
Parameterized Types for C++

Bjarne Stroustrup AT&T Bell Laboratories

ABSTRACT: Type parameterization is the ability to
defrne a type in terms of another, unspecifled, type.
Versions of the parameterized type may then be
created for several particular parameter types. A
language supporting type parameterization allows
specification ofgeneral container types such as list,
vector, and associative array where the specific type
of the elements is left as a parameter. Thus, a
parameterized class specifies an unbounded set of
related types; for example: list of int, list of name,
list of shape, etc. Type parameterization is one way
of making a language more extensible.

In the context of C++, the problems are

1. Can type parameterization be easy to use?

2. Can objects of a parameterized type be used
as efficiently as objects of a "hand-coded"
type?

3. Can a general form of parameterized types be
integrated into C++?

4. Can parameterized types be implemented so
that the compilation and linking speed is
similar to that achieved by a compilation sys-
tem that does not support type parameteriza-
tion?

5. Can such a compilation system be simple and
portable?

@ Computing Systems,Yol.2. No. I . Winter 1989 55

56

A design is presented for which the answer to all of
these questions is yes. The implementation of this
scheme is a fairly simple extension of current C++
implementations.

v/ARNING: The scheme for providing parameter-
ized types described here is not implemented. It is
not part ofthe C++ language, nor is there any
guarantee that it ever will be.

1. Introduction

For many people, the largest single problem using C++ is the lack
of an extensive standard library. A major problem in producing
such a library is that C++ does not provide a sufficiently general

facility for defrning "container classes" such as lists, vectors, and
associative arrays. There are two approaches for providing such

classes/types:

l. The Smalltalk approach: rely on dynamic typing and inheri-
tance.

2. The Clu approach: rely on static typing and a facility for
arguments of type type.

The former is very flexible, but carries a high run-time cost, and
more importantly defres attempts to use static type checking to
catch interface errors. The latter approach has traditionally given
rise to fairly complicated language facilities and also to slow and
elaborate compile/link time environments. This approach also

sufered from inflexibility because languages where it was used,

notably Ada, had no inheritance mechanism.
Ideally one would like a mechanism for C++ that is as struc-

tured as the Clu approach with ideal run-time and space require-
ments, and with low compile-time overheads. It also ought to be

as flexible as Smalltalk's mechanisms. The former is possible; the
latter can be approximated for many important cases.

Bjarne Stroustrup

Note that C++ appears to have sufficient expressive power to
cope with the demands of library writing, provided there is a sin-
gle basic kind of object, such as a character (for string manipula-
tion, pattern matching, character IlO, etc.), a double precision
floating point number (for engineering libraries), or a bitmap (for
graphics libraries). The "container class problem" is particularþ
serious, though, since container classes are needed to specify all
but the simplest interfaces; they are the "glue" for larger systems.

2. Class Templates

A C++ parameterized type will be referred to as a class template.
A class template specifies how individual classes can be con-
structed much like the way a class specifres how individual objects
can be constructed. A vector class template might be declared like
this:

temptate(ctass T) ctass vector {
T* v;
int sz;

publ.ic:
vector(int);
T& operator tl (int);
T& e[em(int i) { return vti]; }
il ...

>i

The tempLate <ctass T) prefix specifies that a template is being
declared and that an argument r of type type will be used in the
declaration. After its introduction, r is used exactly like other
type names within the scope of the template declaration. Vectors
can then be used like this:

vector(int> v1(20);
vector<comptex) v2(30) ;

/ / nake cvec a synonym for vector(compIex)
typedef vector<compIex) cvec;
cvec v5(40); ll vZ and v3 are of the same type

v1137 = 7i
v2t37 = v3.eIem(4) = comptex(7,8);

Parameterized Types for C++ 57

Clearly class templates are no harder to use than classes. The
complete names of instances of a class template, such as

vector(int> and vector<compIex), are quite readable. They
might even be considered more readable than the notation for the
built-in array type: int tl and comptex[]. When the full name is
considered too long, abbreviations can be introduced using
typedef.

It is only trivially more complicated to declare a class template
than it is to declare a class. The keyword cl.ass is used to indi-
cate arguments of type type partly because it appears to be an
appropriate word, partly because it saves introducing a new key-
word. In this context, ctass means "any typeo' and not just
oosome user-defined type."

The <...> brackets are used in preference to the parentheses
(. . . ¡ partly to emphasize the different nature of template argu-
ments (they will be evaluated at compile time) and partly because
parentheses are already hopelessly overused in C++.

The keyword templ.ate is introduced to make template
declarations easy to find, for humans and for tools, and to provide
a common syntax for class templates and function templates.

3. Member Function Templates

The operations on a class template must also be defined. This
implies that in addition to class templates, we need function tem-
plates. For example:

temptate<cIass T) T& vector(T): :operator[](int i)
t

if (i<0 I I sz<=i) error(rrvector: range errorrt);
return vtil;

)

A function template is a specifrcation of a family of functions;
tempIate(ctass T) specifies that r is a template argument (of type
type) that must somehow be supplied to specify a particular func-
tion.

Note that you don't usually have to specify the template argu-
ments to use a function template. For example, the template

58 Bjarne Stroustrup

argument for vector(T)::operatortl will be determined by the
vector to which the subscripting operation is applied:

vector(int> v1 (20);
vector<comptex) v2(30) ¡

v1137=7; // vector(int)::operator[]()
v2t3l=comptex(7,8) ¡ I I vector<comptex): :operator [] ()

Member functions of a class template are themselves function
templates with the template arguments specified in the class tem-
plates. Function templates and member function templates will
be discussed in greater detail in $9 and $13.

4. Outline of an Implementation

The basic idea for an implementation that incurs no additional
costs in run-time or space compared with "hand coding" is to
"macro-expand" a template for each different set of template
arguments with which it is used. Naturally, template expansion is
not really/just macro expansion; it obeys proper scope and syntax
rules. Names such as vector(int> can be encoded into composite
class names such as --PTvector-int.

The example above expands into:

ctass --PTvector-int {int* v;
int sz;

publ. i c:
--PTvector-int(int);int& operator [] (int);
int& etem(int i) { return vtil; }
lt ..,

);
ctass --PTvector-comptex {

comptex* v;
int sz;

pubI i c:
--PTvector-compI ex(i nt) ;
comptex& operator Il (int);
comptex& etem(int i) { return vlil; }
// ...

);

Parameterized Types for C++ 59

--PTvector-int v1 (20) ;
--PTvector-comptex v2(50) ;
--PTvector-conptex v3(40) ;

v1L3J = 7;
v2[3] = v3.eIem(4) = complex(7,8)¡

A compiler need not have a separate template expansion pass.

Since the information to do such an expansion exists in the
compiler's tables, the appropriate actions can simply be taken at

the proper places in the analysis and code generation process.

In addition to this expansion mechanism, a facility is needed

for detecting which member functions have been used for which
instances of a parameterized type. The example above used:

--PTvector-int: :- PTvector-int() i // constructor
--PTvec tor-comp I ex: : --PTvec tor-comp I ex () ;
--PTvector-int::operator[](); // subscripting
--PTvector-compIex : : operator [] () ;
--PTvector-comptex : : eIem() ;

Note that the full list of such functions for a program can be

known only after examining every source frle. The linker provides

a form of this list as part of its list of undefrned objects and func-
tions.

The definition of an operation on a class template might look
like this:

tempIate(ctass T) T& vector(T): :operatort](int i)
{

if (i<0 | | sz<=i) error('rvector: range errorrr);
return vtil;

)

From this, the following two function definitions will have to be
generated:

int& --PTvector-int: :operatortl (int i)
{

if (i<0 | | sz(=i) error(rrvector: range errorrr);
return vtil;

)

60 Bjarne Stroustrup

comptex& --PTvector-comptex: :operator tl (int i)
t

if (i<0
return

er ror (rrvec tor : r ange er ror rr) ;

)

This approach ensures that no run-time eftciency is lost com-

pared to "hand-coding". Code space might wasted by creating

separate copies of functions that could have shared implemen-

tation. For example, vector(int) ând vector<unsigned> need

not have separate subscripting operations. Such waste can, if
necessary, be reduced through suitable coding practices (see $12)
and/or through a clever compile time environment.

A programmer can provide a definition for a particular version

of an operation on a class by specifying the template argument(s)

in a function definition:

int& vector(int): :operatorll(int i) .{return vtil;}

The general version of such a function as defined by its template

will be used to create a function for a particular argument type

only when no user-provided version is specifred for that type.

Replacing the default implementation of a function as defined

by a template is useful where implementations with greater preci-

sion, higher efficiency, etc. can be provided given some under-

standing of a particular type. It may also be useful for debugging

and for supplying different versions of a function to different parts

of a program (using stat i c functions).

5. Some Design Considerations

Let us consider a few choices that were made to write the example

above:

1. Should all template arguments be of fype type?

2. Should a user be required to specify the set of operations
that may be used for a template argument of type type?

3. Should a user be required to explicitly declare what versions

of a template can be used in a program?

I I sz(=i)
vtil;

Parameterized Types for C++ 6l

4. Should it be possible for a user to declare variables of type
tYPe?

The answer to all (in the context of C++) is no. Let us examine
them in turn.

5.1 Template Arguments

"Should all template arguments be of type type?,' No, there
appear to be useful examples of type parameters of ..normal"

types. For example, a vector template might be parameterized
with an error handling function:

typedef void (*PF)(char*);

temptate<class T, pF error) class vector {
T* V;
int sz;

publ" ic:
T& operatorll(int i) {

if (i(= ll sz(=i)
error(rtvector: range errorrr) ;

return vtil;
)

);
void my_error_fct() { ... }
vector<compIexr&my_error_f ct) v(i0) ;

This example implies that default arguments might be useful:

template (ctass T, pF error=&standard_error_fct)
ctass vector t ...)

Another example is a buffer type with a size argument:

temptate(ctass T, int sz=128) cIass buffer {
T v[sz];
// ...

);
void f()
{

buffer(char) buf 1 ;
buf fer(compIex,20) buf?;
/t ...

)
buf f er(char*,1000) gl.ob;

62 Bjarne Stroustrup

Making sz an argument of the template buf f er itself rather than
of its objects implies that the size of a buf f er is known at compile
time so that a buf fer can be allocated without use of free store.
It appears that default arguments will be at least as useful for tem-
plate arguments as they are for ordinary arguments. Default argu-
ments of type type mighl even be useful:

temptate(ctass T, cIass TEl,lP=doubl.e) ctass store {
/t ...
T sum() { TEMP sum = 0; ... return sum; }

j;

store(int, Iong) istore;
store(f Ioat) fstore;

These examples demonstrate that the range of templates with
which a type can be parameterized should be restricted only if
there are compelling arguments that the restriction will signifr-
cantly ease the implementation of templates. I see no such
argument.

5.2 Type Argument Attributes

"Should a user be required to specify the set of operations that
may be used for a template argument of type type?" For example:

// The operations =, ==, 1¡ and (=
// nust be defined for an argument type T

tempIate (
class T {

T& operator=(const T&);
int operator==(const T&, const T&);
int operator(=(const T&, const T&);
int operator<(const T&, const T&);

);
ctass vector {
// ...
);

No. Requiring the user to provide such information decreases the
flexibility of the parameterization facility without easing the
implementation or increasing the safety of the facility.

Parameterized Types for C++ 63

Consider vector<T>. To provide a sort operation one must
require that type t has some order relation. This is not the case
for all types. If the set of operations on T must be specifred in the
declaration of vector one would have to have two vector types:
one for objects of types with an ordering relation and another for
types without one. If the set of operations on r need not be
specifred in the declaration of vector one can have a single vector
type. Naturally, one still cannot sort a vector of objects of a type
sl.ob that does not have an order relation. If that is tried, the gen-
erated sort function vector<gt ob)::sòrt(¡ would be rejected by
the compiler.

It has been argued that it is easier to read and understand
parameterized types when the full set of operations on a type
parameter is specified. I see two problems with this: such lists
list would often be long enough to be de facto unreadable and a
higher number of templates would needed for many applications.

Should experience show a need for specifying the operations
on a parameterized type then such a facility can be easily and
compatibly added later.

5.3 Source Code

There might be a mdre fundamental reason for requiring that the
operations performed on a template argument of type type should
be listed in the template declaration. The implementation tech-
nique outlined here achieves near optimal run-time characteristics
by requiring the complete source code of a template to be avail-
able to the compiler when processing a use of the template. In
some contexts, this is considered a deficiency and an implemen-
tation of templates that requires only the object code for functions
implementing the function templates would be preferable.

At first glance it would appear that requiring the full set of
operations on a template argument to be specified would make it
significantly easier to produce such an implementation. In this
case, a function template would be implemented by code using
calls through vectors of function pointers to perform operations
on template arguments of type type. The specification of the set
of operations for a type argument would provide the definition for
such vectors. Such an implementation would trade run-time for

Bjarne Stroustrup64

compile and link time, but would be semantically equivalent to
the implementation scheme presented here.

Could an implementation along these lines be provided
without requiring the user to list the set of operations needed for
each function template argument of type type? I think so. Given
a function template, the compiler can create a vector layout for
the required set of operations without the help of a user. Given
the full set of function definitions for the members of a class, the
compiler can again create a vector layout for the required set of
operations without the help of a user. If the compile and link
environment cannot provide such a list a less optimized scheme

where each member function has its own vector of operations can
be used.

It thus appears that both implementation styles can be used

even in the absence of template argument attribute lists so that we

need not require them to preserve the implementers'freedom of
action. It might be noticed that a virtual function table is in
many ways similar to a vector of operations for a template so that
the benefits ofthe vector ofoperations approach can often be

achieved by a coding style relying on virtual functions rather than
the expansion of function templates. Class pvector presented in
$12 is an example of this.

5.4 Type Instantiation

"should a user be required to explicitly declare what versions of a
template can be used in a program?" For example, should one
require the use of an operation like Ada's new? No. Such a
requirement would increase the size of the program text and
decrease the flexibility of the template facility without yielding
any benefits to the programmer or the implementer.

5.5 Type Variables

"should it be possible for a user to declare variables of type
type?" For example:

Parameterized Types for C++ 65

66

type t = int;
void f(type t)
{

switch (t) {
case int:

case char*:

""""'.årpt"*,
defau I t :

)

Such a facility would be useful in many contexts, but does not
appear suitable for C++. In particular, it is not possible to assign
integer values to represent constants of type type such as int,
I ine-modute*, doubte(*) (compl.ex*, int), and vector<compLex)
while maintaining the current style of separate compilation. Since
the C++ type system is open such assignment of values in general
requires an unbounded number of bits to represent a type. In
practice, even simple cases require lots of bits (the curreùt cfront
scheme for encoding function types in character strings regularly
uses dozens of characters) or some system of hashing involving a
database of types. Furthermore, the introduction of such vari-
ables would require an order of magnitude greater changes to the
C++ language and its implementations than the scheme (without
type variables) described here.

6. Type Inquiries

It would be possible to enable a programmer to inquire about pro-
perties of a template argument of type type. This would allow the
programmer to write code that depends on specifrc properties of
the actual types used.

Bjarne Stroustrup

6.1 An Inquiry Operator

Consider providing a print function for a vector type that sorts
the elements before printing if and only if sorting is possible. A
facility for inquiring if a certain operation, such as <, can be per-
formed on objects of a given type can be provided. For example:

tempIate(ctass T) void vector(T): :print()
{

if (?T::operator()
sort(); /l if (T has a () sort-this-vector

for (int i=0; i(sz; i++¡ I ...)
)

Because the < operation is defined for ints, printing of a
vector(int> gives rise to an expansion:

void --PTvector-int : :pr int()
{

sort(); / / that is, this-)sort()
for (int i=0; i(sz; i++¡ 1 ...)

)

On the other hand, printing a vector<sl.ob> where the < opera-
tion is not defined for g L obs gives rise to an expansion:

void --PTvector-gtob: :pr int()
t

for (int i=0; i(sz; i++¡ I ...)
)

Tests on expressions of the form ?typ::oper ("does type typ have an
operation oper?") must be evaluated at compile time and can be
part of constant expressions.

It would probably be wise not to include such a type inquiry
feature in the initial experimental implementation but to wait and
see what properties (if any) programmers would find useful.
Potentially every aspect of a type known to the compiler can be
made available to the programmer; sizeof is a most rudimentary
version of this kind of facility.

The absence of a type inquiry facility will be compensated for
by the ability to define a function for a particular set of template
arguments, thus overriding the generation of the "standard" ver-
sion from the template. Furthermore, it can sometimes be

Pqrameterized Types for C++ 67

preferable to define separate templates to represent the different
concepts. For example, one might have both a vector<T> class
and a sorted-vector(T) class derived from it.

6.2 The typeof Operator

Writing code where the control flow depends of the properties of a
type parameter doesn't appear to be necessary, but defrning vari-
ables of types dependent on type parameters does. Given a tem-
plate argument of type type, T, one can express a variety of
derived types using the declarator syntax; for example, T*, T&,

Tt10l, T(*)(T,T). One can also express types obtained by tem-
plate expansion such as vector<T>. However, this does not con-
veniently express all types one might like. In particular, the ways
of expressing types that depends on two or more template argu-
ments are weak. To compensate, one might introduce a typeof
operator that yields the type of its argument. For example:

temptate(ctass X, ctass Y) void f(X x, Y y)
{

tYPeof(x*Y) temP = x*Y;
/t ...

)

It would probably be wise not to introduce a typeof operator
before gaining more experience. The uses of typeof appears to be
quite limited and the scope for misuses large. In particular,
typeof appears more suited for the writing of macros (which tem-
plates are designed to replace in many contexts) than for tem-
plates and heavy use of typeof will reduce the compilers ability to
pinpoint type errors.

7. More about Implementation

How then can we generate the proper code for deflnitions of
operations on a template for a given set of arguments? Assume
that we know that versions of vector's subscripting operation

temptate<ctass T) vector(T): :operator il (int) {...}

68 Bjarne Stroustrup

1.-)

are needed for T==int and T==comp[ex. How can we create the
proper expansions (as presented above)?

We might have a compiler option, -x, for creating such expan-
sions. Assuming that the definitions for vector's member func-
tions resides in a frle called vector.c, one might call the compiler
like this:

CC -X Itvector(i nt)tr vector. c
CC -X rrvector(compIex)tt vector. c

and have the appropriate .o files created. This would create not
only the required subscript operator functions but also functions
for any other vector operation that has its definition stored in
vector.h. The strategy for splitting a program into separately
compiled parts is in the hands of the programmer. Where a frner
granularity is required of .o frles for a library, the programmer
can handle it using standard C library techniques.

Note that an expansion using the template expansion option,
-x, may give rise to a program that uses an instance of a template
that has not already been used in the program. This implies that
another stage of "missing template implementation detection" is
required after each expansion. Expansion is really a recursive
activity. The depth of this recursion will typically be one, though.
It will be necessary to have a mechanism protecting against recur-
sive expansion. For example:

temptate<ctass T) void f(T a) { T* p; ... f(p); }
Naturally, one would try to ensure that cc -x is used to gen-

erate . o frles only for defrnitions of templates when

1. a new template was used, or

2. a new set of template arguments was used, or

3. the declaration of a template was changed.

I imagine that after a short startup period all the necessary . o files
for templates for a program/project will reside in a library and not
interfere with the compilation process. When a program/project
reaches this state the compilation overhead incurred by using tem-
plates becomes negligible.

Parameterized Types for C++ 69

7.1 Tools for Ensuring Consistent Linking

Consider having the tools described above:

1. a C++ compiler handling the expansion of class templates
into class declarations, and

2. a -x option on this compiler to handle the expansion of
function templates into function definitions.

One could then compile a C++ program using templates. A little
manual intervention would be needed to get a complete program
to link and load.

What additional tools would be needed to

1. guarantee consistent and complete expansion and linking?

2. make programming reasonably convenient?

I conjecture that (l) is perfectly feasible, but non-trivial, where
portability across operating systems, compile and link time
efficiency, and flexibility are all required. I also conjecture that
very little is needed to achieve (2). Experience using such a sys-

tem is clearly needed, but it might well be sufficient to modify a

tool with access to the complete compiled program, such as munch

or the linker itself, to produce

1. a list of function definitions required, or

2. a list of files for which cc -x needs to be run (assuming
some correspondence between type names and file names),
or

3. a make script for running cc -x for an appropriate set of
files.

It would also be important to ensure that CC produces read-
able error messages when an operation is applied to a particular
template argument of type type for which it is not deûned. For
example:

Itf oo.crt, I ine 144: error:
operator<= appLied to gl.ob in vector<gtob)::sort()

This discussion of how one might provide a minimal and port-
able mechanism supporting templates in C++ should not be taken
as an indication that such a mechanism provides the ideal

Bjarne Stroustrup70

programming environment. On the contrary, it is exactly a
mínimal facility. Much better facilities can be built (think of a
smart make, an incremental compiler, a Smalltalk-like browser,
etc.), However, a minimal facility must exist to ensure portabitity
of C++ programs between all implementations since there is no
hope that a single maximal programming environment will ever
be agreed on and implemented on every system supporting C++.

8. Function Templates

In addition to providing class templates, it is necessary to provide
function templates. Consider providing a general sort function:

tempIate(ctass T) void sort(vector(T));

Given a vector v, one might call such a function like this:

sort(v);

The compiler can deduce the type of the sort function from
the type of the vector. For example, had v been declared

vector(int> v(10) ;

the sort function sort(int) would have been required. On the
other hand had the declaration of v been

vector(doubl.e> v(2000) ;

the sort function sort(doubte> would have been used.

8.1 Overloading

Declaring a function template is simply a way of declaring a whole
bundle of overloaded functions at one time. This implies that we
can use functions with arguments that can be distinguished by the
overloaded function resolution mechanism only. The following
function cannot be used because it takes no argument:

tempIate(ctass T) T* create()
{ return (T*) maLl"oc(sizeof(T)); }

Parameterized Types þr C++ 7l

The C++ syntax could be extended to cope with this by allowing
the full generality of the name<type> notation so that template
arguments could be supplied explicitly in a call:

int* pi = create(int)(), l/ create-int()
char* pc = create<char)(); // creale-char()

Unless programmers define templates sensibly this form of resolu-
tion can become quite cryptic:

temptate(ctass X, cIass Y) f(Y,X);
// tempLate argument order differs
/l fron function argument order

fiii".*, i nt)(1, rrasdf rr) ;

I think it would be wise not to include any explicit resolution
method in an initial implementation. I suspect that the implicit
resolution provided by the overloaded function resolution rules
are sufficient - and more elegant - in almost all cases and it is not
obvious thal a mechanism for explicit overloading is worth the
added complexity.

Allowing explicit resolution would imply that a C++ compiler
should treat function template names differently from other names
and similarly to the way keywords and class names are treated.
For example, without special rules for template names the last
expression above would be parsed as two comparisons and a
parenthesized comma expression:

(g<123)>(vv, 10);

8.2 A Problem

Consider writing a function appty(¡ that applies another function
s() to all the elements of a vector. A traditional flrst cut would
look something like this:

temptate(cIass T)
void appl.y(vector(T)& v, T& (*S) (T&))

{
for (int i = 0; i<v.size(); i++¡

vlil = (*s)(vtil);
)

72 Bjarne Stroustrup

This follows the C style of using a pointer to function. Potential
problems with this are

l. efficiency, because there can be no inline expansion of the
applied function, and

2. þenerality, because standard operations of built-in types
such as - and - for ints cannot be applied.

Naturally, these are not problems to all people. However, an ideal
template mechanism will provide solutions.

8.3 A Solution

One might consider the function to be applied by appt.y() a tem-
plate argument rather than a function argument:

template(cIass T, T& (*S)(T&)>
void appl.y(vector(T)& v)

{
for (int i = 0; i(v.size()i i++¡

vIi] = (*g)(vtil);
)

To call appty() one must specify the function to be applied.
Since this version of appty() takes only a single vector argument
the syntax for disambiguating an overloaded function call using

ctass X { ... };
vector<X> v2(200) ¡

intine void hh(X&) { ... };
void gg(X&); // not inline
app I y(X, hh> (v2) ;
appty<X,gg>(v2);

Clearly, the x is redundant and not elegant. Since in principle
each such call of appty() results in writing a ne\ry function
appty(I inlining can be applied where sufficient information is
available. Consequently, one would expect a C++ compiler to
inline hht I in the first call in the example above and generate a
standard function call of ss(). The fact that function pointers

Parameterized Types þr C++ 7 3

and not functions are passed in C++ is at most a minor annoyance
for the compiler writer.

Operators for built-in types can be considered inline functions
in this context:

vector(int> v(100);
appty< int, &int::operator-- >(v);

However, as for the explicit resolution scheme itself, it remains to
be seen if this degree of sophistication and complexity is actually
needed.

9. Syntax Issues

Consider the declarations:

temptate<ctass T) cIass vector t ...];
temptate(ctass T) T* index(cIass T)(vector(T),int);

l. V/hy use the temptate keyword?

2. Why use <...> brackets and not parentheses?

3. Why use the c I ass keyword?

4. V/hat is the scope of a template argument?

9.1 The template keyword

If a keyword is to be used template seems to be a reasonable
choice, but it is actually not necessary to introduce a new keyword
at all. For class templates, the alternative syntax seems more
elegant at first glance:

cIass vector<ctass T) {
// possibLe al.ternative ctass syntax

ji

Here the template arguments are placed after the template name
in exactly the way they are in the use of a class template:

vector(int> vi (200);
vector(char*> vpc(400) ;

7 4 Bjarne Stroustrup

The function syntax at first glance also looks nicer without the
extra keyword:

T& index(ctass T)(vector<T> v, int i) t ...)

There is typically no parallel in the usage, though, since function
template arguments are not usually specifred explicitly:

int i = index(vi,10);
char* P = index(vPc,29);

However, there appears to be nagging problems with this
"simpler" syntax. It is too clever. It is relatively hard to spot a
template declaration in a program because the template arguments
are deeply embedded in the syntax of functions and classes and
the parsing of some function templates is a minor nightmare. It is
possible to write a C++ parser that handles function template
declarations where a template argument is used before it is
defined, as in index(> above. I know, because I wrote one, but it
is not easy nor does the problem appear amenable to traditional
parsing techniques. In retrospect, I think that not using a key-
word and not requiring a template argument to be declared before
it is used would result in a set of problems similar to those arising
from the clever and convoluted C and C++ declarator syntax.

9.2 <...> vs (...)

But why use brackets instead of parentheses? As mentioned
before, parentheses already have many uses in C++. A syntactic
clue (the
about the different nature of the type parameters (they are
evaluated at compile time). Furthermore, the use of parentheses
could lead to pretty obscure code:

temptate(int sz = 20) ctass buffer {
buffer(int i = 10);
// .-.

>,

buffer b1 (100) (200) ;
buffer b2(100) i I I b2(100) (10) or b2<20, (100)?
buffer b3; ll legal?

Parameterized Types for C++ 75

These problems would become a serious practical concern if
the notation for explicit disambiguation of overloaded function
calls were adopted. The chosen alternative seems much cleaner:

temptate(int sz = 20) ctass buffer {
buffer(sz)(int i = 10)i
ll ---

j,

buffer b1<100>(200);
buffer b2<100>; ll b2<100>(10)
buffer b3; // b3<20>(10>
buffer b4(100)i /l b4<20>(100)

9.3 The class keyword

Unfortunately, the ideal word for introducing the name of a
parameter of type type,Íhat is, type cannot be used; tvpe appears

as an identifrer in too many programs. Why use the cl'ass key-

word then? Why not? Classes are already types to the extent that
the built-in types can be considered second class citizens in some

contexts (you cannot derive a class from a built in type, you can-

not take the address of an operation on a built-in type, etc.).
tWhat is done here is simply to use class in a slightly more gen-

eral form than is done elsewhere.

9.4 Scope of Template Argument Names

The scope of a template argument name is the template declara-

tion and the template name obeys the usual scope rules:

const int T;

temptate(ctass T) // hides the const int T

ctass vector {
int sz;
T* v;

pubIic:
t/ ...

);
int T2 = T; l/ here const int T is visibte again

7 6 Bjarne Stroustrup

Template declarations may not be declaration lists:

tempIate(cIass T) f(T*), 9(T);
// error: tt.lo dectarations

This restriction is made to avoid users making unwarranted
assumptions about relations between the template arguments in
the diferent templates

10. Templates and Typedef

The template concept is easily extended to cover all types.l For
example:

tempIate(ctass T, int i) typedef T arrayti];

"iiåy<int ,10) v; tt array of 10 ints

This allows great freedom in defrning type names. The typedef
keyword is necessary because

temptate(cIass T, int i) T arrayIi];

would deflne a family of arrays (all called array) and not a family
of array type.

Consequently, only class, function, and typedef templates will
be implemented.

1 I. Type Equivalence

Consider:

temptate(cIass T, int i> ctass X {
T veclil;
// --.

);

1. This section has been changed since the USENIX C++ conference proceedings ver-
sion of this paper based on comments by George Gonthier.

Parameterized Types for C++ 77

array<intr 10) x;
array(int,10) Y;
array(int ,11) z;

Here, x and y is of the same type, but z is of the different type.

Since the template arguments used in the declarations of x and y

are identical they refer to the same class. Naturally, only a single

class declaration is generated by a c generating c++ compiler. on
the other hand, the template arguments used in the declaration of
z differs and gives rise to a different class.

Different template arguments give rise to different classes even

if the argument is used in a way that does not affect the type of
the generated class:

tempIate(ctass
pubtic:

foo() { int
);
Y(int,10) xx;
Y<int,10) yy;
Y(int,11> zzl

Template arguments must be types, constants, or integer

expression that can be evaluated at compile time.

12. Derivation and TemPlates

Among other things, derivation (inheritance) ensures code sharing

among different types (the code for a non-virtual base class func-

tion is shared among its derived classes). Different instances of a

template do not share code unless some clever compilation stra-

tegy has been employed. I see no hope for having such cleverness

uuáilubl. soon. So, can derivation be used to reduce the problem2

of code replicated because templates are used? This would

involve deriving a template from an ordinary class. For example:

2. lf that really is a problem: memory is cheap, etc. I think it is a problem and will
remain so fôr the-foreseeable future. People's expectations ofcomputers have con-

sistently outstripped even the astounding growth in hardware performance.

Bjarne Stroustrup

T, int i) class Y {

buftil; ...)

78

temptate(ctass T) ctass vector {
// generat vector type

T* v;
int sz;

publ. ic:
vector(int);
T& etem(int i) { return vlil; }
T& operator tJ (int i);
il.-.

);
tempIate(ctass T)
cIass pvector : vector<void*) {

I I bui Ld al. L vector of pointers
// based on vector<void*)

publ.ic:
pvector(int i) : (i) {}
T*& etem(int i)

{neturn (T*&) vector<void*>: :etem(i) ;}
T*& operator tl (int i)

{return (T*&) vector(void*): :operatorH (i);}
// ...

);
pvector(int*> pivec(100) ;
pvector(compIex*) i cmpvec(200) ;
pvector(char*) pcvec(300) ;

The implementations of the three vector of pointer classes will be
completely shared. They are all implemented exclusively through
derivation and inline expansion relying on the implementation of
vector(void*>. The vector(void*> implementation is a good
candidate for a standard library.

I conjecture that many class templates will in fact be derived
from another template. For example:

temptate(class T) ctass D : B(T) {

);
This also ensures a degree of code sharing.

Parameterized Types þr C++ 79

13. Members an,d Friends

Here are some more details.

13.1 Member Functions

A member function of a class template is implicitly a template

with the template arguments of its class. Consider:

template(ctass T) ctass C {
Tp;
T m1() { T a = p; p++,' return a; }

);
c<int> c1;
C<char*) c2;

int i = c1 .m1();
ll int C(int)::m1() {int a = p; p++; return a;}

char* s = c2.m1()i
ll chart C(char*)::mf() {char* a = p; p++; return a;}

These two calls of m1(l gives rise to two expansions of the

definition of m1().
Naturally a member template may also be declared:

temptate(class T) ctass C {
tempIate(cIass TT) void m(TT*,T*);

);
This case will be discussed below. However, explicit use of class

template arguments in member function names is unnecessary and

illegal:

template(ctass T) class C {
T m<T>(); ll error

);
temptate(class T) C(T)::m(T)() { . -- > ll error

temptate(ctass T> C(T)::m() { ..- } ll correct

This also applies to constructors:

80 Bjarne Stroustrup

temptate(ctass T) cIass C {
C(); /l correct, a constructor
C<T>(int); / / error constructor

);
temptate(ctass T) C(T)::C() { ... } // correct

To avoid confusion it is not legal to defrne a template as a
member with the same template argument name as \ryas used for
the class template:

template(ctass T) ctass C {
template(ctass T) T m(T*) i // error

);

13.2 Friend Functions

A friend function differs from other functions only in its access to
class members. In particular, a friend of a class template is not
implicitly a template. Consider:

template<class T) class C {
friend f1(T a);
temptate<ctass TT) friend f2(TT a);

l,

The definitions of f 1 () and f z() are legal, but clearly not
equivalent.

The triend declaration of f 1(T) specifles that for all types T,

f 1<T> is a friend of c<t>. For example, f 1<int> is a friend of
C(int>. However, f 1(int) is not a friend of C<doubte>. The
defrnition of t t < ¡ would probably look something like this:

temptate<ctass TT) f1(TT a) { ... }i
The friend f 1() need not be a template, but if it isn't the pro-
grammer might have a tedious time constructing the necessary set
of overloaded functions "by hand."

The declaration of f2<> specifres that for all types r and rr,
fz<TT> is a friend of c<T>. For example f2<int> is a friend of
C(doub L e).

Note that a friend function of a parameterized class need not
itself be parameterized:

Parameterized Types for C++ 81

template{ctass T) ctass G {
statie int i;
friend f() { i++; }

);

13.3 Static Members

Each version of a class templato has its own copy of the static
memb€rs o.f the class:

temptate(class T) class G

t static T a; stetic int b; .'.);
C<int) xx;
c<dsubte) yy;

This implies allocation of the static variables:

statíc int 0(int)r:a;
static int C<int)::bi
statie doubte C<doubLe): :ai
ståtic int G<double): :b;

Similarþ, each versiCIn of a paraÉeterized function has its own
copy 0f static local variables:

temptate(class T) f()
t static T a; static int b; .'.);

13.4 Fríend Classes

Friend classes can (a$ usual) be declared as a shorthand for declar-
ing atl functions friends:

temptate<ctass T) class C {
iriend temptate(ctass TT> ctass X¡tl alL X<TT>s
friend class Y(T>; ll onlY Y1T>
friend class Z(int>; tt onlY Z<int>

];

82 Bjarne Stroustrup

14. Examples of Templates

Here are some more examples of potentially useful templates.
Versions of many of the templates used as examples in this paper
have been created using macros and actually used in real pro-
grams. "Faking" templates using macros have been a major
design technique for the template facilities. In this way the
language facilities could be designed in parallel with the key exam-
ples and techniques they were to support.

An associative array: .

temptate(ctass E, ctass I) class Map {
I I aertays of Es indexed by Is
il ...
E& operatortl(I);

);
A 'orecord" stream; the usual stream of characters is a special case:

temptate(ctass R) ctass ostream {
// -..
ostream(R)& operator<<(R&) ì / / output an R

);
An array for mapping information from frles into primary
memory:

temptate<class T, int bsz) class huge {
T in-cone-buflbszl;
t/ .-.
T& openatortl (int i);
seek(Long);
/t ,-.

A linked list class:

template(ctass T) class List { ... };
A queue tail template for sending messages of various types:

temptate(ctass T) ctass mtai l. : publ. ic qtai l. {u ...

Parameterized Types þr C++ 83

void send(T arg)
{

// bundLe I rargrt into a nelt
tl and put it on the queue

message buffer

);

A counted pointer template (for user-defined automatic memory

management):

temptate(ctass T) class CP

il ...
publ, i c:

cP();
CP(T);
cP(cP<T>&);
t/ ...

);

15. Conclusions

A general form of parameterized types can be cleanly integrated

into C++. It will be easy to use and easy to document' The

implementation can be efficient in both run-time and space. It
can be implemented portably and eftciently (in terms of compiler

and link time) provided some responsibility for generating the

complete set of definitions of function templates is placed on the

progiu*o'er. This implementation can be refrned, but probably

not without loss of either portability or efficiency. The required

compiler modifrcations are manageable. In particular, cfront can

be modified to cope with templates. compatibility with c is
maintained.

16. Caveat

The key thing to get right for a C++ template facility is assuring

that basic parameterized classes are implemented in an easy to use

and efficient way for the relatively simple key examples' The

compilation system must be efficient and portable at least for

these examples. The most reasonable approach to building a

84 Bjarne Stroustrup

template system for C++ would be to achieve this frrst, mako the
inevitable changes in concepts based on that experience, and
proceed with more advanced features only as far as they makes

sense then.

Acknowledgements

Andy Koenigo Jon Shopiro, and Alex Stepanov wrote many
template-style macros to help determine what language features
was needed to support this style of programming. Jim Coplien,
Ivlargaret Ellis, Brian Kernighan, and Doug Mcllroy supplied
many valuable suggestions a¡d questions.

lsubmitted Nov. 4, 1988; rettised Dec. 14, 1988; accepted Dec. 16, 19881

85Parameterized Types f,or G++

