Process Synchronization in the
UTS Kernel

Lawrence M. Ruane AT&T Bell Laboratories

ABSTRACT: Any operating system kernel has some
form of process synchronization, allowing a process
to wait for a particular condition. The traditional
choice for UNIX systems, the event-wait mechan-
ism, leads to race conditions on multiprocessors.

This problem was initially solved in Amdahl’s UTS
multiprocessing kernel by replacing the event-wait
mechanism with Dijkstra semaphores. The kernel,
however, became noticeably more complicated and
less reliable when based on semaphores. This has
led us to develop a race-free multiprocessor event-
wait mechanism with some novel properties. A few
common synchronization techniques have emerged,
the most complex of which was verified correct with
the supertrace protocol validation system spin. A
new scheduling approach with per-CPU run queues
reduces the number of unnecessary context switches
due to awakening all waiting processes.

The overall approach is claimed to be simple,
efficient, and reliable.

© Computing Systems, Vol. 3 * No. 3 * Summer 1990

387

1. Introduction

Broadly, process synchronization refers to processes blocking them-
selves until the system changes state in some way. In the original
UNIX kernel, processes wait for events [Thompson 1978]. An
event is represented by an arbitrary integer (the channel), chosen
by convention to be the address of the kernel data structure whose
state=change the process is interested in.

For example, suppose a resource, represented by a data struc-
ture pointed to by r, must be used by only one process at a time.
Here is the standard protocol to lock the resource:!

while (r->lock)
sleep(r);
r->lock = 1;

If the resource is locked lock(is nonzero), the process suspends
itself until the resource becomes free lock(is zero). The process
then locks the resource and proceeds to use it. The lock flag is
often called a sleep lock.

Since the kernel is non-preemptable (the kernel will not switch
to another process unless explicitly requested via sleep()), there
is no race condition in the test and set of the sleep lock: it is
impossible for two processes to see the lock cleared and then both
set the lock and use the resource simultaneously.

Non-preemptability also simplifies the kernel tremendously,
since it implies that sleep locks are only needed when a process
might sleep at a “lower level,” during which no other process
should access the resource. For example, while a process waits for
1/0 completion for a particular inode (file), the process holds the
inode’s sleep lock.

After changing the state of the system in a way that might be
relevant to sleeping processes, a process must wake them up using
the agreed-upon channel:

r->lock = 0;
wakeup(r) ;

1. For simplicity, we ignore process scheduling priority upon waking up, the second
argument to sleep().

388 Lawrence M. Ruane

An awakened process must treat the wakeup as advisory; it
must re-evaluate the wait condition — thus the while instead of
an if - for two reasons. First, any number of the processes
might have run since the the wakeup was issued, any of which
might have changed the wait condition. Second, more than one
event can map to the same channel, so the wait condition might
not have changed at all.

Our experience has been that while event-wait is not as
efficient as some other synchronization methods (that wake only
one waiting process, for example), it puts the least burden on ker-
nel algorithms because it closely approximates the busy-wait
model. Under pure busy-wait, there are no process blocking or
resumption concerns at all — every process has its own processor.
Algorithms can use “polling” loops that are much more complex
than the simple while statement above; then the polling is
slowed down by slipping in calls to sleep() and wakeup() at
the right places, without changing the algorithms. Appendix 4
compares event-wait to other forms of monitors.

2. Race Conditions

If the resource is released by an interrupt handler, a race condi-
tion can cause the wakeup to be lost. A process wishing to use the
resource tests the lock, finds it set, and commits to go to sleep.
But before actually calling sleep(), an interrupt occurs. The
interrupt handler frees the lock and does the wakeup() (which
has no effect), and returns to the interrupted process, which goes
to sleep, possibly forever.

Disabling interrupts between the test of r->lock and the
transition into the wait state eliminates the race condition:

spl6(); /*disable interrupts*/
while (r->lock)
sleep(r);
r->lock = 1;
spl0(); /*enable interrupts*/

Interrupts are automatically enabled after the process is switched
out, and are disabled again when the process switches back in.

Process Synchronization in the UTS Kernel 389

On multiprocessing systems, disabling interrupts on the
current CPU is not sufficient — the interrupt handler can run on
another CPU. Also, the race condition prevented by non-
preemptability on a uniprocessor can now occur: two processes
on different CPUs attempt to lock the same resource at about the
same time; the processes both see lock set to zero, set lock, and
simultaneously use the resource - practically a guaranteed disaster
[Bach 1986].

3. Semaphores

The problems with the event-wait method on multiprocessors
have led to several implementations that substitute semaphores
P()(and V() routines) [Dijkstra 1968]. Multiprocessing kernels
based on semaphores exist for the IBM/370 architecture (UTS and
the UNIX System for System/370 [Felton et al. 1984]), the AT&T
3B20A computer, and the Sequent systems [Beck et al. 1987],
among others.

In supporting and developing new kernel features for UTS over
the years, we have found semaphores troublesome. There are the
obvious portability problems of converting algorithms based on
event-wait to a different synchronization model. But more impor-
tantly, we have encountered many difficulties due to the nature of
the semaphore mechanism itself. Sometimes semaphores simplify
kernel algorithms by providing just the right abstraction, but often
their use leads to significantly more complicated algorithms.

What is the root of the problems with semaphores? Semanti-
cally, if not in actual implementation, the semaphore mechanism
encapsulates the common

while (resource is locked)
sleep();
set resource lock;

synchronization paradigm we have already seen (or a slight gen-
eralization if the semaphore is initialized to a value greater than
one). There are really three separate parts to this: testing for
resource availability; blocking; and resource allocation.

390 Lawrence M. Ruane

But when the algorithms are complex, we would often like to
have direct control over the individual parts. For example, the
buffer cache getblk() routine requires sophisticated “polling”
loops [Bach 1986]. In other situations, we would like to (indivisi-
bly) test for the availability of several different resources before
allocating any of them, to simplify the handling of a non-available
resource. In cases like these, which are all too common in the real
world, event-wait works better.

By analogy, consider the printf () routine. It really does two
separate things — formatting a string and writing it to standard
output — that often happen to be needed together. But if only
printf () were available, the programmer’s life would be difficult
indeed. This is why sprintf() and puts(), the two com-
ponents of printf (), are made available. Providing high-level
primitives such as printf() and P() is fine, as long as one
allows access to the lower level ones as well.

A case study showing some of the problems with semaphores
in actual use is given in Appendix B.

Due to these problems, we decided to develop a modified
event-wait mechanism for UTS.

4. Spinlocks

Before getting into the multiprocessor event-wait implementation,
we must review spinlocks. All multiprocessing kernels use spin-
locks to provide low-level processor (as opposed to process)
synchronization.

A spinlock is a variable that takes on values 0 and 1. The
spinlock() routine indivisibly changes a given spinlock variable
from 0 to 1 (retrying if necessary, without giving up the CPU).
The UTS implementation of spinlocks is typical — a busy-wait loop
around an indivisible test-and-set instruction. The freelock()
routine simply sets the given spinlock to 0. (Spinlocks are known
by other names, such as primitive semaphores in Bach [1986].)

Spinlocks provide short-term exclusion; they must never be
held across sleeps (otherwise every processor may try to get the
spinlock at about the same time, causing system-wide deadlock
since the process holding the lock cannot run to free it).

Process Synchronization in the UTS Kernel

391

Similarly, interrupts must be disabled while holding any spin-
locks (at least any that an interrupt handler might try to get), lest
the interrupt handler deadlock on a held spinlock. This require-
ment is met in UTS in the simplest possible way: the entire kernel
is non-interruptible. (Another simple way is to increment a per-
CPU counter in spinlock(), decrement it in freelock(), and
only enable interrupts if the counter is zero.)

The sleep queue is a typical example. In UTS, the sleep queue
is hashed by channel number, with one spinlock per hash chain.
While manipulating or referencing a hash chain, one must hold its
spinlock:

struct hsque {
long 1k;
struct proc *proc;
} hsque[64];
#define sqhash(c) (&hsquel[(c>>3)&63])

sleep(chan)

i
struct hsque *hp = sghash(chan);

spinlock(&hp->1k) ;
link current proc onto hp->proc;
freelock(&hp->1k) ;

swtch();
>
wakeup (chan)
{
struct hsque *hp = sqhash(chan);
spinlock(&hp->1k) ;
move all procs waiting on chan
Jfrom hp->proc to run queue;
freelock(&hp->1k) ;
}

392 Lawrence M. Ruane

5. A Multiprocessor Event-Wait
Mechanism

The modified event-wait mechanism extends the use of spinlocks
to prevent the race conditions described earlier. A new routine,
sleepl() (for “sleep while holding a (spin)lock”), takes the
address of a spinlock as an additional argument. wakeup() is
unchanged. sleepl() has the following form:

sleepl(chan, 1lp)
long *1p;
{
struct hsque *hp = sghash(chan);

spinlock(&hp->1k) ;
freelock(1lp);
link current proc onto hp->proc;
freelock(&hp->1k) ;
swtch();
spinlock(1lp);

}

This is just sleep() except that after locking the sleep queue,
the argument lock 1p is freed. We will see below that this is the
earliest possible time 1p can be freed, minimizing contention. As
a matter of convenience, it is relocked as late as possible before
returning.

Here is the multiprocessor protocol for acquiring a resource:

spinlock(&r->1k) ;
while (r->lock)
sleepl(r, &r->1k);
r->lock = 1;
freelock(&r->1Kk);

(The resource structure now includes a spinlock 1k.) It is easy to
see how the race condition in which two processes use the
resource at the same time is prevented: the test and set of the
sleep lock (1ock) is made indivisible by the use of the

spinlock (1Kk).

Process Synchronization in the UTS Kernel 393

A new primitive, waitlock(), solves the lost wakeup race
condition in a particularly elegant and (to our knowledge) unique
way. As the name implies, it waits until the given spinlock is free,
but does not lock it:

waitlock(1lp)
long *1p;

{
while (*1p)

}

This primitive is used when releasing the resource:

r->lock = O;
waitlock(&r->1k);
wakeup(r) ;

To see how the wakeup cannot be lost, suppose process A, try-
ing to lock the resource, has seen lock set, but has not yet called
sleepl (). Now process B on another CPU, releasing the
resource, sets lock to zero. At this point B spins in waitlock()
until 4 gets the sleep queue hash spinlock and releases 1k, at
which point B can proceed to wakeup(). The first thing
wakeup () does is get the (same) sleep queue hash spinlock, which
it cannot do until 4 is queued to the sleep hash chain. Therefore,
B is sure to find A and move it to the run queue.

It is not necessary, as we first thought, to hold the spinlock
throughout the entire sequence to release the resource. Using
waitlock() minimizes contention on 1k.

The rule for preventing a lost wakeup is that the spinlock must
be held, even if momentarily, between the time the awaited condi-
tion is made true and the wakeup. waitlock() fulfills this
requirement since it is equivalent to a spinlock() followed by a
freelock().

Interestingly, no race results from lock being inspected at the same
time it is being set (to zero) on another CPU. Also, the fact that lock
is set to zero without holding any spinlock provides a simple counter-
example to our early impression that a spinlock protects data structures
- that if a spinlock needs to be held for any change of a variable, it

394 Lawrence M. Ruane

needs to be held for every change. Here we see that a spinlock actually
protects transitions — the spinlock must be held while changing lock
from zero to one, but not the reverse. This sort of thing occurs in other
places.’

6. Combining the Two Uses
of a Spinlock

Often, the above rule is satisfied without using waitlock().
This happens when the same spinlock is used to both protect a
data structure and prevent a lost wakeup.

For example, suppose we have a pool of resources (data struc-
tures), with the free ones on a singly linked list:

struct {

long 1k;

struct resource *head;
} freelist;

When a process wants one of the resources and there is none
available, it sleeps:

spinlock(&freelist.1k);

while (freelist.head == NULL)
sleepl(&freelist, &freelist.lk);

r = freelist.head;

freelist.head = r->next,;

freelock(&freelist.1lk);

return(r);

Putting r back on the freelist is done with:

spinlock(&freelist.1k);
r->next = freelist.head;
freelist.head = r;
freelock(&freelist.1k);
wakeup (&freelist) ;

2. For example, in UTS it is necessary to hold the per-process spinlock for some process
state (sleep, run, zombie, etc.) transitions, but not for others.

Process Synchronization in the UTS Kernel 395

Here, freelist.1lk is used both to protect the freelist and to
prevent a lost wakeup. When returning a resource to the freelist,
there is naturally a moment at which both the wait condition is
true (freelist != NULL) and the spinlock is held, so no
waitlock() is needed.

7. “Wanted” Flags

To improve performance, a “wanted” flag is sometimes added to
the protocol to avoid unnecessary wakeups. The uniprocessor
method of allocating the resource becomes:

while (r->lock) {
r->wanted = 1;
sleep(r);

¥

r->lock = 1;
The resource is released with:

r->lock = 0;

if (r->wanted) {
r->wanted = 0;
wakeup(r) ;

}

Using multiprocessor event-wait, the resource is allocated with:

spinlock(&r->1k) ;

while (r->lock) {
r->wanted = 1;
sleepl(r, &r->1k);

}

r->lock = 1;

freelock(&r->1k) ;

and released with:

r->lock = 0;
waitlock(&r->1k) ;

396 Lawrence M. Ruane

if (r->wanted) {
r->wanted = O;
waitlock(&r->1k);
wakeup(r) ;

}

It is easy to see that since the wakeup is conditioned on the
test of wanted, a waitlock() must be done before the test. It is
harder to see the need for the second waitlock(), but one can
imagine that without it process 4 is about to clear wanted; pro-
cess B sets wanted and is about to go to sleep; process A4 clears
wanted and does the wakeup (), which B misses.

A very complex sequence with this ending, requiring three pro-
cessors, was indeed found by the spin supertrace protocol verifier
[Holzmann 1990]. With the second waitlock() in place, spin
has proven this protocol safe for at least 5 processors. The spin
model is given in Appendix C.

Surprisingly, wanted can be getting turned on and off by
different processors at the same time (with an indeterminate
result), yet there is no race condition. This is unusual in a mul-
tiprocessing kernel.

This protocol provides very low contention on spinlocks, and
especially fast resource releases. Normally, 1k is not held and
wanted is not set, in which case no spinlocks at all are needed to
release the resource.

8. Conditionally Acquiring a Sleep
Lock

Another interesting protocol used in uniprocessing kernels
involves waiting for a sleep lock to become available, but not lock-
ing the sleep lock unless sleep is required. Here is an outline of
free(), which puts a given disk block on the free list of a given
filesystem. The in-memory part of the free list and the sleep lock
are kept in the filesystem’s superblock, pointed to by fp. If
free() discovers that the in-memory free list is full, it synchro-
nously writes the free list to disk and resets the list to empty.
Then free() adds the given disk block the free list.

Process Synchronization in the UTS Kernel

397

while (£p->lock)

sleep(fp);
if (fp->freeis full) {
fp->lock = 1;

synchronously write fp->free to disk;
set fp->free to "empty" ;
fp->lock = 0;
wakeup (fp) ;
}
add block being freed to fp->free;

This routine doesn’t bother to change the sleep lock or do a
wakeup () in the normal case that the free list is not full.

We can get the same advantage in the multiprocessing version
of this routine:

spinlock(&fp->1k) ;

while (fp->lock)
sleepl(fp, &fp->1k);

if (fp->freeis full) {
fp->lock = 1;
freelock(&fp->1k);
synchronously write fp->free to disk;
set fp->free to "empty";
spinlock(&fp->1k);
fp->lock = 0;
wakeup (fp) ;

}

add block being freed to fp->free;

freelock(&fp->1k);

The spinlock is held across the wakeup (), which could be
prevented in most cases by adding a wanted flag. Notice that the
wakeup () happens before we are done using the resource, which
is fine since we hold the spinlock in the interval.

398 Lawrence M. Ruane

9. What Provides Processor
Mutual Exclusion?

The previous example provides a good lead-in to the general ques-
tion of what type of lock provides processor mutual exclusion. At
one extreme, such as with the sleep queue hash chains, spinlocks
provide all of it — there are no sleep locks. This applies to many
other parts of UTS as well: the run queue, the free list of process
structures, the hash lists of the buffer cache, etc.

In other cases, such as the most recent example, the responsi-
bility is split between a spinlock and a sleep lock. The spinlock
provides the processor mutual exclusion for the statement

add block being freed to fp->free;

(we hold the spinlock but not the sleep lock) while the sleep lock
protects

set fp->free to "empty";

(we hold the sleep lock but not the spinlock).

At the other extreme, spinlocks only provide synchronization
for manipulating the sleep lock (including preventing missed
wakeups); the data structure is manipulated with just the sleep
lock held. This is also very common, applying to individual
buffer cache headers, inodes, etc.

Of course sleep locks provide all process mutual exclusion.

10. Scope of Sleep Locks

When a sleep lock provides processor mutual exclusion, it must be
held, not just across sleep, but across all manipulations of the
resource. We have discovered parts of the standard kernel where
the scope of a sleep lock is too small for a multiprocessor. In a
uniprocessing kernel, an inode can be unlocked and then still
manipulated; since the kernel is non-preemptable, no other pro-
cess can use the inode until the current process gives up the CPU.
On a multiprocessor, this doesn’t work. From the instant the
sleep lock is released, a process on another processor can get the

Process Synchronization in the UTS Kernel 399

lock and start to use the inode, even though the first process is
still running. So, in a few cases, the unlock of the resource had to
be moved (delayed) to the point at which the resource was really
finished being used.

11. Indivisibly Freeing a Sleep Lock

There-are many parts of the kernel where a process gets the sleep
lock of a resource, but then discovers that the resource is “not
ready” in some sense, requiring the process to wait. Before block-
ing, however, it must free the sleep lock to allow another process
to change the state of the resource to “ready.”

One place this occurs is in the IPC message facility. Each mes-
sage queue has a sleep lock. Suppose process R wishes to receive
a message from a certain queue, but after locking the queue, dis-
covers that it is empty. It then frees the sleep lock and sleeps on
the address of a particular member (qp->gnum) of that queue
structure (not the address of the overall structure, since that is
used for the sleep lock). When another process S sends (enqueues)
a message to the queue, it does a wakeup on the address of
gp->qQqnum.

On a multiprocessor, without any precautions, R can miss the
wakeup, since as soon as it frees the sleep lock in preparing to
sleep, S can get the sleep lock, enqueue the message, and do the
wakeup — before R is asleep. The solution for S is:

/* get sleep lock: */

spinlock(&msg_1k) ;

while (gqp->lock)
sleepl(qp, &msg_lk);

gp->lock = 1;

freelock(émsg_1Kk) ;

/* deposit the message: */

wakeup (&qp->qnum) ;

/* free the sleep lock: */
gp->lock = O;

400 Lawrence M. Ruane

waitlock(&msg_1Kk) ;
wakeup (qp) ;

and for R:

loop:
/* get sleep lock: */
spinlock(&msg_lk) ;
while (gp->lock)

' sleepl(qp, &msg_lKk);
gp->lock = 1;
freelock(&msg_lk) ;

/* no messages to read;
* free sleep lock and
* wait for a message:
*/
spinlock(émsg_1k) ;
gqp->lock = 0;
wakeup (qp) ;
sleepl(&qp->qnum, &msg_lk);
freelock(&msg_1k);
goto loop; /*re-evaluatex/

(There is one global spinlock for the entire IPC message facility,
rather than one spinlock per resource, although it could have been
done the other way.) The important point is that R gets the spin-
lock before it frees the sleep lock, so there is no way .S can lock
the sleep lock until R is asleep, since .S must get the spinlock
before getting the sleep lock. This means the wakeup cannot be
lost. (The spinlock is be held across a wakeup(); as before, this
can be prevented in most cases by use of a wanted flag.)

Notice that after S gets the sleep lock and queues a message, it
does not have to do a waitlock() before the wakeup(); R can-
not be about to go to sleep, or S would not have been able to get
the spinlock, which is needed to get the sleep lock.

Process Synchronization in the UTS Kernel

401

12. Semaphores on Top of
Event-Wait

A semaphore is a counter initialized to the number of some class
of resources (or one for mutual exclusion). When nonnegative,
the semaphore gives the number of available resources; when
negative, the absolute value of the semaphore gives the number of
processes waiting for resources. P() is called when allocating a
unit of the resource; it decrements the counter and blocks if nega-
tive. A call to V() releases a unit by incrementing the counter
and, if processes are waiting, unblocking one of them.

Here is the old UTS implementation:

struct semaphore {

long 1k;
int count;
struct proc *p;
i
P(s)
struct semaphore *s;
i
spinlock(&s->1Kk) ;
if (--s->count < 0) {
queue curproc onto s;
freelock(&s->1k) ;
swtch();
} else
freelock(&s->1k);
Iy
V(s)
struct semaphore *s;
{

struct proc *p;
spinlock(&s->1Kk) ;
if (s->count++ < 0) {

p = dequeue one process from s;

402 Lawrence M. Ruane

freelock(&s->1k) ;
setrq(p) ;
} else
freelock(&s->1Kk) ;
}

Since semaphores can easily be implemented using event-wait,
this is what we did in UTS, replacing the “primitive”’ semaphore
implementation above. Here is the event-wait version of
semaphores:*

struct semaphore {

long 1k;
int count;
};
P(s)
struct semaphore *s;
{
spinlock(&s->1k) ;
while (--s->count < 0)
sleepl(s, &s->1k);
freelock(&s->1k) ;
)2
V(s)
struct semaphore *s;
{
spinlock(&s->1k) ;
if (s->count < 0) {
s->count = 1;
freelock(&s->1k) ;
wakeup(s) ;
} else {
++s->count;
freelock(&s->1k);
}
}

3. For simplicity, we ignore the case of interruptible semaphores, although they are easy
to implement.

Process Synchronization in the UTS Kernel 403

(Since a negative count indicates one or more processes are
sleeping, it is functionally a “wanted” flag.) This reimplementa-
tion of semaphores changed their semantics slightly, and unfor-
tunately broke some things. (It is unclear if the original program-
mers were aware they were depending on such detailed semantics
of semaphores.)

The old semaphores were “strict”: if process A blocks on a
P(), and process B executes V() on the same semaphore, 4 is
guaranteed to get the semaphore next, even if some other process,
C, tries to do a P() before 4 runs. C blocks; A switches in and
gets the semaphore.

The new semaphores, shown above, are “lazy”: in the previ-
ous example C gets the semaphore; 4 would switch in only to find
the semaphore still locked, and go back to sleep.

One part of the kernel that broke is the named pipe open pro-
tocol. A per-inode (per-pipe) semaphore, i_fwcnt, maintains the
number of writers. When a process tries to open a named pipe for
read, it does a P() on that semaphore, which blocks if there are
no writers. What can happen is that the writer comes along;
increments the writer count (does a V (), which awakens the
reader); quickly writes a small amount of data; and closes the
pipe, which decrements the writer count (with P()) to zero.
Then, the reader gets the CPU, but finds the semaphore count is
still zero, and goes back to sleep! The reader remains stuck in the
open protocol.

This was easily fixed by porting the standard event-wait based
code, which is simpler anyway. Other problems of this sort were
fixed the same way.

13. Convoys

In going from semaphores to event-wait, two performance factors
work in opposite directions. Semaphores have the advantage that
processes never wake up unnecessarily. That is, once a process is
on the run queue, it is guaranteed to obtain the resource.

Arising from this very fact, however, are semaphore convoys,
which hurt performance [Lee et al. 1987]. Convoys can occur
when processes lock and release a semaphore repeatedly without

404 Lawrence M. Ruane

sleeping. Such high-contention semaphores are typical of database
environments, for example.

If process g holds a semaphore, and process p blocks on that
semaphore, a convoy begins. When ¢ releases the semaphore, p is
put on the run queue. Then g loops back to re-obtain the sema-
phore, but blocks because the semaphore is owned by p. Process
p runs, uses the resource, and releases the semaphore, giving it
back to ¢, and so on. The two processes alternate on every use of
the resource, dramatically increasing the number of context
switches.

Convoys tend to be self-perpetuating, because once started, the
resource-locked duration per use increases dramatically. It now
includes the time for the new owner process to be scheduled to
run, in addition to the time the process actually uses the resource.
This in turn increases the probability that another process will
block on the semaphore.

Once identified, convoys can usually be solved by redesigning
the kernel algorithms, but at the expense of simplicity.

With event-wait, convoys are not possible, because even
though a process has been awakened and is on the run queue,
expecting to use the resource, it does not yet own the resource, so
the current process can lock it again without blocking.

14. The “Thundering Herd”
Problem

This delightful expression refers to a problem that derives from
the fact that wakeup () makes all processes waiting on the event
runnable, not just one. They race to lock the resource, one gets it,
and the others go back to sleep. Semaphores have the advantage
that processes never wake up unnecessarily. Once a process is on
the run queue, it is guaranteed to obtain the resource.

However, Beck et al. [1987] point out that there usually isn’t a
problem with event-wait on uniprocessors, since by the time each
process runs, the resource is generally available. For example,
suppose that while a buffer is busy being read into from disk, five
processes block trying to read it. When the 1/0 is done, all five go
on the run queue. Each one in turn finds the data in the buffer

Process Synchronization in the UTS Kernel 405

valid, copies it to user space, frees the buffer, and gives up the
CPU for an unrelated reason (e.g., sleeping on another resource).
As long as each process does not sleep while holding the resource,
there are no unnecessary context switches.

On a multiprocessor, this condition is not sufficient. While the
five processes in the example are waiting on the run queue, they
are available to be run by other CPUs. This problem becomes
worse as CPUs are added to the system.

We addressed this problem by giving a private run queue to
each CPU. wakeup() (actually, setrq()) puts processes on the
current CPU’s run queue. The global run queue remains, but only
holds processes with user priority (that is, processes ready to
return to the user program that have deferred to a better priority
process); thus user priorities are honored.

When a CPU wants a process to run (in swtch()), it first
looks in its own run queue, then in the user priority queue, and
finally, since it doesn’t make sense for a CPU to go idle if there is
really work to do somewhere, it “‘raids” other CPU’s run queues.

The result is that the number of unnecessary context switches
is reduced to about the level of a uniprocessor, as long as there is
sufficient work in the system to prevent a lot of raiding (and if
there isn’t that much work, we probably don’t care about unneces-
sary context switches anyway). Another advantage is that the con-
tention on the run queue spinlock, usually the worst in the system,
is far lower.

To demonstrate the full effect of this approach, we started four
identical processes, each reading the first 64 blocks of the same file
forever:

fd = open("bigfile", 0);
for (;;) {
1seek(fd, 0, 0);
read(fd, buf, 64x4096);
}

Then we started another four reading a different file. The system
had two processors.

Using the new run queue scheme and scheduler, the system
did 90% fewer context switches per second, and got 50% more

406 Lawrence M. Ruane

“real work™ done (bytes read) per second. The effect on a typical
workload is not yet known.

What happens is that each resource becomes informally associ-
ated, for perhaps a few seconds at a time, with a particular CPU;
each CPU becomes a defacto server for a set of resources. If pro-
cess a, running on CPU 1, blocks while trying to access a resource
that is being used by process b, running on CPU 2, then when b
releases the resource, a goes on CPU 2’s run queue. Thus, the
users of a certain resource tend to migrate to the same CPU as
other users of the same resource. This may also improve the pro-
cessor cache efficiency. The global user-priority run queue pro-
vides load balancing among CPUs.

15. Conclusions

Our experience with event-wait on UTS has clearly been positive.
The code, except for per-CPU run queues, has been incorporated
into the UTS product beginning with release 2.1. It is conceptually
easy to understand and leads to simpler and more reliable kernel
algorithms. There are just two new primitives, sleepl() and
waitlock(), with trivial implementations.

The importance of easing porting from the standard unipro-
cessing kernel is hard to overstate, especially as the kernel (unfor-
tunately) becomes more complicated. Porting the uniprocessor
buffer cache code, for example, was almost as easy as adding
spinlock() to the top of each function, freelock() to the bot-
tom, and replacing each sleep() with sleepl() (a single spin-
lock protects the entire buffer cache). None of the algorithms
needed modification. (Of course, it’s not always quite that easy!)

Our performance measurements so far have been encouraging.
Without the per-CPU run queues (which is still being evaluated),
the throughput of the event-wait kernel was consistently measured
to be 0.8% to 1.2% better than the semaphore based kernel on a
typical mix (compiles, greps, troffs, etc.), depending on the load.
The only difference was that in the event-wait kernel, ssmaphores
were implemented using event-wait rather than as primitives;
none of the other algorithms were changed (i.e., they used
semaphores).

Process Synchronization in the UTS Kernel

407

A greater relative improvement can be expected as more of the
kernel is converted to use event-wait directly, and as a result of
per-CPU run queues.

This approach might provide a good basis for future multipro-
cessing kernels, since it is in no way specific to the S/370 architec-
ture or to UTS.

- Acknowledgements
Thanks to Joan Kalmanek and Craig Harmer for their contribu-

tions to this project. Gerard Holzmann provided lots of help with
using his protocol verifier.

408 Lawrence M. Ruane

Appendix A:
Event-wait and Monitors

The event-wait mechanism is actually a variant of the traditional
monitor synchronization model as described in Ben-Ari [1990]. A
particular implementation of monitors is defined by several
independent characteristics, many of which are described in the
literature as if they were dependent. What all forms of monitors
have in common is the existence of two routines, wait() and
signal() (sometimes with different names). The signal()
primitive always suspends the current process (unlike the sema-
phore P() operation); wait () unblocks one or more processes.

Each of the following sections describes a separate monitor
characteristic.

1. implicit vs. explicit mutual exclusion

Traditionally, a monitor is described as consisting of a set of pro-
cedures and data, encapsulated in a monitor construct provided
by the language. In some cases, a monitor is a class, from which
many instances of the encapsulated data can be created. The
language provides implicit per-instance mutual exclusion among
the procedures within the monitor, ensuring single-threaded
execution.

The alternative is explicit mutual exclusion of code segments
using calls to primitives such as spinlock() and freelock()
on a multiprocessor or spl6() and spl0() on a uniprocessor.
This is how most “real systems” are written, not only because C
does not support monitors, but because of the added flexibility of
being able to apply the mutual exclusion exactly where needed,
without having to pull code segments into separate monitor func-
tions. (Of course, the encapsulation approach can be followed by
convention.)

2. blocking vs. non-blocking mutual exclusion

If a process finds the mutual exclusion lock unavailable, the sys-
tem can either suspend the process, or spin until the lock is free.
In the practical world, spinning is almost always best, because the

Process Synchronization in the UTS Kernel 409

lock duration should be small (otherwise a design problem is
indicated).

Also, blocking mutual exclusion presents difficulties for inter-
rupt handlers, which cannot sleep. The only use of a blocking
mutual exclusion lock in UTS is in the memory manager (which
should probably be redesigned to use spinlocks). When a disk
paging request completes, but the disk interrupt handler cannot
get the memory manager lock, it queues a data structure to a spe-
cial list (protected by a spinlock) of ‘‘paging operations completed
but not yet processed through the memory manager.” Then, when-
ever the memory manager lock is freed, any items on this list are
processed. This obviously complicates the memory manager.

3. condition variables vs. wait channels

In the usual description of monitors, wait () is passed a pointer
to a condition variable. The process is queued on the condition
variable, to be later dequeued by signal(). There is no state
associated with a condition variable except the list of processes.

In the UNIX kernel, the argument to wait()’s equivalent (-
sleep()) is an arbitrary integer, the channel, which usually is
hashed to one of many sleep queues for speed.

The difference is almost purely cosmetic. The arbitrary integer
approach simplifies matters by not requiring variables to be allo-
cated (and named!). Also, condition variables might use a
significant amount of space if they are members of highly repli-
cated structures.

4. immediate resumption vs. normal scheduling

In the usual description of monitors, if signal() finds a process
waiting, that process is made runnable; but more than that, it is
sure to be the next process to run in the monitor.

The advantage is that the condition which was made true by
the process doing the signal() need not be reevaluated by the
awakened process — it is guaranteed to be true. Usually
signal() is required to be the last statement of the monitor rou-
tine so that the signaling process can not change the state of the
monitor before the awakened process runs.

The alternative is that signal() simply puts the process on
the run queue, and an arbitrary amount of time might pass until it

410 Lawrence M. Ruane

runs. Since the state of the monitor might change between the
signal and when the awakened process runs, it must reevaluate the
condition that caused it to block. This is the approach taken in
Mesa [Lampson & Redell 1980].

How is immediate resumption implemented? If the mutual
exclusion lock is the blocking type, then signal() can simply not
free the lock (and not have wait () try to get the lock before
returning). But this approach won’t work if the mutual exclusion
lock is a spinlock, unless the run queue is bypassed entirely, with
the signaling process directly resuming the process being signaled.

Immediate resumption can lead to convoys (discussed else-
where in this paper), since a process cannot reenter the monitor
after doing a signal() without giving up the CPU.

5. wake one vs. wake all

This alternative is actually a subset of the ‘“normal scheduling”
case above; it does not apply to immediate resumption. If
signal() finds more than one process waiting, should it make
just one process runnable, or all waiting processes?

Waking just one process is sometimes more efficient (however,
see the “Thundering Herd” section of this paper), but adds to the
complexity of the monitor. When the process resumes inside the
monitor, it bears a heavy burden of responsibility: if the process
finds the condition true (i.e., this was not an unnecessary wake
up), but decides not to make the sleep condition false for any rea-
son, it must signal the next waiting process. For example, after
sleeping on a busy buffer in the getblk() buffer cache routine
(see Appendix B), the process cannot blithely goto loop as if it
has just come into the routine for the first time; it might choose a
different buffer and thus fail to make the original buffer busy.
That could cause processes waiting for the original buffer to wait
forever.

Also, the mapping from conditions to events must be unique
across the entire system.

Waking everyone, also called a broadcast signal, allows each
awakened process to worry only about itself with regard to the
event that has been signaled. It minimizes complexity by allowing
algorithms to be written in the busy-wait model, adding process
synchronization at the last minute.

Process Synchronization in the UTS Kernel 411

Monitors Summary

Characteristics 1 through 3 are mostly superficial, and do not
affect the structure of kernel algorithms much. Characteristics 4
and 5 can have a significant impact on algorithms.

The standard uniprocessing UNIX kernel uses explicit mutual
exclusion, wait channels, normal scheduling, and wake all. UTS
uses-in addition non-blocking mutual exclusion (spinlocks).

412 Lawrence M. Ruane

Appendix B:
Problems with Semaphores

One of the areas in which semaphores have given us serious prob-
lems is the section of the kernel that implements the buffer cache.
By looking at how the design evolved as problems were
discovered, we can gain insight into the question of when sema-
phores are appropriate and when they are not. (While the story of
this evolution is not historically accurate, it’s not far off.)

Although the following discussion applies to both uniprocess-
ing and multiprocessing kernels, we will ignore the multiprocess-
ing issues; the structures of the algorithms are the same.

The getblk() routine finds a buffer in the disk buffer cache
[Bach 1986]. Here is an outline of getblk() using event-wait
(for simplicity, we assume there are no delayed-write (dirty)
buffers):

loop:

if (find buffer in cache) {
if (buffer BUSY) {

sleep(&buffer) ;
goto loop;

}
set buffer BUSY;
freecnt--;
take buffer off freelist;
return(buffer) ;

b2

if (freecnt == 0) {
sleep(&freelist);
goto loop;

3}

freecnt--;

set first buffer on freelist BUSY;

take first buffer off freelist;

reassign buffer;

return(buffer) ;

Process Synchronization in the UTS Kernel 413

There are two “polling” loops, corresponding to the two goto
statements. In the first loop, the cache hit case, the current pro-
cess p polls the buffer it wants until it is not busy. In the second
loop, for a cache miss, p polls for the freelist to be non-empty.
The loops must enclose the search as well as the test for BUSY
because anything can happen while p sleeps.

For the cache hit case, when the buffer is no longer busy, p sets
it busy, unlinks it from somewhere in the freelist (the buffer must
be there since it wasn’t busy) and returns.

In the case of a cache miss, when the freelist becomes non-
empty, p takes an old buffer from the freelist and reassigns it (i.e.,
change the disk block this buffer will henceforth be associated
with).

Converting this routine to use semaphores seems straightfor-
ward. Since p might wait for two kinds of resources (a particular
buffer, and any buffer on the freelist), we replace each buffer’s
BUSY bit with a semaphore, and replace freecnt with a sema-
phore, freesema, initialized to the number of buffers. Here is a
first try using semaphores:

if (find buffer in cache) {

P(buffer);
P(freesema);
take buffer off freelist;
return (buffer) ;

¥

P(freesema);

P (first buffer on freelist) ;
take first buffer off freelist;
reassign buffer;

return (buffer) ;

It’s pretty easy to see why this version doesn’t work. If p finds
the buffer, and blocks while locking it (P (buffer)), the buffer
might be reassigned, causing p to return the wrong buffer. Simi-
larly, if the process doesn’t find the buffer, it might block on the
freelist semaphore, allowing the buffer it is looking for to appear
in the cache. This results in two buffers corresponding to the same
disk block - bad news.

414 Lawrence M. Ruane

Here is a fix for the first problem:

loop:
if (find buffer in cache) {
P(buffer);
if (wrong buffer) {
V(buffer);
goto loop;
}
P(freesema);
take buffer off freelist;
return(buffer);

)

After finding the buffer, p locks it. Since in doing so p might
have blocked, it then verifies that this buffer is still the one it
wants. If not, p releases the buffer and re-evaluates.

Since in practice the process usually doesn’t block in P (), ver-
ifying the match every time seems wasteful. Even worse, the
analogous solution to the second problem (the case of a cache
miss) requires that p make a second search for the buffer every
time, since it might have blocked on the freelist semaphore.

The problem seems to be that p doesn’t know when it blocks
in P(); that’s hidden from it. We can make blocking explicit
with a new primitive, CP (), the conditional version of P ()

CP () (is available in UTS). CP() attempts to lock the semaphore
but will not block, returning zero instead.

Here is a version using CP():

loop:
if (find buffer in cache) {
if (I1CP(buffer)) {
P(buffer) ;
V(buffer);
goto loop;
}

P(freesema);
take buffer off freelist,
return(buffer) ;

Process Synchronization in the UTS Kernel 415

if (ICP(freesema)) {
P(freesema);
V(freesema);
goto loop;

}

P (first buffer on freelist) ;

take first buffer off freelist;

reassign buffer;

return (buffer) ;

Suppose p finds the buffer. If the buffer is available, CP ()
succeeds, and since p hasn’t blocked, verifying the match is
unnecessary — the normal case is fast. If CP() fails, p sleeps until
the buffer is free, and re-evaluates. Similarly, p knows it must re-
evaluate if it blocks on the freelist.

This version does not work (with the usual “‘strict” sema-
phores). Suppose two processes, p and g, block while trying to)
access the same buffer. When the buffer is released, p runs, does a
V() (which puts g on the run queue), loops back, and finds the
same buffer. But the attempt to lock the buffer fails (the sema-
phore count is zero) because the buffer is owned by g (who is wait-
ing on the run queue). So p blocks, g runs, and the cycle repeats
forever.

The solution is to re-evaluate only if the buffer has been
reassigned:

loop:
if (find buffer in cache) {
if (!CP(buffer)) {

P(buffer);
if (wrong buffer) {
V(buffer);
goto loop;
}
}
P(freesema) ;
take buffer off freelist
return (buffer) ;

416 Lawrence M. Ruane

In the cache miss case, the freelist ssmaphore can cause the
same kind of livelock, but no analogous solution exists. Although
keeping track of the number of items on the freelist seems such a
natural use of semaphores, we know of no versions that actually
do. Instead, a semaphore that never goes positive is used to block
processes, in an event-wait style.

There is yet another problem with all the above semaphore-
based versions (assuming strict semaphores). Just because a buffer
is on the freelist, a P() operation on it might still block. The
buffer may be owned by a process on the run queue, who is about
to take the buffer off the freelist. So in the cache miss case, the
process must scan the freelist until it finds a buffer that can be
locked.

More generally, it is harder to enforce invariants (such as “a
buffer is on the freelist if and only if it is not locked”) because of
the existence of an interval between when a resource (a buffer)
becomes owned by someone and when that process actually runs
and changes the state of the system accordingly (takes the buffer
off the freelist).

Process Synchronization in the UTS Kernel 417

Appendix C:
Spin Model for Sleep/Wakeup with
“Wanted” Flag

Using BITSTATE, this model needed 3 minutes of CPU time and
32MB on an IBM 3090 running UTS to get a coverage factor over
100 (see Holzmann [1990]). No errors were found.

/ * %
get resource:
spinlock(&r->1k) ;
while (r->lock) {
r->wanted = 1;
sleepl(r, &r->1k);

}
r->lock = 1;
freelock(&r->1k) ;

use resource... free resource:
r->lock = O;

waitlock(&r->1Kk);
if (r->wanted) {
r->wanted = 0;
waitlock(&r->1k);
wakeup(r) ;
Y
*x /

/* number of cpus (processes) */

#define N 5

#define RUN O

#define SLEEP 1 ,

/* resource wanted flag and sleep lock */
byte r_wanted, r_lock;

/* resource spinlock, 0 or 1 */

byte r_1k;

/* sleep queue spinlock, O or 1 x/

byte sq_lk;

418 Lawrence M. Ruane

/* process state, SLEEP or RUN */
byte state[N];

proctype cpu(int i)

{
int j;
/* get resource: */
atomic {
(r_lk ==0) ->r_1lk =1
};
do
(r_lock == 1) ->
r_wanted = 1;
/* inside sleepl() */
atomic {
(sq_lk == 0) -> sq_lk = 1
};
r_lk = 0;
state[i] = SLEEP;
sq_lk = 0;
/* wait to be awakened */
(state[i] == RUN);
atomic {
(r_lk == 0) ->r_1lk =1
}
(r_lock == 0) ->
break
od;
assert(r_lock == 0);
r_lock = 1;
r_1lk = 0;
/* use resource ... free resource */
assert(r_lock == 1);
r_lock = 0;
(r_1k == 0);
if
(r_wanted == 1) ->
r_wanted = 0;
(r_1k == 0);

Process Synchronization in the UTS Kernel 419

/* inside wakeup() */
atomic {

(sq_1lk == 0) -> sq_lk = 1

}s
/* wakeup everyone */
atomic {
do
(G <N) >
state[j] = RUN;
j=in
(j >= N) -> break
od
i
sq_lk = O
(r_wanted == 0) ->
skip
fi
}
init {
int i;
atomic {
do
(i <N) ->
run cpu(i);
i=i+l
(i >= N) -> break
od

420 Lawrence M. Ruane

References

M. J. Bach, The Design of the UNIX Operating System, Englewood Cliffs,
NJ: Prentice-Hall, 1986.

B. Beck, B. Kasten, and S. Thakkar, VLSI Assist for a Multiprocessor,
Proceedings of the Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
pages 10-20, October 1987.

M. Ben-Ari, Principles of Concurrent and Distributed Programming,
Englewood Cliffs, NJ: Prentice Hall, 1990.

E. W. Dijkstra, Cooperating Sequential Processes, in Programming
Languages, ed. F. Genuys, pages 43-112, New York: Academic
Press, 1968.

W. A. Felton, G. L. Miller, and J. M. Milner, A UNIX System Implemen-
tation for System/370, AT&T Bell Laboratories Technical Journal,
63(8), Part 2, pages 1751-1768, October 1984.

Gerard Holzmann, Algorithms for Automated Protocol Validation, AT&T
Technical Journal, 69(1):32-59, January/February 1990.

B. W. Lampson, D. D. Redell, Experience With Processes and Monitors,
Communications of the ACM, 23(2):105-117, Feb. 1980.

T. P. Lee, M. W. Luppi, and R. E. Menninger, Solving Performance
Problems on a Multiprocessor UNIX System, Proceedings of the
USENIX Conference, pages 399-405, Summer, 1987.

K. Thompson, UNIX Implementation, The Bell System Technical Jour-
nal, 57(6) Part 2, pages 1931-1946, July-August 1978.

[submitted April 9, 1990; revised June 14, 1990; accepted June 20, 1990]

Process Synchronization in the UTS Kernel

421

