Server

2. Copy the AD of x from source to destination context. All
the contents of the AD are preserved: its concrete OID,
group OID’s, channels, code reference, prerequisite refer-
ences, and size of data segment. However the address-of-
data-segment field is invalid.

3. Using information in the AD, copy X’s data from S to some
arbitrary free location in p. Update the data address field
in the destination AD.
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4. If (a proxy of) x’s code object is not yet present in D, import
one. If present, skip this step. Similarly, import all prere-
quisites of X, if not already present.

5. Upcall the re-initialization procedure of X in D.

6. Make X available to users in p. The data and AD of X are
destroyed in S.

The above describes the “move” variant of migration. The
“copy” variant differs only slightly: a new concrete OID is allo-
cated in D (step 2), and the source copy is not destroyed, but
instead is made available again (step 6).

Group information and channels are preserved across migra-
tion. However the kernel only implements channels within the
same machine. When an invocation is sent on a channel, if the
kernel detects that the destination is remote, it cooperates with
the Communication Service to recreate an appropriate indirection
via a local protocol object. This is described in section 6.2.3.

5.3 Migration of code and prerequisites

We mentioned (step 4 of the migration algorithm of section 5.2)
that the code and prerequisites are recursively imported, if not
already present, before calling the re-initializer. The prerequisites
are the environment the migrated object needs in order to func-
tion; the object’s code is just one kind of prerequisite. These are
imported if not already present, in order to avoid waste: this
allows two imported objects to share code if they are implemented
similarly. The same mechanism supports static linking of the
code for proxies, without any loss of functionality.

The giveProxy procedure for class code migrates a copy of the
code.

Since a prerequisite is imported according to the same algo-
rithm as other objects, its re-initialization procedure is called in
step 5. The re-initializer for a code object is a dynamic linker and
type-checker. The type is checked against the key argument to
sosImport. The linking and type-checking algorithm are
language-specific; other languages could be supported simply by
implementing a new code class.
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5.4 Assessment

We stress that the upcalls to giveProxy and to the initializer,
together with prerequisites, implement a very important concept:
extending a system-defined mechanism with programmer-defined
semantics. Arbitrary objects can be migrated, and the semantics
of their migration is type-specific, above a single, generic, system-
implemented mechanism.

The strength of this design is that prerequisites are Elementary
Objects like any other. Dynamic linking and type-chécking are
automatic, without being wired in. The drawback is that type-
checking is automatic only for the first import of an object of a
certain class; type-checking for subsequent imports must be
special-cased.

“Vertical” migration of data (from disk to memory) is essen-
tially the same “horizontal” migration (between memory con-
texts). However vertical migration has the capability of dealing
with composite objects (see section 8), which has not yet been
integrated with the horizontal migration.

5.4.1 Calling the re-initializer

The C++ syntax for importation is an extension of the instantia-
tion syntax, and in C++ the re-initializer is in fact a “virtual con-
structor.”’

This raises the issue of whether the reinitializer call should be
generated by the compiler, or performed by the system. The
former solution permits extra arguments (in addition to the
import request); the latter allows the system to know that re-
initialization has succeeded. We opted for the compiler solution
whenever possible, favoring the comfort of C++ programmers.
However for exports and for prerequisite imports, the reinitializer
can only be called by the system, hence the double interface.

The compiler decision was bad for three reasons. First, it
treats exports and prerequisites differently from imports, which is
confusing for the users. Second, the provider does not know if the
import actually succeeded. Finally, and most importantly, an

5. We will not discuss this point in any detail since the language interface is out of the
scope of this paper; see Shapiro et al. [1989] for details.
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operating system should be independent of a particular language
implementation; the system solution should be preferred.

5.4.2 Export vs. import

Exporting is a more primitive operation than importing. In fact,
an import could be modeled as an import request, followed by an
export from the provider to the requestor. Initially we refused to
have an export primitive, because we were concerned with the
protection issues involved, and we didn’t know how let the target
context make use of the newly-available object. Recently we real-
ized that, for some applications, export is the only natural
mechanism: for instance, the Images UIMS is modeled more
naturally as a window manager exporting event objects to applica-
tions, rather than applications polling the window manager for
events.

The export mechanism has been implemented, but the pro-
posed interface is not yet available.

5.4.3 Static groups

A group is created when a proxy provider migrates a proxy to
another context. But there is also a need for static groups. For
instance, a system service such as the AS, the Name Service, the
Storage Service, or the Communication Service, is implemented
by one server on each machine, which comes up at boot time. In
order to communicate with its remote peers, it must already be a
fragment of their group as soon it starts up. Currently, a protec-
tion loophole is needed to circumvent this problem: when the
server comes up, it forges an OID with a given value (taken from a
configuration file) and inserts itself in the group using
addGroupOID.

This loophole should be protected by some privilege but in
fact it is not. Better still, the Fragmented Object should be per-
sistent. SOS supports persistent objects, as a service above the
basic mechanisms described here (see section 8); a much tighter
integration is needed to support persistent groups.
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6. Communication

The Communication Service [ Makpangou 1988; Makpangou 1989]
consists of a toolbox of protocols. Its encapsulation by channel
objects (see section 4) should facilitate the work of adding new
protocols and interfacing them with application programs. For
example, the Acquaintance Service and the Name Service use
multicast communications for distributed updates.

At present, this toolbox implements unicast and multicast,
synchronous and asynchronous communication. The results of
asynchronous and multicast communication are managed by an
invocation object.

Multicast communication is based on the family concept. A
family is a subset of a Fragmented Object. Its members communi-
cate by multicast. A family comprises a set of members, opera-
tions to add and remove members, and multicast invocation inter-
face to its members.

The Communication Service interface consists of two main
layers:

The invocation protocols. For every invocation protocol type
(such as RPC, multicast, synchronous or asynchronous),
there is a corresponding class, which can be instantiated in
the Communication Service context. The Communication
Service is a toolbox of such classes. These base classes can
be extended (by inheritance or redefinition) or mixed, to
build new protocol types.

The application interface. The application interface consists of
channels, for communicating between fragments. A channel
encapsulates the access to protocol objects.

Two channel types are currently defined: channel for uni-
cast communication, and multiChannel for multicast proto-
cols. The second type is compatible with the first one.
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6.1 Application interface

To use a protocol, an application instantiates a channel, which is a
proxy of the needed protocol object. The protocol object is
instantiated in the Communication Service context; The channel
is connected to it by a channel.

The channel interface was given in the section 4.

6.1.1 Multicast communication interface

The multichannel interface inherits from the channel interface.
In addition, it offers the following procedures.

new multiChannel (obj1, Create a channel from obj1 to
familyRef, opaque) - mch a multicast family

new multiChannel (obj2, mch1, Duplicate multicast channel
opaque) - mch2

mch . multilnvoke (callMsg, Synchronous multicast
replyDesc) (-> inv invocation

mch . multiSend (callMsg) Asynchronous multicast
- inv invocation

mul tiChannel downcall interface
In addition to channel interface (see section 4)

A multichannel implements multicast communication. The
reference of family (familyRef) must be provided at creation.

Invocations on multiChannels can be either unicast or multi-
cast, and either synchronous or asynchronous. Callees see no
difference between a unicast and a multicast invocation. With
unicast invocation on a multiChannel, the protocol picks some
arbitrary member of the family to be the callee; we call this func-
tional addressing. A particular callee can be designated, by speci-
fying its concrete OID in the invocation message; this is selective
addressing.

With multi-invocation, all members of the family are invoked;
this is broadcast addressing. Alternately, all the members on the
site of a particular member can be invoked. This particular
member is named by its concrete OID in the invocation message.

With synchronous multicast invocation, the caller waits until
the number of replies received is equal to the number expected, as
described by the descriptor replyDesc.
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A multi-invocation creates an invocation object, which can be
queried for incremental results.

6.1.2 Invocation objects

The following table shows the interface of an invocation object.

inv . isReplyReady () Ask for possible reply
— boolean

inv . getNextReply () Wait for the next available
— replyMsg reply

inv . delete () Terminate the current

invocation, discarding any
further results

Invocation object downcall interface

The isReplyReady method queries the invocation object for
reply availability. The getNextReply method waits until the next
reply is available and returns it. This allows several behaviors.
For example, an application can decide to keep only certain
replies, or only the first one.

An invocation object offers also the delete method to ter-
minate the current call.

6.2 Internal structure

The only communication protocol implemented by the kernel is a
cross-context invocation along a channel, within the same
machine. Remote (across machines) access and other protocols
(such as streams or multicast) are performed by protocol objects,
implemented by the Communication Service.

A protocol object is layered underneath the application group
that it serves; this is illustrated by figure 4. A protocol object is
itself a group of cooperating elementary protocol objects, instan-
tiated in the Communication Service context of the individual
machines.

A protocol object has the privilege that it can be the source or
the target of a channel, even though it is not a member of the
application group. In all other respects, a protocol object is a
standard Fragmented Object.

314 M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot



Application Context Application Context

Application
e Growp | T T TTTTTTTTT '
1 ]
] {
1 Virtual o] 400 '
| Appl ..................................... ;.-.;.* . pp l
N I el 1 Connection r X
! ! | '
e ve o e e - om em r-——==-=-====-=-q-=--=-=- L Ry .
' 1
' |
! !
1 L]
'L Protocol i
FpeETsss== " e A Emmmm——— 1
' i 2 Group ! I
1
: Protocol N Protocol 1
' Object Object X
; :
U Ui U UCN U | R R Uy -l
Communication Service context Communication Service context
Site 1 Site 2

Figure 4: Distributed protocol object, layered underneath the
fragmented application objects it serves

6.2.1 Families

A family is a subset of a Fragmented Object, offering multicast
communications.
The following table shows the interface of families:

obj . createFamily (group0ID) Create a new family within a
- familyRef group
obj . joinFamily (familyRef) The object obj joins the
family
obj . LeaveFamily (familyRef) The object obj leaves the
family

Family interface

Every family is identified by a reference (familyRef). A family
manager is a Fragmented Object within the Communication
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Service context, that manages operations to add and retrieve
members in a family.

An application fragment can join a family (by jeinFamily) to
receive invocations within a family. Then a family object is
instantiated in the Communication Service context. / ’irst invo-
cation by a client on a multiChannel connected to thi  mily,
toward this fragment, a protocol object is bound to the family
object.

6.2.2 Communication Service structure

The Communication Service is composed of three layers (see
figure 5): the network interface, the transport protocols and the
invocation protocols.

A network interface object encapsulates access | ‘ocedures to a
specific network. We currently implement two tyy s of network
objects, for raw and UDP UNIX sockets.

The transport protocol layer is composed of a ngle communi-
cator object, which implements reliable and unreli >le, and point-
to-point and multicast message transport. Unreliable communica-
tion doesn’t pay the cost of the existence of reliability. (For more
details, see Makpangou & Shapiro [1988].)

Two invocation protocol types are currently defined: RPC and
MRPC. RPC is an extension of the crossinvoke primitive. MRPC
is a multicast RPC from a fragment to the whole family.

The semantics are Only-Once-Type-1 in Spector’s classification
[Spector 1982]: in the absence of communication or processor
failures, the callee is invoked only once per call.

6.2.3 Establishing connection at first
communication

By default, a connection is set up between fragments at the first
invocation.

As discussed in the section about the migration algorithm (see
section 5.2), channels are preserved across migration.

Before the first invocation, a channel is a virtual unidirectional
connection between fragments. An implicit binding is permitted
by putting the reference of the callee object into the caller object’s
acquaintance descriptor.
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The kernel detects remote invocations, and requests the proxy
of the Communication Service to establish the connection: First,
it allocates a protocol object for this connection, using the proto-
col chosen by the channel object. Then it registers the reference
of this protocol object in the acquaintance descriptor of the caller
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for optimizing future invocations. At this point, the kernel retries
the call and the protocol object invoked relays the call to its coun-
terpart within the callee site. The two ends of the connection are
installed and released separately.

Later, a connection might be reinstalled transparently, if one
of the end objects decides to migrate.

6.3 Assessment

6.3.1 Protocol toolbox

There are not yet enough protocols in the present toolbox. How-
ever, our design is extensible, because communications are struc-
tured in several levels: Fragmented Objects manage protection
domains; channels perform communication and protocol invoca-
tions; invocation objects are used to get multiple replies and

-manage asynchronous invocations. Above these levels, our pro-
posed “fragment generator” (see section 4.4.2) shall manage the
method level, by automatically generating the stub procedures of a
Fragmented Object.

Finally, the hierarchical design of the Communication Service
facilitates reuse. Multicast invocations reuse code for simple
invocations and are distinct from the family concept. We hope to
reuse them in turn in the future to implement new protocols, such
as ISIS multicast [Joseph & Birman 1988].

6.3.2 Asynchronous invocations

In the prototype, asynchronous invocations are simulated upon
synchronous, by creating a dedicated task to send the invocation.
Both invocation types are necessary. Synchronous is more fre-
quently used and more simple, so it was implemented first. Our
implementation of asynchronous communication is limited by the
task system limits and its performances.

6.3.3 Families

Invocations within a family are ordered. However, our implemen-
tation doesn’t guarantee the order of delivery of requests to
members belonging to several families. For instance, two
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multicast invocations towards two non-disjoint families are not
ordered for objects which are members of both families.

We need a light-weight primitive to give the members list
order by protocol object. But this is not yet implemented. A
broadcast to the family allows it to know members that are alive
at the instant of the invocation.

7. Dependencies

So far, the mechanisms for structuring and handling communica-
tion between related objects have been described. From the sys-
tem point of view, no semantics needs to be associated with
inter-object invocations; it is part of the fragmented object inter-
nal protocol. This is a simple and flexible mechanism upon which
a wide set of applications can be built. However, there are abnor-
mal situations (or events) which, since they can imperil con-
sistency within a group of objects, just can’t be handled this way.

For instance, suppose we have a file server that controls shar-
ing, using locks. Upon request to read or write a file, a proxy is
exported in the client context, holding an appropriate lock. If a
crash occurs on the client’s side, the file server must be informed
in order to remove residual dependencies and make the file avail-
able again for subsequent requests.

For this purpose, we define the dependency mechanism. It
provides simple support for:

1. declaring objects as being part of a common dependency
family,

2. detecting/taking into account situations which are relevant
to a given dependency family, and

3. propagating the corresponding events within a dependency
family. '

7.1 Events

Two kinds of events are supported:

 system detectable events corresponding to abnormal and
normal termination, and
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o user-defined events.

Although both events types are uniformly treated, there are
different motivations for supporting each kind. The abnormal ter-
mination event is generated whenever a site/context crashes; it is
at the basis of the mechanism. Although normal termipation
could be handled directly by programmers, we support it for con-
venience. Finally, user-defined events provides support for a sim-
ple software signal facility. These events can correspond to any
change in an object’s state, not detectable by the system; a special
call is used to inform the system that such an event has occurred.

7.2 Dependency family

A dependency family consists of a set of objects which agree to a
common signalling protocol. We have identified two useful
dependency family structures:

Master-slaves: this is the most suitable structure to use when one
specific object is the propagation source of many other
objects. For example, suppose we are dealing with repli-
cated files: upon update, the master object can propagate
the events to all its replicas in order to invalidate them.

Flat: in this structure all objects are at the same level. An event
generated by any object in the dependency family is pro-
pagated to all the others. This can be used to define depen-
dencies between various co-operating servers.

Broadcast is the only possible communication mode within a
dependency family.
The following table gives the interface for dealing with depen-

dencies.

new dependencyFamily () — dep Create a dependency family

dep . addDependent (dependent, Add dependent to dependency
dependsOn) family

dep . addOwner (owner) Define owner as an event

propagation source

320 M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot



dep . removeDependent Remove dependent from

(dependent) dependency family

dep . release (dependsOn) Remove all dependents

dep . giveDependents(dependsOn)  Find all dependents of
- dependentlList dependsOn

dep . isDependent (dependent, Check if dependent depends
dependsOn) — yes or no on dependsOn

dep . hasDependents Check if dependsOn has any
(dependsOn) — yes or no dependents

dep . changed (dependsOn, A user-defined event
event)

Dependency family downcall interface

obj . stub(event) Notify event to dependent
object

Dependency family upcall interface

After a dependency family has been created, calling the pro-
cedure addpependent has the following effects:

1. The arguments dependent and dependsOn are added in the
dependency family, if not already present.

2. Any change on dependsOn will be propagated to dependent.

A master-slave dependency family is obtained by calling
addDependent for each slave.

The addowner procedure permits to specify that an already
dependent object becomes an event propagation source. This
means that all objects in the dependency family will be signalled if
a ch~=~~ occurs on object owner. This is used to create a depen-
denc, _.mily with a flat structure.

It should be noted that each dependent object is in charge of
decoding events upon notification. System events have predefined
values whereas user-defined event values are part of the protocol
of each dependency family.

The dependency manager is built as an extension of the basic
object manager described in section 3. Its implementation is
mainly based on the use of multi-channels and family objects (see
sections 6.1.1 and 6.2.1).

We believe that it should be very useful, especially for applica-
tions which are sensitive to failures. However, it is still in way of
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implementation, so we can’t yet, give a real evaluation of the
mechanism.

8. Persistence

The Storage Service manages the physical storage of typed and
composite objects on disks in a generic way. Once stored, objects
become permanent; their stored representation can never be
deleted. To be permanent, an object must be of type permObject,
from which can be derived user-defined types. The state of a per-
manent object must be explicitly saved on storage. The per-
manent state of a permObject is never lost.

Our first goal was to implement a one-level storage, tran-
sparently integrating the so-called “vertical migration™ (to and
from disk) with “horizontal migration” (from context to context).

Indeed, vertical importation from storage into a context is
identical to horizontal importation. Unfortunately, at the time
the implementation of the Storage Service was started, horizontal
migration included only object importation, not export. There-
fore, a special checkpoint primitive is used to explicitly store an
object, from memory to disk. Checkpoint is optimized to store
only the modified portions of the object.

A permanent object can be composed of several segments. In
order to be taken in account by the Storage Service, those seg-
ments must be referenced by special permanent pointers.

Permanent pointers allow to use indirect segments tran-
sparently. When first accessed by the object, the referenced seg-
ment is automatically retrieved from storage.

Conversely, modified segments are saved on storage at check-
point time. Changes in the data of a segment cannot be detected
automatically, because we have no control of UNIX virtual
memory management. Therefore, it is up to the programmer to
tell the system that a segment has been modified, by marking the
permanent pointer which references it.

A permanent object has a storage object associated with it,
which is a proxy of the Storage service. The permObject methods
have a privileged access to the storage object, in order to com-
municate with the Storage Service. The permObject encapsulates
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the communication with the Storage Service, hiding the storage
proxy to the application. It transparently imports that proxy at
creation or retrieval time.

The following table gives the interface for permanent object
management.

new permObject () — obj Create a permanent object in
memory

obj . delete () Destroy memory image of
permanent object

obj . checkpoint () Save current state on

permanent storage

Permanent object down-call interface

8.1 Direct and indirect segments

The user data part of the object is composed of at least one seg-
ment, the direct segment, such named because it is directly refer-
enced by the object’s descriptor, the AD. The direct segment is
the main body of the object allocated at instantiation time. The
object can also allocate some more data, in what are called
indirect segments. Both direct and indirect segments are allocated
from the heap. In order to migrate together, segments reference
each other by special, permanent and relocatable pointers, called
permPtr. A permanent pointer keeps context-independent
identification, along with the real pointer in the current context.
Links between all permPtrs of a segment are maintained in order
to preserve the overall structure of the object segments at migra-
tion time.

In order to make its indirect segments relocatable, an object
must derive from a special class permObject. Mapping of indirect
segments is managed by the Storage Service. The permObject
class ensures the mapping of indirect segments of the instance, by
communicating with the Storage Service (in a transparent way).

Using permPtrs, the user can create objects of arbitrary struc-
ture and complexity. When the object is checkpointed (see sec-
tion 8), all of its modified segments are stored. The migration of a
permanent object into a user context establishes the mapping of
the direct segment only. Indirect segments are mapped when first
accessed, by segment faulting.
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8.2 Permanent pointers

The following table gives the interface for permanent pointer

management.

new permPtr () — permP Create a permanent pointer

permP . delete() Destroy a permanent pointer

PermP . setPtr (prevPtr, Set the permanent pointer with

addr, size, id) addr

PermP . cvt () — addr Convert permanent pointer to
effective pointer, and map
segment

PermP . mark () Mark segment as modified

Permanent pointers down-call interface

A permPtr variable must be assigned an effective pointer using
the setPtr method. The first argument is a reference to the previ-
ous permPtr of the containing segment. All permPtrs of a seg-
ment are chained in a linked list, in order to encode the segments
hierarchy in the state of the object. Each permPtr is potentially
the head of the linked list for the segment it points to. The
second argument is the effective address of the segment to be
referenced and the third is the size of that segment. The last argu-
ment is an 01D for uniquely naming that segment in a location-
independent way. It is mainly used to control sharing of seg-
ments, since a segment may be referenced by several permPtrs
inside the object.

As discussed in the previous section, it is up to the program-
mer to tell the system that a segment has been modified by calling
the mark method of the permptr which references it. It could
have seemed more logical to couple the mark method to the seg-
ment. But in our implementation, memory segments are not
objects.

A permPtr instance contains an effective pointer which is
untyped. In order to generate the correct cast operations where
necessary, a generic permPtr is provided as a macro. Users can
define their own permPtr types with the following sequence of
instructions:
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typedef myclass * myClassP;
declare (gpermPtr, myClassP);
typedef gpermPtr (myClassP) myClassPtr;

This will produce a type-safe permanent pointer type named
myClassPtr to objects of class myclass. We provide a conversion
operator, which allows the use of the effective pointer. However,
this operator has to be called separately before use of the effective
pointer. If the dereferenced segment is not yet mapped in the
object’s context, it is then done transparently.

Future versions of C++ will allow to redefine the -> dere-
ferencing operator, which will render permPtr’s easier to use.

8.3 Assessment

The permpPtr classes allow to construct objects with arbitrarily
complex graph of segments pointing to each other. During the
vertical migration of a permanent object, the structure of its graph
is preserved.

Unfortunately, this capability has not yet been integrated with
horizontal migration. A complex permanent object can be
migrated horizontally as a whole by check-pointing it first. But in
the general case, the AS is not aware of the existence of permPtrs
and indirect segments, and managing them is up to the program-
mer.

We believe that this current design is not the best one, being
excessively modular: the Storage Service has been implemented
as an independent service on the top of basic object management.

SOS services do not cooperate in a strong enough way. This is
mainly due to the fact there is no common concept of memory
segments between the kernel, the AS and the SS. An efficient and
elegant solution would require control of virtual memory manage-
ment.

The knowledge of the object structure, necessary to several ser-
vices, is in the user part of the object, and is accessible to the
Storage Service only by the expedient of dedicated storage objects.

In the future, horizontal and vertical migration of complex
objects shall be unified. The permobject data shall be moved into
the system data of the object. In order to ensure a more uniform
object model, we should unify the permObject with the sosObject
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class. Persistence is a mechanism which should be orthogonal to
typing.

9. Naming

Naming in SOS is based on two levels: the lowest level is sup-
ported by references. However, this level isn’t user-friendly
enough.

Therefore, there is a second level of symbolic names, managed
by the Name Service. The main task of the Name Service is to
maintain the mappings between symbolic names and internal
references. It supports naming of objects of any type. In design-
ing the SOS Name Service, we wanted to provide much more flexi-
bility than traditional systems. Clients have the ability to build
their own views of the name space, which are the union of
interesting name spaces.

9.1 The design of the Name Service

We define a name space as a general entity maintaining mappings
between symbolic names and internal references.

A client’s proxy of the Name Service will encapsulate a
description of the name space. This description is materialized by
mount tables. A mount table maintains bindings between partial
names and a name space. The mount table encapsulation in the
dedicated proxy’s data allows the client to have its own view of
the name space, independently of its execution site/context on the
system, and independently of other clients.

On request from the client, name interpretation will be done
by the proxy encapsulating the mount table. If a name can be
partially matched, the request will be forwarded to the name space
managing the name.

An interesting feature of naming in SOS is the capability to
perform a union of name spaces under the same symbolic name.
Union mounts are inspired by the similar mechanism of Plan 9
[Presotto 1988] and QuickSilver [Cabrera & Wyllie 1987]. Thus,
objects from different sources can be presented and accessed
under the same name. A possible conflict or ambiguity is solved
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by priorities. The main advantage of this mechanism is to allow
location and administrative transparency.

9.2 The Name Service interface

The initial NS proxy encapsulates a default mount table, which the
client can extend. If a client is migrated, its NS proxy can be
migrated too, to allow the client to keep the same naming
environment.

The interface to the Name Service is implemented by a class
hierarchy. A base class baseNS defines the common methods to
all classes implementing name spaces. They are listed in the fol-
lowing table:

new dynamic () — NS Initial NS proxy importation

NS . lookup (name) — ref Lookup a symbolic name;
returns associated reference

NS . addName (name, ref) Associate name to object

NS . delName (name) Remove name

NS . list (name) — reflist List objects associated with
name

Name Service baseNS interface

From the base class baseNS, two classes are derived: class
nodeN$ and class mountNS. The class nodeNS represents a name
space of type directory. It has two types of entries, leaf and direc-
tory.

The class mountNS represents a mount table, which accepts to
mount any type of name space. Their interface is presented
hereafter (in addition to the main interface above):

new dynamic () — nodeNS nodeNS proxy importation
nodeNS . addDir (name) create a directory

nodeNS interface
All methods inherited from baseNS, plus these
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new dynamic () — mountNS$ mountNS proxy importation

mountNS . mount (name, ref) mount name space
mountNS . umount (name) unmount name space
mountNS . mask (name) mask name space
mountNS . umask (name) unmask name space

mountN$ interface
All methods inherited from baseNS, plus these

The mount operation attaches a name space to a name prefix.
Successive mounts perform a union of the designated name space.
For example, both sun3:/usr/bin and sun3:/usr/local/bin can be
mounted on /bin. umount is the inverse operation.

The mask and umask operations permit to temporarily hide,
and later recover, the names managed by a name space.

9.3 Assessment

The Name Service allows users to name objects, independently of
their types, and to tailor individual naming environments.

We chose to build a dedicated Name Service rather than
integrating naming and filing as done in the V-System [Cheriton &
Mann 1989]. The NS is built using an object-oriented methodol-
ogy. The separation between implementation and well defined
interfaces is flexible and extensible. We can implement integrated
servers as done in the V-System.

Providing individual views of the distributed name space is
justified by noting that all kind of users don’t need to have the
same view. A union of name space yields names unification
independently of administrative constraints. Separate views are
easy to implement, using proxies.

Name space union can bring name conflicts. We offer simple
solutions (like priorities) to solve them.

Another important problem lies in the fact that inconsistency
between an object named and its reference can arise in case of
object’s destruction or migration, without the Name Service being
informed. This is caused by the fact that object management and
their name management aren’t integrated, but supported by two
different system services (the Acquaintance Service and the Name
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Service). Also, this yields an unstable naming environment,
caused by each client having its own view.

10. Assessment of the prototype

SOS is a positive experience. It is a useful environment for proto-
typing distributed applications. Although we had implementation
problems, it confirms that operating system-level support for arbi-
trary, user-defined migratory objects can be done and is useful.
Some realistic applications have been built by our Esprit partners.
This has allowed us to exercise our mechanisms.

All along this presentation, we already pointed out some posi-
tive and negative aspects of SOS. Many features can, however, be
considered as having both pros and cons. For instance, UNIX
provides a good development environment, but considerably lim-
its control over fundamental system resources (processor,
memory), compared to a bare-machine implementation.

As a summary, we will now review the most important
features of our design. For each we will mention the good and
bad sides. Finally, we discuss language interfacing in the light of
our experience using C++.

10.1 Kernel support

Our system is based on a minimal kernel. Most of the system
functionalities are provided by a collection of system services.

However, our kernel is poorly designed. It lacks preemptive
task scheduling, and concurrency control mechanisms. We use the
C++ task library, a set of C++ classes for co-routine style program-
ming, which we extended to support an exception mechanism
[Stroustrup & Shopiro 1987].

A large number of tasks is pre-allocated by the kernel, at con-
text setup time, for handling incoming invocations. Cross-context
invocations are implemented using sockets in a non-optimized
way. All this, together with the lack of shared libraries, contri-
butes to large-sized, slow programs.
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Finally, the kernel cannot control virtual memory. This is a
great handicap, especially for the implementation of composite
persistent objects.

10.2 SOS object model

Our elementary object model is both simple and powerful. The
Proxy Principle [Shapiro 1986], which leads to the Fragmented
Object concept, has proved to be a good structuring tool for build-
ing distributed applications. SOS is an extremely general system,
that can support different object semantics.

However, our implementation is well suited only for medium
and large objects (> 100 bytes). The consequence is that the pro-
grammer must distinguish between system objects and plain
objects. This is confusing, especially as far as object referencing is
concerned.

10.2.1 The giveProxy procedure

Programmers of a Fragmented Object are allowed to redefine their
own way of giving proxies. They can give different interfaces,
depending on the client’s rights. More importantly, they can pro-
vide proxies with local power, according to the semantics of the
resource they represent.

The main problem exhibited by our implementation is that a
proxy can only be acquired dynamically. The consequence is that
it is inefficient for simple, non-distributed applications.

10.2.2 The re-initializer

Calling a re-initialization procedure is a requirement for building
high-level functionalities on top of the basic migration mechan-
ism. For example, the re-initializer for a code object is a dynamic
linker and type checker. This is also useful to re-validate context-
dependent information. This is used, for instance, for permanent
pointers management.

The call should however be generated by the system instead of
the compiler.
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10.2.3 Prerequisites

The prerequisite mechanism permits to express the required exe-
cution environment of an object. Indeed, a crucial issue when
moving objects is to decide how much to move. This mechanism
forms a good basis for code object management.

It can be used for other purposes, for instance, for a better
integration of storage mechanisms.

10.3 Internal architecture

The modular structure of SOS allows extensions to be added
easily. In this way, each application only pay the price for its
specific requirements.

The system has been built using its own mechanisms. This
demonstrates that these abstractions are adequate for building a
distributed system.

However, this approach has its problems, especially at system
boot time. It was also hard to debug because of the dynamic
importation of system service proxies.® This approach also has a
bad performance impact.

10.4 Interfacing with C++

The underlying mechanisms were rendered transparent by the
inheritance mechanism of C++. Although object migration is
implemented by the system, upcalls to the user-defined procedures
giveProxy and the re-initializer permits to adapt various user-
defined semantics.

However, the way we interface our system with the C++
language has bad impacts. Deriving from the root class
sosObject implies some language dependency. More importantly,
flexibility is lost, objects being managed according to their
statically-defined type.

Another important aspect is the assumptions that such a
language makes about shared address spaces. For example, allow-
ing objects to refer to each other via pointers is a drawback for

6. We now have adapted the GNU debugger gdb to our dynamic link.
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the support of mobility and persistency. C++ also has language
features which violate encapsulation, such as public fields or
“friends.” This is an obstacle for Fragmented Objects to behave
as real protection domains.

Finally, C++ doesn’t preserve information about the class
structure or the instance variables of an object at run-time. This
could have avoid the need for user intervention and hacks to get
knowledge about the name of the class and the size of an instance.
Information about the class structure also could make the per-
manent pointer mechanism more transparent.

11. Conclusion

We have designed and implemented a full-sized prototype of a
distributed object-oriented operating system, SOS. SOS is designed
to encourage the structuring of distributed applications in Frag-
mented Objects (FOs), and is itself implemented as a set of pre-
defined FOs. This article presented the design and interface of the
system components, along with assessments of various design
decisions. In this conclusion, we will briefly recapitulate the
important lessons learned.

An object-oriented operating system is different from a tradi-
tional one in its object-oriented internal design. For instance, SOS
exemplifies a communication system where protocols are objects,
instantiated from a hierarchy of protocol types.

More importantly, in an object-oriented operating system,
users are able to supplement system-defined mechanisms with
object-specific semantics or policy. In SOS, this is done by upcalls
from the system upon application objects, requesting object-
specific actions before and after migration, and when an invoca-
tion is received.

OS support for arbitrary user-defined objects is viable and use-
ful. SOS implements generic mechanisms for object management,
such as identification, location, invocation, migration, storage,
naming, communication. OS-supported objects incur some over-
head; in SOS, objects will not reasonably be smaller than a hun-
dred bytes. An application or a language system will typically
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generate objects which are much smaller, and will map several
small objects into a single OS object.

Current hardware typically supports 32-bit address spaces.
This is too small to support a scheme in which objects would be
uniquely identified by their address, in a single system-wide
address space. This, plus the existence of two levels of object
granularity (OS objects and language objects), leads to non-
uniform identification. Any object is locally identified by its
address; in addition OS objects have a system-wide unique
identification. There is no obvious mapping between the two.

In order to mask this non-uniformity, a common technique is
to generate stubs, which make remote invocation appear local. In
SOS, we have the more general concept of a Fragmented Object,
locally represented by a “proxy” fragment. Access to any service,
be it local or distributed, always occurs by invoking a local object.
Local cacheing, replication, or application-specific protocols, all fit
in naturally in the proxy framework; network transparency is
available but not wired in.

Fragmented Objects are important for structuring distributed
applications. In SOS, unfortunately, a FO is more a concept than
anything real, as there is no palpable mechanism attached to a FO.
In particular, access to the internals of a FO is poorly protected.
Furthermore, it is currently quite hard to program a FO. This was
considered acceptable for a proof-of-concept prototype, but must
be fixed for SOS to evolve into a real system. Directions for
correction are: designing a specialized programming language (e.g.
the “fragment generator™ is a step in this direction); implementing
a FO as a distributed protection domain; or using a capability-
based hardware.

In an object-oriented system, components communicate by
sharing objects. In SOS, a shared distributed object is naturally
implemented as a FO, using the available basic building blocks.
We have found that one very useful building block is atomic mul-
ticast, which guarantees that all fragments of an FO have a con-
sistent view of its state. Other useful tools are dependencies, and
local and distributed shared memory. The development of more
such tools and building blocks is an important point on our
agenda of future work.
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