A Hypertext System for UNIX

P. J. Brown University of Kent at Canterbury

ABSTRACT: Hypertext is concerned with on-line
documentation. Over the past two years, interest in
hypertext has grown dramatically and there has
been a corresponding explosion in the number of
hypertext systems, journal articles and, indeed,
hypertext experts.

One of the deficiencies of many of today’s hypertext
systems is that they are closed systems: they do not
work well with their fellow tools. Though it may be
possible to exchange information with other tools,
this needs to be done via conversion utilities or the
like. As Meyrowitz [1987] highlighted in his
influential contribution to the Hypertext 87 confer-
ence, this drains the blood out of the hypertext sys-
tem. If hypertext systems are to realise their full
potential, they must aim for a seamless interface
with other tools, thus making the whole greater than
the sum of the parts. Such a philosophy is, of
course, one of the cornerstones of UNIX.

The purpose of this paper is to describe how the
Guide hypertext system has been designed to
exploit the UNIX environment. The word ‘“‘seam-
less,” like the world ‘“user-friendly,” is wantonly
applied to almost all software: it is fast becoming a
noise-word. If we are to stick to the true meaning
of seamlessness, Guide cannot claim to have
attained it. Nevertheless the claim of this paper is
that it has been able to gain a lot of value from

© Computing Systems, Vol. 2 « No. | » Winter 1989

37

38

interchanging information with its UNIX
environment.

It 1s no use writing a paper about integration unless
readers understand what is being integrated. Since
some readers will be unfamiliar with hypertext in
general and Guide in particular, so we shall intro-
duce these first.

1. History of Guide

Development of Guide began at the University of Kent at Canter-
bury in 1982. The work at Kent has continued since, and has
been based throughout on UNIX workstations that support a
graphical “WIMPS” interface. The work has been centred on SUN
machines and, more recently, on all those workstations that sup-
port the X11 window system [Scheifler and Gettys 1986].

In 1984 Office Workstations Ltd. (OWL) became interested in
Guide; they adapted it to fit the Macintosh environment and sub-
sequently the IBM PC environment. OWL made many changes in
their Guide product, most of which were related to fitting a
different environment and a different marketplace.

Development of UNIX Guide has continued at the University,
benefitting both from OWL’s new ideas and the experiences of
UNIX Guide applications. As a result of lessons learned from the
latter, a main thrust of the University’s work has been to try to
exploit to the full the power of its UNIX environment.

Since this paper is very much a UNIX one, we deal mainly
with UNIX Guide. References to Guide henceforth should there-
fore be taken to mean UNIX Guide, though we shall refer again to
Macintosh Guide when we discuss user interfaces.

P. J. Brown

2. Basic concepts

The essence of hypertext is that it is non-linear. When perusing
material presented by a hypertext system, readers generally have
various options on where to go next, depending on what interests
them. The underlying hypertext document consists of pieces of
text (and/or other media) linked together in a directed graph struc-
ture. Links can either be hierarchical or cross-reference. Hierarch-
ical links provide successive levels of detail. Thus a reader may
start with an overview, and then, by following hierarchical links,
might gradually expand the level of detail on selected topics until
he has gleaned the information he needs. Alternatively the reader
may wish to follow cross-reference links, which lead to other,
related, information. A requirement for a successful hypertext
system is that linking should be extremely simple. In Guide links
are represented by buttons (i.e. hot spots) embedded within the
text (and/or pictures) on the screen. The material lizked to by a
button is called its replacement. The reader just selects any
required button using the mouse (or whatever other pointing dev-
ice is in use). Figure 1 shows a small extract from a Guide docu-
ment.

There are three buttons embedded in the document. Two but-
tons are in bold (Example and More) and represent hierarchical
links; if one of these buttons is selected its replacement is inserted
in-line in place of the original button. As a simple example, Fig-
ure 2 shows the result of selecting the More button in Figure 1:
the button is replaced by some expanded material.

There is also a cross-reference link in Figure 1 (and, indeed, in
Figure 2), represented by the write-permission button; if this is
selected, its replacement appears in a separate sub-window. The
user may scroll to read linearly through a document. The user
may also ‘“‘undo” any replacement.

Guide supports both text and graphics. In this paper we will
use the neutral term material to mean any mixture of text and
graphics.

For further details of the principles of hypertext see Conklin
[1987], and for further details of Guide see Brown [1986].

A Hypertext System for UNIX

39

40

Quit New Down/Up Save Block-ei#ii Author

Example

DESCRIPTION

Rm removes the entries for one or more files from a
directory. If an entry was the last link to the file, the file
is destroyed. This means that ... More. Removal of a file

requires write permission in its directory; the permissions

on the file itself are immaterial.

If a file has no write permission and the standard input is a
terminal, its permissions are printed and a line is read from
the standard input. If that line begins with *v’ the file is
deleted, otherwise the file remains.

Figure 1: Guide displaying part of a document

Quit New Down/Up Save Bliock~edii Author

Example

DESCRIPTIQN

Rm removes the entries for one or more files from a
directory. If an entry was the last link to the file, the file
is destroyed. This means that not only is the name of the
file removed from the directory, but the contents of the file
is destroyed and lost for ever. Thus, before deleting a file
he sure either that its contents are saved elsewhere or you
do not want the file any more. Remowval of a file reguires

write permission in its directory; the permissions on the file

itself are immaterial.

Figure 2: The result of selecting the More button in Figure 1

P. J. Brown

3. Requirements

One approach to persuading people to adopt a hypertext systems
is: “I have this excellent hypertext system which will revolution-
ise the way information is presented; I suggest you rewrite all your
existing documentation to fit it.”” Sadly, this approach always
fails. A requirement for any hypertext system is that it should be
able to capture existing documentation, even though the captured
documentation will inevitably not exploit the hypertext system to
the full. Ideally the capture should be possible as a regular on-
the-fly process, rather than a once and for all conversion. The
captured material may, for example, be a program that is created
and maintained for use by a C compiler, but is occasionally
displayed by a hypertext system (e.g. as part of the overall system
documentation).

A second requirement is the complement of the first: material
created by the hypertext system should be available to other
systems.

A third requirement is the ability to exploit existing UNIX util-
ities, such as the spelling checker or printing tools. Happily this
requirement is generally substained by the two requirements
above.

Lastly, when users come to exploit any software of reasonable
sophistication they soon encounter a need to program it. Hyper-
text systems are no exception to this. There is a requirement to
introduce conditional facilities so that material can automatically
be tailored to the needs and perhaps to the status of the user. We
discuss this in more detail later.

All four requirements are, of course, facets of the overall
requirement of integrating with the environment.

One key to meeting the requirements is file formats: clearly
the hypertext system will require its file format to cater for struc-
tural information that is unique to that hypertext system; on the
other hand file formats should be suitable for use by other utili-
ties, which may be uninterested in the structural information.
Since this issue is so vital, we shall start our discussion of Guide’s
integration with UNIX by examining how it tries to meet these
potentially clashing demands.

A Hypertext System for UNIX

41

42

4. Files

Perhaps the most natural way of representing hypertext material is
to use a large number of (usually) small files so that each unit of a
hypertext document is in a separate file, and the links connect
these files together. Experience in integrated project support
environments and in other areas shows, however, that small
granularity leads to poor performance. The decision was made in
Guide, therefore, not to commit to a small granularity but to
allow authors to combine a lot of interlinked material into a single
file. In practice this has allowed authors who are concerned with
performance to optimise according to the pattern of usage.
Authors have tended to start by building their hypertext document
in a single file — Guide default options encourage this — and, if the
file becomes so long that the initial load time becomes a problem,
to split the file into sub-files.

It has turned out that the perceived needs of applications have
varied widely. In one Guide application concerned with display-
ing legal information [Wilson 1988], over a megabyte of informa-
tion is stored in a single file. In another application, the author
has chosen to scatter 3%2 megabytes of information over some 793
files.

5. File content

In a Guide file the structural information is embedded within the
text and graphics that make up the body of the file. A sample
piece of structural information might specify that where a button
begins and ends within a file. Buttons also have properties, which
we will not go into here, and these are encoded within the struc-
tural information. This structural information is represented in
the form of troff requests. Thus a button called More might be
represented as

Bul 1n

More
.bU

P. J. Brown

Here the Bu request means the start of a button, and is followed
by a list of the button’s properties. The bU request means the end
of the button.

Clearly if one had a free choice of notations, froff’s notation
would not be one’s first choice. However its use by Guide has
had a huge number of advantages, mostly stemming from the fact
that the troff notation is a UNIX standard for representing docu-
ments. In particular:

1. Utilities such as spell can work directly on Guide files,
because spell automatically uses deroff to filter out troff’
requests. (For other utilities it may be necessary to use
deroff explicitly.)

2. It is possible to write troff macros corresponding to Guide
requests such as Bu, and thereby to use troff to format
Guide files. For example, buttons can be printed in bold
with, perhaps, superscripts to indicate the button’s proper-
ties.

3. Guide requests can be embedded in ordinary troff files. If
such files are fed to troff, without defining the macros
described in (2) above, then the Guide requests will be
ignored. In this context it is a happy property of troff that it
ignores any requests it does not understand and gives no
error messages. This property has been exploited to allow
the same file to be used both as a manual page and as a
Guide help file, and we shall discuss this later. (The names
of Guide requests all consist of one upper-case letter and
one lower-case one, thus avoiding clashes with normal troff
requests.)

Guide can read an ordinary text file, since such a file simply
looks like a Guide file with no requests in it. Indeed Guide can
be used as an text editor, though this was not an intended use.

6. Pictures

Guide allows for bit-map pictures, which are stored in binary, and
these can be embedded within Guide files. The majority of UNIX
tools are textual and can be upset by strings of arbitrary binary

A Hypertext System for UNIX

43

44

codes, so Guide does its best to ameliorate this problem. Firstly,
the bytes representing a picture are divided up into “lines” of not
more than 80 characters when stored in a Guide file, thus prevent-
ing other tools being knocked out by long “lines.” Secondly, each
line of the bit-map is prefixed with the troff comment request (.\"),
thus causing utilities that automatically use deroff to skip the pic-
tures. Properties of pictures such as their size and number of
colour planes are represented in ASCII to help with portability.

7. Standard notation

Obviously in the future it would be useful to move on to the use
of some standard document representation notation such as ODA
(Office Document Architecture) [Horak 1985], and it would not be
hard to switch to this. However for the immediate future the
advantages of the froff notation within the UNIX environment are
compelling.

8. Representing replacements

We now move on to a more esoteric — and, for those not
interested, skippable — topic: the representation of hypertext links
in Guide files. The user may imagine these as pointers (e.g. a
cross-reference link points at its destination). However files con-
taining explicit pointers, either to other positions within the same
file or to offsets within a different file, are fragile: any other tool
that manipulates the file by adding or deleting material will invali-
date links. Partly for this reason, Guide files do not contain expli-
cit links. Instead, the basic mechanisms are as follows.

Associated with each cross-reference button is a definition,
which supplies the material that is to act as a replacement of the
cross-reference button. As a small example, consider the
definition of a button called “Safety Manager.” Its replacement
might consist of the name “Mr Smith,” followed perhaps by some
instructions as to how to find him. There may be several cross-
reference buttons within a Guide document that use this
definition.

P. J. Brown

Linking between cross-reference buttons and definitions is
done simply by name matching; there are no explicit links
between the two. Indeed different users can use different sets of
definitions for the same term, e.g. the Safety Manager might
depend on the user’s location. (In this case the author would pro-
vide different sets of definitions, together with criteria for selecting
which set to load.)

Definitions may be in the same file as their usage(s) or they
can be in a separate file. In the latter case the filename can be a
UNIX symbolic link rather than an absolute filename, thus making
change easier. The author of a document is responsible for
defining how files are to be organised, and for specifying the files
to be used for definitions.

The merits, within a hypertext system, of this scheme of name
matching as against a more direct linking system can be argued.
However name matching has the advantage that it re-enforces the
textual nature of Guide files, and makes them more portable and
easier to process by other tools.

Within a Guide file, hierarchical buttons are usually immedi-
ately followed by their replacement, and hence no linking is
involved. Thus if we assume our earlier More button is a
hierarchical button its replacement might be represented thus

.Bul 1n

More

.buU

-Re

not only is the name of the file ..

. lost for ever.
.rE

The Re and rE requests show the beginning and end of the
replacement.

(To be precise, the Guide hierarchy need not be a tree:
instead two separate points in the “hierarchy” can use the same
replacement, although the structure will appear to the user to be
hierarchical. In such cases hierarchical buttons use the same
name-matching mechanisms as cross-reference buttons.)

A Hypertext System for UNIX

45

46

9. Capturing existing documents

Any document that is marked up in a systematic way to indicate
its structure can be converted to Guide form. For example a
section-heading can be converted to a hierarchical button with the
body of the section made into its replacement. With a little more
effort citations within the document, e.g. [Bloggs 1988], can be
turned into cross-reference buttons. With even more effort, con-
structions of the form “‘see page 83 can also be turned into
cross-reference buttons. All that is needed to accomplish such
conversions is a filter. Guide allows material to be piped into it,
so filters are easy to use. The use of automatic filters will inevit-
ably produce imperfect results, and could not match an intelligent
hand-crafted conversion; nevertheless with large volumes of
material there is no alternative, and even a crude conversion to
hypertext form can be much more attractive to read than the
original.

As one practical example of such work, macros have been writ-
ten to convert UNIX manual pages to Guide form. This is done
by using an alternative form of the man macros, which produce a
structured Guide file rather than the normal formatted output that
is produced by the man command. In this file, headings have
been turned into Guide buttons.

Guide can then be used to view a manual page, and the reader
can expand the headings he wants to examine. There are also
further advantages: for example if the user changes the size of the
window currently being used to view the manual page, then Guide
will automatically reformat paragraphs to fit the new screen size.

Manual pages can be further enhanced to exploit other Guide
facilities, such as the use of cross-reference buttons to explain jar-
gon terms or to follow SEE ALSO links. This can be done without
prejudicing the use of the file as a normal manual page, since troff
will ignore the extra Guide requests. In particular this has been
used to allow a manual page to serve the secondary purpose as a
help-file. When Guide is called up to act as a help system it con-
verts the manual page to its own form, and focusses on the part of
the document that is likely to help the user in his current state.

P. J. Brown

The manual page may be augmented by extra tutorial material
that is seen by Guide but treated as a comment by troff.

10. Programmability

Several different kinds of programmability are needed in hypertext
systems. Firstly, a hypertext system that caters solely for static
pre-defined material is limited in its application. For more gen-
erality it is desirable to allow material to be generated dynamically
by running a program. (Such a program may, for example, extract
from a stock control system some information about the current
stock of a certain product. This gives an immediacy that is not
possible if pre-prepared material is used.) In a UNIX environment
such programmability is easy to achieve. The author of a Guide
document can attach a shell script to a button — in this case we
shall assume that the button is called Stock. (The default shell
used throughout Guide is, in fact, the Bourne shell.) This shell
script is executed when the Stock button is selected and the out-
put from the shell script (both the standard output and any error
output) are piped back into Guide. Guide displays this output as
the replacement of the button. The user is normally unaware that
whether material is static or dynamic — the user is only interested
in reading the material, not in how Guide produced it. When ini-
tiating a shell script, Guide sets a small number of environment
variables in order to tell the shell script about the current Guide
environment.

The above kind of programmability is not hard to provide,
though there are some challenges in providing good error recovery
when authors inadvertently do mad things in shell scripts initiated
from Guide.

A second kind of programmability, which is much more chal-
lenging, is to allow programmability of Guide itself. Such applica-
tions arise particularly when Guide is used as a front-end:

Guide’s strength is in displaying information, and it can be
profitably coupled with other tools that extract or generate infor-
mation. An example of the kind of facilities needed is as follows.
An author may want the user, when he reaches a certain point in a
Guide document — or when some other tool sends a signal to

A Hypertext System for UNIX

47

Guide - to have an option to initiate the following sequence of
operations:

1. By means of a dialogue, get the user to specify a filename.

2. Save the current Guide document in the file specified by the
user.

3. Load a new Guide document in place of the current one. -

4. Select certain buttons in the new document, so that the user
is focussed on a particular piece of information within the
document. It may even be required that the buttons
selected in the new document depend on the state of the old
- e.g. whether the user had previously selected an Expert
button lying within the old material.

The facility for initiating this sequence of actions may itself be
made available by means of a button embedded in the document.
Indeed Guide supports such ‘““action-buttons,” which complement
the more normal “replace-buttons’ that generate a replacement.

Now there are certainly dangers if authors develop a boundless
enthusiasm for such programming. A long sequence of automatic
actions may be played out while the user watches bemused. How-
ever there is undoubtedly a good case for using some programma-
bility, and this requirement needs to be met.

The temptation is to create a completely new programming
language for programming Guide, of a roughly similar nature to
Apple’s HyperTalk language for programming HyperCard [Good-
man 1987]. The facilities that need to be covered are:

(a) selecting Guide menu commands (such as Save in our
example).

(b) selecting/undoing buttons.

(c) testing the current state of buttons (e.g. testing if an Expert
button has been selected).

(d) dialogue with the user.
(e) file manipulation.
(f) conditionals, looping, case statements, etc.

(g) variables of various data types.

48 P. J. Brown

However, although Apple, with all its resources, has made a great
success of HyperTalk, it is nevertheless best to avoid the tempta-
tion to create a new language unless the need is absolute. In par-
ticular in a UNIX environment there already exist programming
languages likely to be familiar to most authors, and it is best to
take advantage of these. Thus it was decided to only provide a
simple programming language to cover operations (a) to (d) above,
which are unique to Guide, and to use an existing programming
language to cover the rest. The operations (a) to (d) can in fact be
provided by a set of about thirty functions, which provide handles
on the main elements of Guide’s functionality. Thus Guide sup-
ports a mini-language, which we shall here call MiniL; a “pro-
gram” in MiniL just consists of a sequence of calls of the built-in
functions.

MiniL programs can be executed in one of three ways:

1. by attaching the program to a Guide button.

2. by executing the program from within a shell script initiated
by Guide. In this case a special callguide command is pro-
vided. This command takes as its argument a MiniL pro-
gram and returns an exit status to indicate whether the pro-
gram was successful. It might also return strings (e.g.
material typed by the user if the program involves a dialo-
gue); such strings are sent to the standard output.

3. by using a roughly similar mechanism to (2), but within a C
program rather than a shell script. Here there is a library
function called callguide.

As an example, if an author wanted to add simple conditional
facilities on top of a MiniL program he might use approach (2)
and write a shell script of form:

callguide ‘a MiniL program’
if test $? -eq 0; -then

else
fi

Alternatively, if more elaborate programmability is required, the
MiniL program can be executed from within a C program.

A Hypertext System for UNIX

49

50

Approaches (2) and (3), where MiniL. programs are embedded
in another programming language (a shell or the C language), are
an example of a mixed-language approach to programming.

11. Evaluation of the approach

The first point to be made about programming Guide is that it is
only used by a minority of authors. Maybe it is only after you
have learned to program that you want to program everything in
sight. A lot of Guide authors have no knowledge of programming
and see no need for it within Guide.

For those authors who do want to program the mixed-language
approach has attractions. In the majority of applications MiniL
on its own is adequate. The MiniL. manual is only six pages long,
and does not represent a big learning hump. When further pro-
gramming is needed — and we are now down to a few percent of
the applications — authors can revert to familiar and well-loved
(well-hated?) languages, such as a UNIX shell or C.

Nevertheless there is, as ever, a price to pay and a mixed-
language approach like Guide’s is certainly not sensible for every
circumstance where programmability is needed. The two main
disadvantages, which apply strongly to the use of callguide within
shell scripts and which become increasingly tiresome as programs
get larger, are:

1. shell scripts (and to a lesser extent C programs) with lots of
embedded uses of callguide run slowly.

2. programming in a mixed notation is error-prone. It is easy
to make trivial syntactic errors, particularly with the use of
quotes. For example a MiniLL program can involve quotes
and the program may itself be enclosed in quotes since it is
an argument to callguide. More fundamentally the human
mind has problems in switching notations every few lines.
Similar problems arise when, say, awk or sed scripts are
embedded in shell scripts.

P. J. Brown

12. User interface

As we have said, it is a vital characteristic of a hypertext system
that following links should be simple and natural. All experience
shows that if a hypertext system lacks this property (and just
because a software designer says something is simple, it does not
follow that users will say the same), the hypertext system will
never be used.

Guide has successfully achieved simplicity through the using a
WIMPS interface as a foundation. There is, however, a compile-
time option in Guide which causes it to use the curses package
and run on a standard terminal with no pointing device. This
alternative interface has not, however, been a success, since fol-
lowing links is no longer simple and natural. The key problem is
that the curses version of Guide simply provides a pale imitation
of the WIMPS interface. It should be possible to write a simple
and natural interface that runs on a minimal terminal, but this
would not be achieved by redesigning the user interface to fit this
environment rather than imitating parts of a WIMPS interface.

When the user interface is such a vital component to the suc-
cess of a system it is vain to hope that minor tweaking will cover
a host of different user environments.

The above point, which relates to different implementations
within UNIX, applies even more strongly when contrasting non-
UNIX implementations with UNIX ones. It may therefore be of
interest to compare the UNIX implementation of Guide to OWL’s
Macintosh implementation. Although the two versions of Guide
are similar in what they do, their appearance differs considerably.
The OWL product is well-integrated with the Macintosh environ-
ment, and therefore follows the strong Macintosh house-style. In
addition to determining look-and-feel this also affects the way
things are done: for example Macintosh users expect searching to
be done by using a pull-down menu that brings up a dialogue box
which offers certain standard options. At the time Guide was
developed there was not even a hint of a house-style for UNIX
workstations. UNIX Guide was therefore influenced only by the
user interfaces of the few graphical tools that were available.
Nowadays, however, a number of house-styles for graphics

A Hypertext System for UNIX

51

52

workstations are being promoted. Nevertheless we feel that it is
unlikely that a Guide user interface that allowed it to integrate
well in a UNIX environment would closely resemble a Macintosh
environment, or indeed any other environment designed for radi-
cally different users, hardware and operating system.

13. Conclusion

Over the last five years the technique of cut-and-paste has become
widely known and well-integrated throughout a range of software
packages. Nowadays there is a large body of users who use cut-
and-paste in such a familiar way that its use is almost subcons-
cious; users expect the facility to be available on all software for
which it is relevant. Meyrowitz looks forward to the day when
hypertext techniques achieve similar familiarity and integration.
We still have a long way to go. Indeed achieving the dream is not
entirely under the control of designers of hypertext systems, since
it requires the collaboration of the creators of operating systems,
window systems, toolkits, etc.

Guide cannot claim to be completely integrated into the UNIX
environment. With its WIMPS interface it has a different look and
feel from the traditional UNIX tools. Nevertheless Guide can
effectively share information with other UNIX tools, and also
builds on the existing programming features of UNIX. Guide
gains enormously from the surrounding UNIX environment, and
hopefully a UNIX environment also gains from the presence of
Guide.

P. J. Brown

References

P. J. Brown, A simple mechanism for the authorship of dynamic docu-
ments, in van Vliet (Ed.): Text processing and document prepara-
tion, pages 34-42, 1986.

P. J. Brown and M. T. Russell, Converting help systems to hypertext,
Software — Practice and Experience 13(2) pages 163-165, 1988.

J. Conklin, Hypertext: introduction and survey, IEEE Computer 20(9)
pages 17-41, 1987.

D. Goodman, The complete HyperCard handbook, Bantam Books, NY,
1987.

W. Horak, Office document architecture and office document interchange
formats: current status of international standardization, IEEE
Computer 18(10) pages 50-60, 1985.

N. Meyrowitz, The missing link: why we are all doing it wrong, position
paper, Hypertext 87, Univ. of North Carolina, 1987.

R. W. Scheifler and J. Gettys, The X window system, ACM Transactions
on Graphics 5(2) pages 79-109. 1986.

E. Wilson, Integrated information retrieval for law in a hypertext
environment, in Yves (Ed.): ACM SIGIR 11th Annual Conference,
pages 663-677, 1988.

[submitted Oct. 11, 1988; revised Jan. 9, 1989; accepted Jan. 24, 1989]

A Hypertext System for UNIX 53

