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ABSTRACT: Automatic text formatters usually pro-
duce poor page layouts: pages may have different
lengths, widow lines abound, and figure placement is

hard to control and often wrong. This paper
describes a different approach to page makeup. \We

add to the output of a text formatter extra informa-
tion that tells how various elements of the document
should appear on the page. A postprocessor uses

this information to make all pages the same height,
prevent the creation of widow and orphan lines,
place footnotes, and float figures to a suitable posi
tion on an appropriate page.

V/e have implemented such a postprocessor for text
processed by the TROFF text formatter. The current
version handles these page-makeup tasks for one-

and two-column text. Versions of the program have

been used to produce camera-ready copy for at least

six books and several journal articles.

The authors typeset this paper using the software it
describes.
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1 . Introduction

Text formatters construct pieces of a document in many ways.
They may break running text into lines, compose tables and
mathematical expressions, and include various kinds of figures.
The last thing they must do with these pieces is select which are to
go on each output page and lay these pages out neatly. The Chi-
cago Manual of Style notes that page makeup "is a highly skilled
procedure. If galley material is simply divided mechanically into
portions of equal length, without rcgard to where the divisions fall,
some of the pages that result are bound to be unacceptable logi-
cally or aesthetically," fl, p. 6031.

Printers have a variety of criteria for what makes pages look
good. Here are four of the most basic properties they generally
seek [2]:

o There are no widows, single lines of text (usually the last line
of a paragraph) at the top of a page, or orphans, section head-
ings not followed by text at the bottom of a page.

o Pages are justified; every pair of facing pages is the same
length, and all pages are about the same length.

. No page contains too much white space.
o Figures appear near the text that references them.

Although these properties by no means exhaust the set of desirable
properties of printed pages, they illustrate an important computa-
tional point. Given any reasonable definition of excessive white
space and proximity of figures to their textual references, one can
construct examples of input for which these properties cannot all be
achieved at the same time. Thus, a program that simply enforces a
set of rules will frequently fail to frnd any satisfactory solution to a
page makeup problem. The skilled page maker cautiously breaks
rules, choosing which to violate by considering the sense of the
document.

Since it is impossible to satisfy all of the principles of good
page makeup simultaneously, one must understand the document to
know how it should best appear on paper 13,41. Good page
makeup cannot be defined in terms of purely numerical properties
of the input [5]. This observation inspires two of the principles
that have guided our work. First, use the simplest possible
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methods to do the job, so long as they usually work; since we can-

not solve the problem completely, each proposed complication
must be justified by substantially improving the program's perfor-
mance. Second, it should be relatively easy to predict how a small

change to the input will change the page layouts produced, so that

a user can tailor the pagination where necessary.

This paper describes how one can separate page makeup from
the other jobs done by text formatters. It presents a general model

of the page-makeup problem and a relatively straightforward algo-

rithm. 'We have implemented the algorithm; versions of it have

been used to produce camera-ready copy for at least six books and

several journal articles.
Section 2 explains how others have addressed page makeup;

our work builds on this experience. Sections 3 through 5 describe

our model of the page-makeup problem and the algorithms we use

to solve it. Section 6 sets forth some of the details of our imple-
mentation. Section 7 concludes with lessons learned.

2. Previous Work

In the printing industry, page makeup is often done by cutting gal-

ley proofs with scissors and pasting them onto large sheets of
paper. This manual approach can produce excellent page makeup,

but is expensive because it requires human labor. Manual cut-and-

paste can be performed with the help of a computer [6], so it need

not preclude automating such clerical tasks as producing the table

of contents, the index, or the running page headers.

Early batch text formatters took only rudimentary steps to

improve page makeup. PUB, for example, prevented widow lines

by leaving a blank line at the bottom of each page, which was

filled only to avoid a widow on the subsequent page [7]; of course,

this meant that the output pages might not be justified. Even the

widely distributed scRIBE system does "a barely adequate job of
page makeup" [8].

The standard macro packages for TROFF (-ms, -ffiffi, -me) will
not create orphan lines: a section heading will never be isolated at

the bottom of a page. They do not prevent the creation of widow
lines, however, nor do they perform any vertical justification. Fig-
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ures that do not fit on the current page when they are encountered
float to the top of a subsequent page. Some of these macro pack-
ages also support two-column formats, again without vertical
justification or much control over figure placement.

Although more elaborate macro packages have been written for
TROFF, none appears to have been widely used. For example, a
package by M. E. Lesk does vertical justification; this has been
used for a variety of joumal styles. Enough text to fill a page is
collected internally ("diverted," in TRoFF parlance), then repro-
cessed with paragraph breaks and other paddable spaces expanded
appropriately. This is intricate and slow, and does not address the
more complicated task of mixing single- and double-column text
with figures of different widths, which is characteristic of technical
conference proceedings and some scientific journals.

The TEX text formatter was designed with a great deal of atten-
tion to page-makeup issues. It treats a document as a collection of
boxes that contain text and glue that specifies white space that can
be padded. Each gob of glue in Tþ[ is specified by three values:
its nominal value, its minimum shrinkability and its maximum
stretchability; arithmetic on these values is performed in terms of
the standard integers augmented by three non-standard orders of
infinity. Penalties are also inserted to affect the makeup of output
pages by marking good or bad places to break; Tþ[ computes a

layout that minimizes a function of these penalties. While the
model of boxes, glue, and penalties permits one to specify a

remarkable variety of page layouts [9], it can be extremely subtle:
"Glue will never shrink more than its stated shrinkability. . . . But
glue is allowed to stretch arbitrarily far, whenever it has a positive
stretch component" [10, p. 70]. Tþ[ considers somewhat more
than a page of output before it breaks off and sets a page. This
lookahead can be a hindrance in the final stages of producing a

document, when one no longer wants small changes in the input to
cause dramatic changes in the output [11].

The I4Tþ[ macro package for Tþ[ standardizes many idioms
common in Tþ[ programs [12]. For it, as for T![, the acceptability
of widow lines is an adjustable parameter. The popularity of IATþtr
attests to its usefulness, but its solution to the page-makeup prob-
lem is not one of its strongest points; the manual notes several lim-
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itations on its page-breaking commands. Section 7 compares the

page-makeup facilities provided by Tþ[, I,{TEX, and our system.

The difficulty with macro packages for page makeup in TROFF

and TEX is that it is simply too hard to write page-makeup pro-
grams of the necessary complexity in the clumsy and incomplete
macro languages provided by these formatters. This paper

describes an altemative approach, which allows much of the page-

makeup program to be written more naturally in a conventional
programming language.

There are two components to the solution: a macro package and

a postprocessor. The macros cause the document formatter to
include in its output extra information in addition to the typeset

text it would normally produce. For example, the macros might
mark the beginning of each paragraph, as well as larger blocks like
tables, figures, and displayed equations. The output from the docu-
ment formatter under this macro package is a sequence of pieces of
typeset text and commands to the postprocessor. The postprocessor

reads this output, computes the dimensions of the typeset pieces of
text, then uses the commands to rearrange and lay out the typeset

pieces on pages.

We have implemented our solution as a TROFF macro package

and a TROFF postprocessor written in C++ [13], as depicted in Fig-
ure 1. The idea applies to any document formatter, however, so

long as it can pass information untouched to its output, and that
output can be read by a program.

The first postprocessor was a program called pi, for "page
justifier." It let TROFF find page breaks as it usually does under

the -ms macro package. The macros produced commands in the

output to mark spaces that could be padded if necessary. The post-
processor padded every page to the length of the first page.

Several books were produced with pj, including

Figure 1: Page-makeup by a text-formatter postprocessor.
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A. V. Aho, B. V/. Kernighan, and P. J. Weinberger, The
AWK Programming Language, Addison-'Wesley, Read-
ing, Mass. (1988).

J. L. Bentlay, More Programming Pearls: Confessions of
a Coder, Addison-Wesley, Reading, Mass. (1988).

B. W. Kemighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs, N.J. (1988).
Second edition.
A. R. Koenig, C Traps and Pitfalls, Addison-'Wesley,
Reading, Ìlass. (1989).

The program itself is about 500 lines of C++, much of it devoted
to parsing TROpp output. It is fast: while TROFF requires 65
seconds on a DEC VAX 8550 to format the 22,000 words (49
pages) of Appendix A of the second edition of The C Programming
Language, pj justifies the pages in only 4.5 seconds. Unfor-
tunately, the simplicity of pj depends on the naive belief that
TROFF finds good page breaks, and just needs a little help with
justification (cf. û4i.); pj really ignores most of the important prob-
lems of page makeup.

The next four sections describe PM ("page maker"), which
addresses all of the page-makeup issues mentioned in Section 1.

3. Model of the Page-Makeup Problem

Our page-makeup algorithm and program are based on ideas from
traditional printing. The input (that is, the output of the text for-
matter) is treated as a sequence of slugs. (The term in printing
means "line of type.") Some of the slugs contain typeset material,
while others contain instructions to guide the page-makeup algo-
rithm. The program permutes the input slugs and partitions them
into pages, then places them between fixed top and bottom margins
on each output page.

The model expresses only geometric properties that slugs must
obey as they are placed on the page. Its elements do not
correspond directly to such logical pieces of a document as para-
graph or footnote, though the macro package may well express
those logical pieces in terms of elements of the model. For
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instance, some groups of slugs are not allowed to split across a

page boundary; tables and figures naturally fall into this category.
Other groups of slugs may split so long as none of the resulting
pieces is too small; for example, the first and last lines of a para-
graph may not be split off from the rest of the paragraph. 'We

shall describe how these examples fit into the model after we have
presented the model itself.

The basic slugs are:

vbox A vbox contains printable material; it is the only kind of
slug that produces visible output. It has a height that is
determined by the extent and position of the text it contains.
(The name vbox, for "vertical box," is homage to the
inspiration and instruction we have derived from TFX.)

sp An sp slug represents a paddable space; its parameter gives
its nominal height. This height may be adjusted in two
ways. 'When an sp slug is placed at the top or the bottom
of an output page, or next to a slug of greater nominal
height, the slug's height is set to zero. When a page is
justified vertically, an,qp slug whose height is positive may
have its height increased.

These basic slugs belong to groups. Each group of slugs belongs
to one of four possible types determined by its position on two
axes. One axis determines whether the group can be split across a

page boundary:

a breakabl¿ group may be split;
an unbreakable group must remain whole.

The other axis tells whether a group can float:

stream groups must appear in the output in the same order
that they appear in the input;

float grotps may move in the document.

Thus the four types arc breakable stream (BS), unbreakable stream
(US), breakable float (BF), and unbreakable float (UF).

Groups of three of these types can have parameters, whose role
is defined by the following rules:
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r A breakable stream has a single parameter fr; if the group is
split, at least fr of the vboxes in the group must appear on
each page where any do.

o A breakable float has a parameter set {v¡}, whose elements
are desirable y-positions on the page for the center of the
group. The group, or each piece if the group breaks across
a page boundary, will float on the page so that its center is
as close as possible to one of the values in {v¡}.

o An unbreakable float has a parameter set {v¡}, whose ele-
ments are desirable y-positions on the page for the center of
the group. The group, which should not split across a page
boundary, will float on the page so that its center is as close
as possible to one of the values in { v ¡} .

Groups may be nested within other groups. Indeed, it is com-
mon for a floating group to intemrpt a breakable stream; its posi-
tion in the input defines implicitly the place where the group
belongs. Stream groups inside floating groups are also common.
Slugs within floats or unbreakable streams do not float, however,
either within or past the boundaries of their containing group.

The input may also include slugs and groups of the following
kinds:

pt A "page title" group has a parameter k. The ith page title
group is output at the beginning of page whose ordinal
number is i; the logical page number is set to ft. Only the
vbox and ræ slugs in a page title matter; any paddable space

or grouping commands are ignored.
tm A "terminal message" slug has a string parameter s. When

the tm slug is output, the string s is printed as part of the
program's error log, prefixed by the current logical page
number.

ne A "need" slug has a parameter h. When it is encountered
during the processing of an unnested breakable stream, the
page must be broken unless there is room on the current
page for a vbox of height å. Once a need slug appears on a
page, however, its height is zero.

The ith page printed has three page numbers. Its ordinal number is
i, its position in the output sequence. lts logical number is the
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value k defined by the ith pt group. lts printed number is the value
that is produced by printing the vbox slugs in the ith pt grolup. It is
the responsibility of the user to ensure that the logical and printed
page numbers agree. They need have no relation to the ordinal
page numbers.

Here ends the model. How does it apply to solve some basic
problems?

A paragraph is an example of a breakable stream; when the
parameter k is 2, the model forbids splitting off a single line from
its end or its beginning, and thus prevents the creation of widow
lines. A displayed equation or a table or a picture is an unbreak-
able stream. A footnote is a breakable float with a single parame-
ter v 1 = pageht, which says that it should float to the bottom of
the page. (The distance between the top and bottom margins is
pageht; as is traditional in typesetting, the origin of the coordinate
system is at the top left comer of the page and y increases down
the page.) A numbered figure is an unbreakable float, which usu-
ally has two parameters, v1 = 0 and v2 = pageht, so that it will
float to the top or bottom of the page. The rule that all output
slugs must lie between the top and bottom margins means that such
floats will bump into, but not cross, those margins.

Figure 2 shows how a paragraph in the input could be parti-
tioned into a sequence of slugs and groups. It also illustrates how
a macro package might generate adjacent sp slugs: the macros that
make displayed equations, figures, and pictures each surround their
contents with sp slugs; this causes the unbreakable float to start
with two ,q,p slugs. Vy'e naturally think of an unnested breakable
stream as part of the running text of the document. As Figure 2
shows, the running text may be intemrpted frequently by interpola-
tions of various types.

Need slugs are ignored except when the running text is being
processed. A need can be used to prevent orphans by forcing a

page break when a page is too full for a section heading and two
lines of following text.

Terminal message slugs are used to produce page number data
for indexes and cross references. For instance, a tm slug might be

associated with each figure to help produce a table of figures.

The vboxes in page title groups are placed on the output page
in the same absolute positions they had on input. They may place
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First vbox in paragraph

Second vbox in paragraph

Third vbox in paragraph

SP
equation in vbox: ein + I = 0

SP

US

SP

US

vbox: Figure caption

SP

BS

SP

SP

UF

Fourth vbox in paragraph

Final vbox in paragraph

BS

Figure 2: How a paragraph with a displayed equation and a floating
figure might appear as a sequence of slugs and groups of slugs.

material anywhere on the page, and often contain text like running
headers and footers. If there are more p/ groups than output pages,
the extra ones are ignored; if there are too few, the last one is re-
used. Thus, the macro package can generate p/ groups automati-
cally, providing services like page numbering. When typesetting a

book, one might want more elaborate headers that contain the name
of the current section. This can be done in two passes through the
document. During the first, strategically located /m slugs report the
page numbers on which each section begins. An intermediate step
uses these slugs to prepare p/ groups that contain the running
heads, and these groups are placed at the beginning of the input
sequence. When the document is processed again, these pt groups
are used to title the output pages. Both SCRIBE and I4Tþ[ use
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analogous two-pass procedures to produce bibliographic citations
and cross references.

4. Single-column Layout

This section describes the algorithm PM uses to produce single-
column output. The fundamentally greedy behavior of the algo-
rithm is tempered by its adherence to the rules of the model. The
slugs and groups on the page currently being filled are stored in list
currpage. Algorithm 1 shows the outer loop. The details of step
(4) depend on how one tums våox slugs back into formatter output;
Section 6 describes our implementation. Now we consider the
other three steps, from simplest to hardest.

Step (3) takes as input a permutation of the slugs and groups on
a page. It pads each ,¡,p slug of positive height proportionally so
that the total height of the page is pageht. It does not justify the
last page of a document, which is usually the desired behavior.

The input to step (2) is a sequence of slugs and groups. The
output is a permutation of this sequence in which the centers of
floating groups are as close as possible to a desirable y-position (a
member of the parameter set { v ¡} ) and the heights of some sp
slugs may have been set to zero. To give the greedy pagination the
best possible chance to pack the page, the output of step (2) should
be the permutation that yields the minimum total height of the
resulting sequence. Short of trying all possible permutations, how-
ever, it is not obvious how to compute such an optimum permuta-
tion. PM uses the following approach:

(2) Each slug or group has a vertical position on the page, which
is determined by the heights of its predecessors in the input

while slugs remain to be output
( 1) frll currpag¿ with enough eligible slugs
(2) compose currpage into a page

if this is not the last page
justify currpage to height pageht

output the next pt group and currpage

Algorithm 1: Pagination

(3)
(4)
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sequence. The vertical position of each slug and group is main-
tained throughout the execution of the following two steps:

(2a) For each float on the page, choose u, the member of its
parameter set { v ¡} that is closest to its current vertical posi-
tion. Considering in tum each float on the page, move the
float over its neighbors so long as this brings the center of
the float closer to v and does not interchange two floats with
the same y. Each float is considered only once.

(2b) Proceeding through the slugs in order (including slugs
nested inside groups) as they now appear from top to bot-
tom on the page, set to zero the heights of .q,p slugs above
the first vbox and below the last vbox on the page, and
coalesce adjacent ,qp slugs so that only the one with max-
imum height survives.

In the most common case, the parameter set {v¡} of an unbreak-
able float contains two values that correspond to the top and bot-
tom of the page. Step (2ø) chooses the closer of these possible
locations as each float's goal, then moves each float as close as

possible to its goal. The parameter set for a footnote will contain
only one value, the bottom of the page. The rule on interchanges
means that two floats whose goal is the same will not be permuted
on the page.

Since this computation floats the groups on the page in one step
and trims the paddable spaces in a separate step, the vertical posi-
tions it uses for the slugs and groups are only approximately their
true vertical positions on the page as it ultimately will be printed.
Although the approximation works well in practice, this algorithm
certainly is not guaranteed to find the permutation that leads to the
smallest total height.

Step (1) chooses the slugs that are input to step (2). It does its
job greedily, filling the page while obeying the rules of the model,
which does not specify how to fill pages as full as possible. 'We

describe in top-down fashion how pvt organizes the computation of
step (1).

Each slug has a serial number that reflects its position in the
input sequence. The serial number of a group is the smallest serial
number of the slugs it contains. As a primitive data type, the algo-
rithm uses blocking priority queues, which are priority queues of
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slugs and groups ordered by serial number, augmented by a bit that

tells whether the queue is blocked to prevent reading its head.

The algorithm maintains five blocking priority queues. Ini-
tially, all of the slugs and groups reside on queue Input. They pass

through one of four queues, BSqueue, USqueue, BFqueue, and
(lFqueue, on their way to a page. The slugs and groups on the

current page are stored on list currpage in the order in which they

were added to the page. To simplify the presentation of the algo-
rithm, we shall assume that these queues are maintained by a
coroutine that ensures that slugs and groups are placed on queues

as soon as they are eligible and that the following properties hold:

o Each of USqueue, BFqueue, and UFqueue incltdes slug groups

of the type corresponding to its name.

o 'Whenever the head of Input, BSqueue, or USqueu¿ has a

smaller serial number than the head of BFqueue or UFqueue,
the latter queue is blocked.

o At any given time, only one of BSqueue and USqueue is

nonempty.
o Whenever either Bsqueue or USqueu¿ is blocked,lnput is

blocked as well.
o 'When Bsqueue is nonempty, it contains the minimum possible

number of slugs that one can add to the current page consistent
with the stream parameter fr.

Bsqueue is a staging area for slugs from the running text. As an

example of its application, consider a paragraph for which k = 2.

Ordinarily, the process that maintains BSqueue will put just one

vbox at a time onto BSqueue. At the start of a new page or of a
new paragraph, however, it will add two vboxes to BSqueue. It
will also ensure that the last two vboxes from the paragraph are

placed onto BSqueue at the same time.
Algorithm 2 shows how PM performs step (1) of the Pagination

Algorithm. When the contents of BSqueue do not fit, they must go

back onto Input so that subsequent processing can treat them

separately. For example, in the middle of a paragraph, it might be

acceptable to add just one more line to the page. If that line does

not fit, however, then one must add at least two lines from the
paragraph to the next page.
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unblock all queues
while there is a queue that is neither empty nor blocked

while USqueue is neither empty nor blocked
try to add its head

while BFqueue is neither empty nor blocked
try to add all or part of its head

while UFqueue is neither empty nor blocked
try to add its head

try to add all of BSqueue
if BSqueue did not fit

empty BSqueue back onto Input
block Input

Algorithm 2: Step (1) of Pagination

The key step in the Pagination Algorithm is the trial computa-
tion: what does it mean to try to add a slug, set of slugs, or group
of slugs to the page, and how does one tell whether the trial suc-
ceeded? PM uses step (2) of the algorithm, shown in Algorithm 3.

Our statement of the pagination algorithm now omits only a
discussion of how to decide where to break a breakable float. We
postpone the point to discuss the experience that led us to some of
the details of plr,t.

Placement of Floats. The position of a nested floating group
within the running text gives the only clue to where the float
belongs. Since there is no explicit tie between stream slugs and

remove the trial item from its queue and add it to
the end of currpage

compose the slugs and groups of a copy of currpage
using the step (2) computation

if the composed copy of currpage is taller than pageht
remove the trial item from the end of currpage
replace it on the queue from which it came
block that queue
advise caller that the trial failed

else
advise caller that the trial succeeded

Algorithm 3: Try to add an item
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floating groups, it is vital that floating groups be allowed to inter-
rupt the running text; otherwise, floats would be forced to occur in
the input sequence only between paragraphs, and a footnote or
figure would be less likely to appear on the same page as its cita-
tion in the text. The queues are maintained so that a floating group

appears on the relevant queue as soon as it is needed. Even so,

there is no guarantee that a footnote will be printed on the same

page as its citation.
The greedy strategy and use of queues prevent floats of the

same type from being permuted across pages, and also prevent a
float from appearing on an earlier page than a stream that precedes

it in the input. Therefore a figure will never move from a right-
hand page to the facing left-hand page.

From these limitations it is clear that the algorithm does not
always place floats where one might want them to appear. One

can, however, state its behavior concisely. Stream groups are never
permuted, as required by the model. If i and i are the serial
numbers of two groups, group i is a float, group i is either a stream

or of the same floating type as group j,andi < i, then groupi
does not appeff on an earlier page than group i; groupj could,

however, appear earlier than group i on the same page. Together

with the greedy strategy, this rule means that the user can alter the

output position of a float simply by moving it ahead or back a few
lines in the input.

Queue Management. When a queue is blocked, the item at its
head has failed once to fit on the current page, and no further
attempts will be made to place the item on that page. While this

simple strategy can cause the algorithm to miss a good page

makeup, it prevents endless oscillation between trying to add the

items at the heads of two different queues.

The order in which the queues are examined is important. To
see why we check UFqueue before BSqueue, consider the fate of
an unbreakable float of height pageht if BSqueue were checked

first: at the top of each page, a slug from BSqueue would be placed

on the page, preventing the tall float from appearing on that page;

thus, the tall float, and all unbreakable floats that appeared after it
in the input, would appear in the output only after all other queues

were empty. V/e check BFqueue before UFqueue because we

assume that the user wants the head of BFqueu¿ to win any com-
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petition between them; after all, the user is willing for that item to
break in order that some of it may fit.

Exact and Approximate Trial Computation. The trial computa-
tion alters a copy of currpage, rather than the original. Thus, each
trial computation begins with all sp slugs at their original heights,
and the slugs and groups in the order in which they were originally
added. This is the only way to ensure that previous trial computa-
tions do not affect the result of the current trial computation, since
the computation in step (2) of the pagination algorithm depends on
the order in which slugs and groups are presented.

As presented, the page-filling algorithm has complexity at least
quadratic in the number of items on the page, since the page is
composed every time an item is added, and the complexity of com-
position is surely superlinear. In general, the trial computation
must be at least as "conservative" as the computation in step (2);
that is, its estimate of the page height must never be lower. Other-
wise, the trial could succeed in composing a page where the main
loop would fail. We describe our experience with three conserva-
tive shortcuts to the trial computations.

One possibility is to use the total height of curcpage as an esti-
mate of the space left on the page, and to add the item if it would
not cause the total height to exceed pageht. This is almost certain
to cause pages to contain too much white space. For example,
floating f,gures usually have space at top and bottom to separate
them from the text; one of these spaces disappears when the figure
is finally placed.

A second possibility is to use the total height of currpage, but
to trim some of the space as the slugs are added to the page. For
example, it is relatively easy to discard leading spaces and coalesce
consecutive spaces on currpage. This approach leads to acceptable
results; it was used to print

R. E. Tarjan and C. J. Van Wyk, "An O(n log log n )-
time algorithm for triangulating a simple polygon,"
SIAM Journal on Computing l7(l), pp. 143-178 (1988).

C. J. Van V/yk, Data Structures and C Programs,
Addison-Wesley, Reading, Mass. (1988).

The third approach is cleaner than trimming space on input.
We use the total height of the items currently on currpage to esti-
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mate the space left on the page. If it leaves room for the next

item, then the model guarantees that we can add that item to the

page; otherwise, we perform a complete trial computation' This

method is usually fast, since the shortcut usually reports that a slug

fits, and the expensive full computation is needed only for a few

slugs at the end of each page. It also produces pages that are more

tigñtly packed than the other two shortcuts. It was used to print

R. Sethi, Programming Languages: Concepts and Con-

structs, Addison-Wesley, Reading, Mass. (1989)'

The appealing shortcut of using the composed height of

currpage to estimate whether to add the next item is not conserva-

tive. ti a page has a stream .¡,p slug at the bottom, that space is

trimmed when the page is composed. 'Were a vbox added at the

bottom, however, the resurrection of the height of that sp slug

could result in a page that is taller than pageht'

Breaking Floats. Now we retum to the lone omitted detail,

how to break a breakable float. Our program breaks off only as

much of the float as the height of currpage guarantees will fit on

the page. The residue becomes a smaller breakable float whose

¡v¡¡ parameter includes only the minimum value from its parent's

{v¡} parameter set. Should one need better packing, one could add

pieóes of the breakable float to the page group by group, perform-

ing a trial computation each time to decide when to quit. We have

not found this to be necessary.

In principle, this completes the description of our input model

and algorithm for single-column makeup. In practice' we need to

providË for unbreakubl" gtoops that are taller than a page. There is

no right thing to do-what does it mean to break something that is

unbreakable?-but a program needs a sensible response that is less

draconian than aborting all processing. We arrived at the following

rule. If an unnested unbreakable group is taller than a page, then

the group will be broken into page-sized pieces, and each will
begin at the top of a page. If a nested unbreakable group is taller

than a page, however, the program exits with an elÏor message'

The first condition deals with the common case where an

unbreakable stfeam like a program listing is longer than a page; the

unbreakable stream will start at the top of a page and be broken
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into page-sized chunks. The second condition handles less com-
mon situations that are more likely to be errors. For example, if an
unbreakable float that is too tall is composed of a nested unbreak-
able stream (a figure) and a nested breakable stream (its caption),
the program will allow the figure to appear on a different page
from its caption; if the figure itself does not fit onto a page, how-
ever, the program will not try to break it.

The splitting of unbreakable streams is the final condition that
determines the order in which the page-filling algorithm checks
queues. The algorithm is stated in terms of two queues of stream
items, BSqueue and (ISqueue, rather than a single stream queue,
because of the possibility that an unbreakable stream might need to
split. Thus, it checks the USqueu¿ first in case it contains the
second part of a broken unbreakable stream.

vboxes that are to be set in a
single column the full width of
the page; the term "two-
column material" refers to
vboxes that are to be set in two
columns each about half the
width of the page. As each
page is filled, it has a list of
one-column material and
another list of two-column
material. Whenever we need
to make up the page, the two-
column material is formatted
into a chunk containing two
columns of approximately
equal height; this chunk is then
treated like an ordinary group
in the single-column makeup
problem.

Thus, ordinarily the input
stream can mix one-column

5. Multi-column Layout

It is much harder to lay out
pages in multiple columns,
especially in the presence of
floating groups that span
several columns. One of our
principal goals has been to
keep the mechanism for pro-
ducing multiple columns
separate from the rest of the
page-makeup program as much
as possible. This localizes the
complications of multi-column
makeup, both keeping the rest
of the program clean and mak-
ing it easier to experiment with
different approaches.

We have restricted pM to
just one- and two-column
makeup. The term 'oone-
column material" refers to
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figures with two-column text
material; each page will con-
tain a single chunk of two-
column material. It is also
possible, however, to freeze the

current two-column chunk and

establish a new, empty, list for
subsequent two-column
material. With this mechanism
one can compose pages on

which two-column material
alternates with one-column
material, such as wide equa-

tions, that spans both columns.
This freezing operation is a PIvt

command.
The height of each chunk

of two-column material is

determined as follows: com-
pute the total height h of all
slugs and groups, then put as

many slugs and groups into the

first column as possible
without that column's height
exceeding hl2 (obeying need

slugs and widow-suppression
parameters); perform step (2)

of the pagination algorithm on

the slugs and groups in each

column; then justify the shorter
column to the height of the

taller.
Since this algorithm

operates on untrimmed sPaces,

S. P. Morgan, "Queûeing Disciplines and Passive

Congestion Control in Byte-Stream Networks," IEEE

INFOCOM '89 (Ottawa, April 23-27, 1989).

*Notice the switch from two columns back to one.

it tends to pack right columns
fuller than left columns. The

virtue of this approach is its
simplicity: it uses a greedy

algorithm to divide into
columns, then uses subroutines

that are already available to
produce single-column layouts.
It also generalizes readily to

three or more columns. (A
more sophisticated algorithm
would find the shortest laYout

among all consistent alloca-
tions of the floats to each

column. Such an algorithm
would be much more exPensive

than the greedy approach for
two-column makeup, and not
obviously practical for three or
more columns.)

When a page contains both

one- and two-column material,
the trial computation is very
expensive because it uses steP

(2) three times-once on each

column and once on the whole
page. 'We know of no better
shortcut than the third conser-

vative one suggested in Section
4, however.

The following paper was

produced by rv in two-column
format:*
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6. Implementation

Section 3 describes the input to our page-makeup algorithm in
terms of ideal slugs that contain text to be printed or other infor-
mation to guide the makeup. The model tacitly assumes that each
slug is readily identifiable, as are the dimensions, size, font, and
contents of vbox slugs. It also assumes that each slug is indepen-
dent, self-contained, and "relocatable": it can be moved relative to
or separated from its neighbors in the input sequence of slugs, and
placed anywhere on an output page. Finally, the algorithm as

stated implicitly assumes that slugs should not overlap when they
are printed on the page.

In reality, none of these idealizations is even remotely correct.
The TROFF output language [15] represents in ASCrI where to print
characters in what size and font. (See Figure 3.) In general,
TROFF does not produce redundant information. Thus, point size
and type font appear in the output in only two places: when they
change from a previous value, and at the top of each page. (The
latter stipulation makes it easy to print only selected pages from
TROFF output.) A sequence of horizontal or vertical position
changes in tRopr input is compressed on output into single
motions. All vertical positions appear in the output as absolute
positions relative to the top of the page. Each output line starts at
horizontal position zero, but its vertical position is not specified
unless it has changed from the previous line. The end of each out-
put line is marked, as is the break between each output word.

Since the gap between ideal and reality is large, the macro
package or other TROFF input must insert at appropriate places in
the output information about significant events, and must force
TROFF to produce state information as often as possible. At the
same time, PM itself must devote significant effort (about 25 per
cent of the code) to parsing TROFF output, extracting as much
information as possible, and converting it into something closer to
the idealized structures needed by the rest of the program. (Con-
verting back to TRoFF for output is trivial by comparison.)

To insêrt information into TROFF output, one uses a general
"escape" mechanism: the input

\x'text'
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sn set size to t?

fn set font to n
cx print ascii character /
Cxy print character named rY
Hn go to absolute horizontal position n

Yn go to absolute vertical position n (down is positive)
hn go n units horizontally (relative)
vn qo n units vertically (relative)
nnc move right ¿n (exactly 2 digits) ' print character c

Df ...\n draw graphic of tYPe t:
Dl xy
Dcd
De.r)
Daxyxly¡

line from here by x,y
circle of diameter d, leftmost point here
ellipse of axes .r,y, leftmost point here
arc counter-clockwise'
center at here+-r,yi end at center+rI'yr

D- x y xt yt sPline bY x,Y then bY x1'Yt
nb a end of line; 0 = space before line, c : after
w paddable word space
pn begin new page ,? -- set V to 0

#...\n comment
x . . . \n devíce control functions:

initialize
name of typesetting device is s

resolution is n/ínch, l¿ : min horiz motion,
v = min vert

i : :i$"-- done ror ever
x t generate trailer
x f n s font number n contains font named s

x anything ¿/se uninterPreted

Figure 3: Summary of TRoFF Output Language

causes text to be interpolated into the TROFF output as a "device
control function," in the form

x X text

The device control function X is not defined, so TROFF output pro-

cessors can attach any desired meaning to it' (\x is approximately
the same as \special in TFX.) As used by PM, the text line con-

tains the name of a PM command and any parameters.

Macro Definitions. Consider the . SP macro, which requests

paddable space. The invocation . SP l-, which requests one line of
paddable space, expands into \X' SP nt, which in tum becomes

x X SP n in the TROFF output, where n is the height of one line in
typesetter units. In a similar way, a . PP (paragraph) macro might
generate

xl-
xTs
xtnhv
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.PP (paragraph)

First vbox in paragraph...
Second vbox in paragraph...
Third vbox in paragraph...
.EQ (equation)

Voe sluip {i pi} + I -=- OVo

.EN (end of eqn)

.KF (floating keep)

.PS (picture start)

circle
.PE (picture end)

Figure caption...
.KE (end keep)

Fourth vbox in paragraph...
Final vbox in paragraph...

SP

BS

VBOX

VBOX
VBOX
US

SP

VBOX
SP

END US

UF

SP

US

SP

vBox
SP

END US

VBOX
SP

END UF
VBOX
vBox

Figure 4. The paragraph from Figure 2 in the left column is
decomposed into the hierarchy of slugs shown in the right column.

x X SP 50 inter-paragraph spacing of 50 units
x X BS 2 bs parameter 2 to avoid widows

Our macro package, -mpm, is compatible with -ms. In -ms
and -mpm, the beginning of each paragraph is marked by a . pp
command; this ends the previous paragraph. Both the beginning
and end of larger blocks such as displayed equations, tables, and
pictures are marked (by .n0/.8N, .TS/.T8, and .pS/.pE pairs,
respectively). The output of TROFF under -mpm includes pM com-
mands that correspond to these macros. Each new ás command
terminates the preceding bs group, while all of the larger blocks
produce slug sequences bracketed by us and end sllgs. The expli-
cit end markers make it possible for groups to nest. Figure 4 illus-
trates how the short piece of text from Figure 2 might produce a
sequence of slugs.

The macro package starts a new output page whenever a
group-ås, us, bf, or uf-begins; it usually generates a p/ group as
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out

I
b

Figure 5: An ideal vbox.

well. This means that the TROFF output that is input to PM con-

tains many more "pages" than the final document, and a surplus

of page headers as well. We wrote the macros this way because

the top of the page serves as a convenient fiducial mark against

which to measure the heights of vboxes.

Converting Input Lines into Slugs. PM first parses its input into

slugs, where each slug is either a line of text-a vþ61-s¡ one of
the other commands like .¡,p or bs. The ideal vbox (Figrtre 5) con-

ceptually is a rectangle whose height h and base b are known.
Printing begins on the left side at the baseline (for normal text
lines like those of this paragraph, the baseline is zero). All
motions are relative to the baseline so the vbox can be relocated,

and nothing extends beyond the rectangle. It is typographically
self-sufficient, so it can produce the right characters in the right
sizes and fonts. After printing, the current position is at the base-

line on the right side.

Given a sequence of such vboxes, each can be placed at the

proper vertical position after the previous one, or placed on a new

page at the proper distance from the top margin . If h i and b ¡ are

the height and base of vbox v¿, then v; and v¡..1 ÍIre placed so that

the baseline of v¡*1 is å¡ -th¡+t-bi+1 below the baseline of v¡.

The elements of each input vbox have vertical positions relative

to the top of the page, either explicitly with a V¿ command or
implicitly. To make a relocatable vbox slug, we compute the verti-
cal position of the first printing object in the vbox, then convert any

subsequent changes in vertical positions within the line of text to
relative vertical motions. Similar conversions are made for hor-

izontal positions, in case the slug is part of two-column material.
'We also compute Âv, the amount by which the baseline of this

vbox lies below the bottom of the previous ubox.
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If each vbox matches the ideal, this is easy. Unfortunately,
since there is no guarantee that TROFF output will have any of the
ideal properties, it is hard to determine the parameters of a vbox.
Here are some of the complications that can arise.

A vbox may exit below its nominal baseline; for example, a
line may end with a subscript in an equation. If this is not
accounted for, the Âv computed for the next input line will not be
correct. Related problems arise if the exit is above the baseline, or
if the next line begins printing above or below its nominal baseline.

TROFF does not generally provide the height or base of a line of
text, so PM must compute this explicitly, both for lines of text con-
taining motions and for graphical objects (the \D commands).
This means computing the high-water mark of text positions within
the slug. Even that computation is suspect, however, since in some
cases, the proper value is not the high-water mark. Sorting out
these ambiguities was the most difficult part of the input process-
ing.

In a picture or table, each graphical element-line segment,
circle-appears as a separate vbox. Obviously, these vboxes may
overlap. The height of a sequence of vboxes is not the sum of their
heights, but the maximum vertical position they attain on the page.
If the user does not enclose a sequence of overlapping vboxes in an
unbreakable group, nonsensical page breaks may be introduced.

The order in which items appear in TROFF output is unpredict-
able and uncontrollable. A footnote, floating figure, or tm slug that
appears between two words in the input may appear in the output
either before or after the line containing the two words.

To summarize, the notion of output line is an imperfect match
for the model notion of vbox. Moreover, because TROFF output
does not contain explicitly much of the information we need to
compute the dimensions of each line, the process of tuming that
output into a sequence of vboxes is subtle and painstaking.

Output. Fortunately, output is elementary compared to input.
Each vbox carries with it the size and font that should be in force
when it is ultimately printed. This information, along with the
vertical position determined by page composition, is prefixed to the
rest of the slug. \il/hen multiple column text is being produced, the
slug is also offset horizontally.
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Other Features. PM includes a few features that are not

described in Sections 3 through 5. Users can insert two more com-

mands to guide makeup decisions. One simply forces a page

break. The other forces all queued floating material to be output

before any more stream material; this is useful when one wants all

figures associated with a section to appear before the next section

starts. Users can also specify that pages should not be justified if
they contain more than a certain amount of white space; by default,

pages less than 907o fill are not justified.

Implementation Details. TROFF is often ctiticized, with consid-

erable justice, for its irregular, complicated, and constraining input

syntax. Similar criticism might well be leveled at its output side.

One of our ground rules was that we would not change TROFF,

both to keep PM as portable as possible, and to avoid changing an

old, complicated, and poorly documented program. Nevertheless,

at times we were very tempted to modify TROFF to produce redun-

dant information that PM could use.

We wrote the postprocessor in C++, originally to learn the

language, and subsequently because it made programming easier

than it would have been in C. The strong type-checking provided

by C++ saved us from many programming errors. As the program

evolved, the internal data structures changed naturally and

smoothly from arrays to lists and priority queues. Derived classes

and virtual functions made it easy to add new kinds of objects

without having changes ripple throughout the program. The pro-

gram uses many sanity checks to detect inconsistencies and effors

as soon as possible. For example, the program checks that every

input slug appears in the output exactly once, and that only one

Bsqueue and (lSqueø¿ is nonempty at any time. This careful

checking frequently helped us to find logical errors and misunder-

standings about how slugs would pass from Input through the

queues to currPage.
The -mpm macro package is somewhat shorter, and substan-

tially simpler, than -ms. It does not use TROFF'5 trap mechanism,

which invokes a macro when a page has accumulated a specified

amount of text. It also does not use diversions to re-order output.

Both of these mechanisms are difficult to control t161. It is shorter

fhan -ms,1000 lines compared to 1700. Nevertheless, it might

have been better to write another program to break TROFF input

Page Makeup by Postprocessing Text Formafter Output 127



into chunks, feed the chunks to TROFF in a constrained order, then
produce output in an order suitable as pM input. So long as users
refrain from constructing macro names by calls to other macros,
such a program could be fairly naive about the syntax of tRorp.

The version of pvt that does only single-column makeup is
1800 lines long; the complete version that also does two-column
makeup is 2000 lines long. To lay out material in single-column
pages imposes a running-time overhead of about l07o over simply
running TRoFF. The overhead for laying out material in double-
column pages is closer to 30Vo, thanks to the superquadratic algo-
rithm described in Section 5.

7. Retrospective

In 1978, D. E. Knuth noted that greedy algorithms and simple pro-
portional space-padding do not lead to excellent typesetting llll.
On the other hand, Tþ['s complicated algebra of padding space and
its dynamic programming algorithms do not solve the page-makeup
problem either [18]. In fact, the manual itself notes that "if you
are fussy about the appearance of pages, you can expect to do
some rewriting of the manuscript until you achieve an appropriate
balance, or you might need to fiddle ...; no automated system will
be able to do this as well as you can" [0, p. 109]. Tþ[ users have
even asked us whether they could use our system to lay out Tþ[-
generated slugs on pages.

pl,t offers features comparable to those available in Tþ[ and
IATEX. The basic Tþ[ macro package forces the user to specify
whether each floating group should appear at the top or the bottom
of a page. The I4Tþ[ macro package lets users specify that either
the top or the bottom of a page is an acceptable placement for a
floating group. A PM user can specify several acceptable place-
ments, and is not restricted to the tops and bottoms of pages: for
example, one can specify that figures should appear in the middle
of each page.

Both basic Tþ[ and Ir{TEX can produce two-column output.
Neither, however, can alternate between one- and two-column pro-
cessing, as PM can. Nor will either balance the two columns on the
last page of a two-column document, as PM does.
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Both Tþ[ and I4Tþ[ let the user specify by a parameter how
urgent it is that widow lines not be created. In contrast, when one
uses the -mpm macro package, PM will never leave a single line of
a multi-line paragraph on a page by itself; this not only avoids
creating widow lines, but also prevents leaving the first line of a
paragraph at the bottom of a page. We like the appearance of
pages that obey this rule. On the other hand, the freedom of TEX

and IATþI to create widows in the face of hard page-makeup
choices means that they might produce better pages overall.

Although we completed work on the input model before we
started to write the program, our work on the algorithms progressed
largely through experience. There is no other good way to
proceed, since it is easy to pose computationally intractable page-
makeup problems [19].

Experience with the program also guided our choice of features
not to implement. For example, we considered guaranteeing that
facing pages would be the same height but permitting facing pairs
to run a line shorter or longer than other pairs. But we have not
yet seen a document for which this technique from traditional
typesetting would improve the makeup, perhaps because the docu-
ments we have produced contain enough floating figures to sop up
white space. As another example, we considered adding another
parameter to paddable space to indicate that some spaces could
grow more than others, but the page-filling algorithm of Section 4
usually packs pages tight enough that this is unnecessary.

The treatment of footnotes is one of the most obvious places

that we have not improved. We noted in Section 4 that a footnote
might not stay on the same page with its citation. It will only float
off, however, when the citation is near the bottom of the page, a

difficult situation for any page-makeup program. Our program
treats footnotes the same way the first version of Tþ[ did [20].

In fact, footnotes present many problems besides their place-
ment. Some document styles call for footnotes to be separated

from the body of text by a line. The closest our macro package

can come to this behavior is to precede each footnote by a line,
which is wrong when two footnotes appeff on the same page;

moreover, if the footnote splits, the second half will not have a

separating line. The manual for the current version of TEX devotes
ten pages to the processing of footnotes (TEX does cope coffectly
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with separating lines). To provide a similar facility in PM, we
would have to clutter the general model with constructs specific to
footnote processing.

Our solution fits well into the UNIX@ system tradition of solv-
ing problems by breaking them into independent pieces. Of course,
laying out pages independently of other formatting makes it hard to
attain some desirable properties. For example, we cannot prevent a

word from being hyphenated at apage boundary. The page-
makeup problem seems hard enough, however, to justify treating it
in a separate program.

It is tempting, perhaps especially for computer scientists, to
seek the optimum solution to a problem. We believe, however,
that it is much more important that the user be able to force a for-
matter to produce a desired makeup. In the early stages of a docu-
ment, there is no need to seek the best layout. As a document
nears completion, a user needs to be able to freeze the makeup of
its early pages. Greedy algorithms offer this behavior almost free,
and also make it easier to predict the layout after a small change in
the input. When the formatter optimizes a function of the whole
document, however, it is difficult or impossible to freeze the early
pages.

We designed the input model before we started writing any pro-
grams, and it has not changed. The model is robust and simple;
one of its most appealing features is that it defines the properties of
text chunks in geometric terms ("breakable stream") rather than in
content-related terms ("paragraph"). Our paper design convinced
us that we could express many of the important notions of page

makeup in the model. An appealing alternative approach is to start
with a simple model that accommodates running text and add
features gradually [21]. Our experience suggests, however, that
this approach quickly founders in the face of unexpected interac-
tions between features; it is easy to suggest several heuristics, each

reasonable when considered in isolation, that cause a page-makeup
program to stall in a loop trying to choose among possibilities.

As it stands, PM commands have only a few parameters, and the
main control the user has is to move figures in the input to change
their position in the output. An attractive goal would be to provide
users a general programming facility with which they could define
the treatment of various situations. Unfortunately, we have no idea
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1.

2.

aJ.

4.

how to make PM programmable without forcing users to read or
duplicate much of the program.
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