
A Concurrent Programming
Support for
Distributed Systems

G. Spezzano and D. Talia CRAI, Italy

M. Vanneschi University of Pisa, Italy

ABSTRACT: This paper describes a concurrent pro-
gramming support implemented on a distributed
architecture. The concurrent programming model is
derived from the Communicating Sequential
Processes (CSP), with some extensions to allow
asymmetrical and asynchronous communications;
furthermore, some statements for fault handling
have been defrned.

The system described here, is named NERECO (NEt-
work REmote COmmunications). It is composed of
a concurrent language and a set of static tools and a

run-time support for the design and the implemen-
tation of concurrent distributed applications on a
network of computers. The NERECO system has

been implemented in C on a network of Sun
workstations.

@ Computing Systems, Vol. 3 'No. 3 'Summer 1990 423

1. Introduction

The design and implementation of efficient and reliable distri-
buted applications require highJevel tools and mechanisms
characterized by expressive po\iler, high modularity, and robust-
ness. Although the operating system and the low levels of inter-
process communication offer mechanisms for process creation and
cooperation, the development of the greatest part of distributed
applications requires a set of constructs that are more powerful
and at a higher level [Bal et al. 1989; Hansen 1973].

A highJevel distributed concurrent programming support
offers an abstraction level in which resources are defined like
abstract data types encapsulated into processes. According to this
approach, a distributed program consists of a set of processes
cooperating by message passing and located on one or many com-
puters. In the implementation of typical distributed programming
techniques (e.g., concurrent activities management, data and
processes replication, synchronization, and fault tolerance), a con-
current programming support isolates the distributed software
designer from the underlying network architecture, communica-
tion protocols and operating system.

The aim of this concurrent programming support is to provide
a methodology for modular and robust structuring of distributed
programs by:

. characteÅzing the processes in a functional way and associ-
ating a type to each one

. using unidirectional typed channels;

. expressing communication forms either by point to point
(rendez-vous) or by diffusion (broadcast and multicast);

424 G. Spezzano, D. Talia, and M. Vanneschi

. controlling nondeterminism in communications; and

. handling, in a simple and flexible way, fault conditions
through detection, confrnement and recovery.

The system described here is the frrst of a set of tools which
has been developed at CRAI (Consorzio per la Ricerca e le Appli-
cazioni di Informatica) in order to support the development of
efficient and reliable distributed software. It is the prototype of a
distributed support system for the development of concurrent dis-

tributed programs termed NEtwork REmote COmmunications
(NERECO) [Spezzano et al. 1987; DeFerrani et al. 1985].

This paper is organized as follows. Section 2 gives an over-

view of the system. Section 3 describes the language constructs.

In section 4 the static tools are presented. Section 5 shows one

example program written in the language. Finally, in section 6 the

distributed run-time support of NERECO is described.

2. NERECO Overview

This section gives an overview of the NERECO system with special

attention to the design criterions and choices. Several aspects,

particularly language constructs and static tools, will be described

in the two next sections.
The main goals of NERECO are:

. providing a flexible environment so that users are not bound

to one specific set of statements and data types of the

sequential part ofthe language;

o making available few language constructs but that are

sufficiently general and powerful to achieve concurrency
management, communication facilities and error recovery at

a user level;

. making the distributed run-time support for concurrent con-

structs simple and efficient as much as possible, so allowing

extensions for new mechanisms and fault-tolerant
requirements;

o guârânt€eing a good portability without being bound to a
particular host system.

A Concurrent Progrqmming Support for Distributed Systems 425

The main issue is to choose the programming language to be
offered to the users for developing distributed programs. The frrst
requirement is obviously incompatible with the choice of one of
the concurrent languages available at present, such as Ada [Ada
19831, NIL IStrom & Yemini 1983] and CSP-based languages

[Hoare 1978] like ECSP [Baiardi et al. 1984; Baiardi et al. 1984a],
CSP80 lJazayeri et al. 19801, Occam [Inmos 1984], Planet
[Crookes & Elder 1984], Joyce [Hansen 1987], etc. Actually, the
use òf a language with powerful abstraction mechanisms for data
and control flow, like Ada, could be suitable, but it provides an
environment that might be opposed to the needs of many users
who want to use a programming style of centralized systems
because of system requirements or personal preference. Further-
more, more complex languages contradict third requirement
because the complexity of the sequential part has remarkable
impact on the concurrent run-time support.

The design choice of NERECO is to add to a sequential
language a set of concurrent constructs with well-formed syntax
and semantics, and to extend its static development tools with
those that support the concurrent part. This approach has been
used successfully in other projects, such as Conic [Magee et al.
I e86 l.

Regarding the second requirement, our choice has identifred a
set of mechanisms derived from the Communicating Sequential
Processes (CSP) model. The main features of this concurrent pro-
gramming model are:

¡ conlmutrication management by means of input and output
commands and the use of channels,

. the exploitation of parallelism by means of the parallel com-
mand, and

. nondeterminism management by guarded commands.

The CSP characteristics of flexibility and generality which have
already been fully tested, have convinced us to choose this model.
With respect to CSP, some mechanisms such as asynchronous and
broadcast communication, dynamic channels, fault-tolerance state-
ments, and explicit termination, have been added.

Broadcasting is an inexpensive way of communication with a
large number of processes. A message broadcast by a process is

426 G. Spezzano, D. Talia, and M. Vanneschi

received directly by all the other processes in the network instead

of being restricted to only one process [Gehani 1984]. Motivated
by the characteristics of local area networks, such as Ethernet, the

broadcast facility can be used to advantage in designing some

kinds of distributed applications.
Dynamic channels allow to change at run time the intercon-

nection among the processes. In this way, a distributed applica-

tion can be dynamically reconfrgured according to the user

requirements. Furthermore, dynamic channels can save the

amount of channels in a program. For example, when a process

must input a value from n processes, one dynamic channel can

substitute n static channels. Finally, used together with
fault-tolerance statements, dynamic channels provide the mechan-

isms to reconfigure the program when a fault occurs.

Only one CSP mechanism has not been considered, the process

nesting. This is due to the process granularity of the system on

which NERECO has been implemented, that is the heavy weight

UNIX processes. The grain size of the UNIX processes suggested

us to avoid applications with a very large number of processes

that can introduce an excessive overhead decreasing the applica-

tions perfonnance.
At the moment NERECO is based on CHILL, Pascal and C

languages. The static tools perform:

. the compilation of concurrent constructs,

. the generation of code,

. the control of consistency at process interfaces,

. the location ofexecutable code and confrguration frles on the

network nodes.

The dynamic tools perform:

. the installation of application's processes,

. the distributed run-time support of the concurrent part by
processes which interpret concurrent constructs and by
processes communicating on the network,

. the load balancing of the distributed application (if the user

wish),

A Concurrent Programming Support for Distributed Systems 427

. the logging of concurrent construct.

The distributed run-time support of the concurrent constructs
has also been implemented by cooperating processes, as a virtual
machine on an existing operating system (OS). In this case the OS

is Sun UNIX 4.2. The main aspect is that the designer is able to
transform typical mechanisms of concurrent languages into system
calls easily by a good knowledge of concurrent programming
methodologies. The virtual machine has been initially described
in a CSP-like language and then "translated" into the C language

[Kernighan & Ritchie 1978] with additional UNIX system calls

[Ritchie & Thompson 1978], with a limited design effort.
Another advantage of the chosen approach consists of a higher

possibility to conceive reconfrguration and fault-tolerant mechan-
isms in the run-time support implementation. This aspect is
essential to isolate the user from problems that can raise by net-
work physical configuration or network reliability.

3. The language

As mentioned above, the cooperation model has some differences
in comparison with the CSP model, both as extensions and limita-
tions. The major limitation is the lack of a parallel command for
the process nesting. In the NERECO system a concurrent program
is constituted of a set of processes that are all at the same level
and activated at the same instant.

More important extensions are:

. the explicit declaration of message type, to allow complete
static type checking and process interface checking;

. the addition of asynchronous and asymmetric communica-
tion forms, multicast and broadcasr, which permit to explore
a new way of programming distributed applications on local
area networks; and

. the use of fault-tolerance constructs to handle communica-
tion or process failures.

428 G. Spezzano, D. Talia, and M. Vanneschi

3.1 Processes

The information which characterizes a process in a distributed
program is íts name and its type. The process type is necessary to

identify a class of processes, such as monitor, file server, etc. This

characteization is useful when, for instance, a process needs to

operate on a replicated resource available on the network. The

process sends the request to all of the resource managers without
mentioning the name of each process, but only their type. Inside

each process, as its first declaration statement, there is the declara-

tion of the process itself, as follows:

self <process-id> : <process-type-id> ;

After this declaration, the partners and their type must be

declared:

partners <process -id>,...,
<process -id> : <process -type -id> ;

3.2 Channels

channels are "logic objects" realizing the communication among

the processes of the program. Like the CSP model, the processes

cooperate through communication channels using input/output
commands. Channels are typed and identifred by the triple:

(sender process set, receiver process, message type)

They can be symmetrical or asymmetrical, and generally they are

asynchronous.
A communication channel, always unidirectional, is considered

a private object of the single receiver process' It can be static or

dynamic; in the frrst case the name of the partner is represented

by a constant, in the second case by a processname vatiable'
The channel message type is composed of a pair (co, T), where

co is the type constructor and T is the type offered by the sequen-

tial language. In pure synchronization channels, only the con-

structor is used. Static channels can be defined as follows:

. symmetric and synchronous,

. symmetric and asYnchronous,

A Concurrent Programming Support for Distributed Systems 429

. asymmetric and synchronous.

Let us show, for example, the syntax of an asymmetric synchro-
nous static channel:

chan from (<process _id>,..., <process _id>)
typ <c on s tr _i d> (<ms g _ty p e>);

The <constr_id> is the type constructor and with <msg_type>
constitute the type of message transmitted on the channel. Notice
that'explicitly declaring the message type it makes possible to
check automatically the process interfaces, increasing reliability
and making easier the integration test. The processes defrne, by
channels, visible points through which it is possible to make
requests and to receive messages. Program security is consider-
ably enhanced guaranteeing that a process can send or receive a
message on a channel if and only if the message type is equal to
the channel type.

Asynchronous channels are an important feature of the
language. They increase the parallelism of the applications,
because they avoid the requirement that a sender process waits
until the receiver collects the message. To declare an asynchro-
nous channel, it is necessary to specify the length of its associated
buffer, while the synchronous channels have no length declaration.
When the buffer is full, the channel behaves as a synchronous one.
Figure I shows an example of an asynchronous channel. The
server process is the receiver, the user process is the sender,
update(integer/ is the type of the message, and the channel buffer
holds three positions.

Process server ::

amn f-nr'urat
type update (integer);
length = 3;

Figure 1: An asynchronous channel

As mentioned before, channels can be dynamic. In this case
the name of the partner process is a variable of processname type.
Dynamic channels can be symmetric and synchronous.

430 G. Spezzano, D. Talia, and M. Vanneschi

To allow dynamic channel management it is necessary to
deflne variables of processname Íype, i.e. variables whose values
are process names. The declaration is as follows:

procvù <procvar-id>, ..., <procvar-id> ;

Moreover, it is possible to specify a rarLge in which the values can

vary. If the range is not specifred the domain of a processname

variable is constituted of identifrers of all visible processes (self
and þartners) plus the undefined value. To operate on dynamic
channels two constructs are defrned:

connect(<pro cv ar -id>, <proces s -i d>)

to assign a value and the communication rights, and

detrch(<procvar-id>)

to assign the undefrned value and to revoke whatever communica-
tion right. Note that in the communication constructs, channels
are not mentioned, but only the names of the partners quoted in
the channel declaration, differently from other languages (e.g.

Occam), in which channel names are used.

3.3 Communication and nondeterminism

The communications are realized by the I/O commands, send and
receive. The send construct can have a symmetrical or asymmetri-
cal form:

send (<pr o c es s -i d>, <co n s tr -id> (< ms g
-v ar>)) ;

send (ùl of (<process-id-list>), <constr-id> (<msg-var>));

send (all of type : <process-type-id>,
<cons tr -id> (<ms g

-v
ar>)) ;

In the ûrst case, only a partner exists, it is identifred by
<process-id>; in the second there is a set of partners, defined by a
list (send multicast); finally in the third the set of partners is
defrned by a process type identifier (send broadcast).

Notice that in the last form of the send statement, the user
does not specify the list or the number of processes to which the
message will be delivered. The <constr-id> is the type

A Concurrent Programming Support for Distributed Systems 431

constructor defined into the declaration of channel used to send
the message.

The syntax of the receive statement is:

r eceiv e (<pr o c e s s -i d>, <c o n s tr -i d> (<m s g
-v ar>)) ;

receive (<procvar>: any of (<proc-id-list>),
< c o n s tr -i d> (<m s g

-v ar>)) ;

In the flrst form, there is only one sender; in the second there is a
set oi senders, but only one of them delivers the message.

The nondeterministic constructs are similar to those provided
by CSP, namely repetitive and alternative commands with input
guards and priority. The syntax of the repetitíve command is
shown below (Figure 2). In the syntax of alternative command,
the keywords rep and endrep are replaced by att and endalt. The
symbol 'o/o' separates two branches of the command.

The <command lis> of the alt or rep command can be exe-

cuted only if the <input guard> and the <boolean guard> have
not failed. When all branches are evaluated, only one with a suc-

cessfully executable guard is selected and executed.
An alt command specifies the execution of only one of its

branches. A rep command specifres as many iterations as possible

of its similar alt command. When all guards fail, the rep

rep
<priority> ;
<boolean guard> ;
<input guard> ;

docl
<command list>

endcl ;
o/o

o/o

<pnonty>;
<boolean guard> ;

<input guard> ;

docl
<command list>

endcl ;

endrep ;

Figure 2; The repetitive command

432 G. Spezzano, D. Talia, and M. Vanneschi

command terminates. Finally, notice that by adding priority it is
possible to force a particular scheduling.

3.4 Fault tolerance

The language offers fault handling mechanisms to handle com-
munication failures caused by a:

. physical communication media fault,

. partner termination, or

. channel disconnection.

Failures can be handled by the onfail, onterm and onprot
clauses. These statements can be associated to an input/output
command (i.e., send or receive). They make it possible to per-
form recovery actions (forward recovery) when a failure occurs

[Spezzano &Talia 1989]. In the example of Figure 3, we used the
onterm clause as a mechanism to continue the process execution
when a communication fails because the partner serverl is
terminated.

connect (x, serverl);
send (x, exec(param))
onterm

connect (x, server2);
send (x, exec(param));

end;
receive (x, result);

Figure 3: Example of the use of onterm clause.

3.5 Termination

In the language is deflned the explicit termination of a process. A
process can terminate at any time by executing the terqrinate con-
struct which lets the process execute termination, informing all the
partners. Notice that a process can exclusively execute its termi-
nation, but constructs are not provided to force the termination of
other processes.

A Concurrent Progrømming Support for Distributed Systems 433

4. Tools

The NERECO system provides a set of static tools to support the
development of a distributed program. They are the precompiler,
the consistency checker, and the configurator.

4.1 Precompiler

The precompiler essentially carries out the role of a compiler for
the concurrent part ofthe language. It operates on each single
process composing the program. Stafing from a concurrent pro-
gram it produces a sequential one. The precompiler output will
be the input for the compiler of the sequential language. Notice
that it is a "rational preprocessor" [Aho et al. 1986], namely it is
not a simple macro translator, but a precompiler for a language
enhanced with new data and control structures.

As mentioned before, the dependency of NERECO from a par-
ticular sequential language is confined on the precompiler. Hence
it is easy to deduce that the choice of a different sequential
language in which to embed the concurrent part, involves to
change only this module.

In the precompiler design, a lot of attention has been paid to
preserve the syntactic and semantic coherence of the host sequen-
tial language. After the syntactic and semantic analysis of the
concurrent part, the preprocessor generates the sequential code.
In the code generation the concurrent constructs are translated
into function calls, which contain the code to communicate with
the run-time support processes, using the InterProcess Communi-
cation (IPC) of UNIX 4.2BSD ILefler et al. 1983]. Furthermore,
the precompiler produces a table containing the necessary infor-
mation to execute the consistency checks among the processes of
the program. Currently, three precompilers are implemented for
CHILL, Pascal and C language.

434 G. Spezzano, D. Talia, and M. Vanneschi

4.2 Consistency checker

The consistency checker performs the static analysis of con-
sistency among the concurrent "objects" of the processes compos-
ing the program. In this phase the entity distributed program is

ereated, assigning a name to the set of processes. The consistency
checker analyzes the data which have a global interaction on the
program, process names and channels.

The consistency checker analyzes the tables generated by the
preprocessor for each process and works out the following
operations:

. consistency analysis among the declarations of processes;

. production of diagnostic messages on the insubstantialities;

. synthesis in a global table of the information about all the
concurrent objects of the program.

For instance, ifprocess { declares process Pras a partner, the
consistency checker tests if also the process P, declares P, as its
partner. If not, an error is signaled. The same occurs for a com-
munication channel between two processes.

4.3 Configurator

The configurator provides for the physical configuration of the dis-
tributed program on the network nodes. It asks to the user the
host name on which each process must run, hence it takes care to
transmit the executable frles on the corresponding hosts. Finally,
it creates a table of correspondence between processes and hosts
(configuration table) which is useful to the run-time support.

Notice that having a distributed file system, like that of Sun

UNIX 4.2lLyon et al. 19841, it is not necessary to allocate the exe-

cutable frles on the network hosts. In this case the run-time sup-
port loads on each node the executable code from the distributed
file system according to the configuration table.

Once developed, a program can be confrgured in all the possi-

ble ways without changing the code of the processes. This is pos-

sible because the concurrent constructs are independent from the
particular process location. The distributed run-time support pro-
vides the message routing on the basis of the conflguration table.

A Concurrent Programming Support for Distributed Systems 435

Furthermore, we enhanced the confrguration facilities by putting

in the run-time support a tool for a load-balancing configuration

that users can optionally utilize.

5. An example

ThiS section presents an example of concurrent programmlng rn

the NERECO language. This program is a simple example of a

distributed implementation of partitioned or replicated resource

managemsnt. In the program a process manages a set of
resources, in this case a set of counters. There are three types of
processes, Allocator, Counter and User. The Users can request to

lhe Allocator process the services of the Counter processes. After

Figure 4: A schema of processes and channels

436 G. Spezzano, D. Talia, and M. Vanneschi

obtaining the access to the Counter, the User process can com-
municate directly to this process to obtain its services. Figure 4

shows the processes and channels they use to communicate.
When the Allocator receives a request from a User, it looks for

a free Counter. If this is found, the initiate message is sent to it.
This message contains the name of the User, so the Counter can
send it the ready message. Then it waits to service the User.

When all the Counters are busy, the Allocator sends the congested
message to the User. Th'ts the User will retry the request until a

Counter will be free.
Figures 5a, 5b and 5c show the code of the example processes.

In this case the sequential language is C.

self Ul : user;
partners A: allocator;

Cl,C2, C3 : counter;
procvar C (Cl, C2,C3),X;
channel from A type congested0;

from counter type readyO;
from C type cont : int;
toward A type acquire0;
toward A type release(us : processname);
toward all counter type step0;

int end, count, i;

for (;;X
end = 1;

send(A,acquire0);
tep

boolean = end;
receive(A,congested0)
docl

end = 0;
endcl;

o/o

boolean = end;
receive(X:any of (C l,C2,C3), ready0)
docl

for (i=0; i<10; i++)
send(X,step0);

connect(C,X);
send(A,release(X));

main0
{

A Concurrent Programming Support for Distributed Systems 437

receive(C,count);
end = 0;
detach(C);
terminate;

endcl;
endrep;

)
)
Figure 5a: The lJser process

mainQ
{
self A: allocator;
partners Ul,U2,U3,U4, U5: user;

Cl,C2, C3 : counter;
pr(rcvù COUNT[3], C, Pl
channel from user type acquire0;

from user type release(us = processname);
toward all counter type initiate(up = processname);
toward all counter type terminate0;

int end, counter[3], i;

for (i=0;i<3;i++)
counter[i] = Q;

connect(COUNT[0],C I);
connect(COUNT[I],C2);
connect(COUNT[2],C3);
rep

receive (P:any of(user), acquire0) ;

docl
end: 1;

i=0;
while (end && i<3) {

if (counter[i] = = 0) {
counter[i] = l;
end : 0;
send (COUNT[i], initiate(P));

)
else i++;

)
if (end)

send (P, congested0);
endcl;

438 G. Spezzano, D. Talia, and M. Vanneschi

o/o

receiye (P:any of(user), release(C));
docl

end = l;
send (C, terminate0) ;
i=0;

while (end && i<3) [
if (couNrtil = = c) {

counter[i] : l;
end: 0;

)
else i++;

)
endcl;

endrep;

)
Figure 5b: The Allocator process

mainQ

t
self Cl : counter;
partners A: allocator;

ul,u2, u3, u4, u5 : user;
procvar X, U (Ul, U2,U3, U4, U5);
channel from A type initiate(up = processname);

from A type terminate0;
from U type stepQ;
toward all user type cont =int;
toward all user type ready0;

int end, count;

for (;;){
end = l;
receive(4, initiate(X));
connect(U,X);
send(U,ready0);
tep

boolean = end;
receive (U, stepQ) ;

docl
count+ +;

endcl;
o/o boolean = end ;

receive (4, terminateQ);

A Concurrent Programming Support for Distibuted Systems 439

docl

äî:i:'o;:"*"
detach(U);

endcl
endrep;

)
)

" Figure 5c: The Counter Process

6. Run-time Support

The NERECO distributed run-time support has been implemented
as a virtual machine by a set of cooperating processes located on
the network nodes. They are UNIX processes communicating by
means of lower level inter-process communication facilities. The

distributed run-time support mainly implements the interpretation
of the concurrent constructs of the language. Besides this, it pro-

vides for the initialization of the program and the logging of the
concurrent constructs that are executed.

For process creation and communication, the UNIX system

calls have been used, such as fork, execl, and sockels. In particu-
Iar, s ocket s implement bidirectional communication channels

among detached processes, without a common ancestor and even

located on remote hosts.

Sockets provide the necessary support for local and remote

communications in the NERECO run-time support. Furthermore,
they also check for error conditions in the communications. In
fact the use of sockets allows a process' pafner which may be

local or remote to be notifred if the process has failed. Therefore
sockets can be utilized as basic tools for the distributed handling
of failures.

6.1 Logic network

When the user requests the execution of an application, some

actions start from the node on which the execution request is per-

formed, to set up an early set of channels towards the other nodes.

440 G. Spezzano, D. Talia, and M. Vanneschi

This phase is terminated when a logic network is completed, by
building a complete connection among all the hosts.

The processes which support this phase are:

Nereco initializer (NRC)
The NRC is the user interface component. The user invokes
the NCR execution from the shell environment, specifying
the program name. NRC delivers to the local RCSP process
the execution request.

Remote Connection Service Point (RCSP)

There is a RCSP process on each node, its address is consti-
tuted by a pair: (host address, Internet port). The RCSP
receives the request from the NRC process and communi-
cates with other RCSP processes on the remote nodes on
that the processes must run. Then it forks and executes the
LIS Master process, while each remote RCSP þrks aLlS
Slave process. After that, the RCSP breaks away from the
current request and waits for other program execution
requests.

Local Initializer Server (LIS)
There are two kinds of tlS processes, Master and Slave.
The LIS Master, which is located on the node where the exe-
cution is requested, tests the network set-up by communicat-
ing with the LIS Slaves that are located on the other nodes.
LIS Master and LIS Slaves establish a logic mesh network,
implemented by means of sockets (Figure 6). Each LIS Slave
receives the name of the processes which will be executed
on its node.

The NRC and the LIS processes are created dynamically for
each distributed program, whereas the RCSP process is created in
one single copy on each node when the bootstrap occurs, and it
remains always active; in summary, it works like a UNIX daemon.
Obviously, if the program is confrgured on only one node, no net-
work procedure is executed and the program set-up is done only
in that node.

A Concurrent Programming Support for Distibuted Systems 441

Figure 6: Connections among LIS processes

6.2 Execution

The Network Server is the logical component which provides for
the creation and the run-time support of the concurrent constructs

of the user processes. It implements the various forms of com-

munication of the cooperation model, provides for the interpreta-

tion of the nondeterministic commands, and for the management

of the dynamic channels.
The Network Server is implemented by the processes: NS, IN,

OUT, and NETLOG. We denote the user processes which compose

the program as Process Components (PCs) (Figure 7).

when the logic network set-up is terminated, the LIS Master

process notifies the NRC process. Hence each LIS process is

transformed into a NS process, by the execl system call.

Before the transformation, the LIS process creates on each

node the IN and OUT processes. Every OUT process is'connected

to each IN process and vice versa' The existence ofthese
processes makes it possible to enhance the computing bandwidth

of the Network Server by executing in parallel external communi-

cations and internal comPuting.
On each node, the NS process loads its data structures with

information about local PCs and remote PCs which are named in
the communication constructs of local PCs. This information

442 G. Spezzano, D. Talià, and M. Vanneschi

allows the NS process to control the status of the local PCs and
their remote partners.

The NS processes create local PCs by means of fork and execl
system calls, hence each application process (PC) is mapped onto a

UNIX process as child of the local NS process. After that, the NS
processes set out to serve the requests coming from local PCs or
from remote nodes. In the frrst case, the NS process will forward
the communication requests to the remote hosts by the OUT pro-
cess, br it will support the communications among the local PCs.

Further, the NS processes cooperate with each other to maintain
consistent information on the PCs' status.

To monitor the distributed application, the NETLOG process

maintains a log of the executed concurrent construct. It is created
only on the node where the execution has been requested, but it
receives information from each node. Finally, the NETLOG stores
in a frle the information about the execution results of the con-
current constructs of the program.

Figure 7: The PCs and the run-time support processes on one host

A Concurrent Progrømming Support for Distributed Systems 443

6.3 Distributed termination

The processes which compose the Network Server terminate when

each PCs is terminated. Hence they provide to the Network
Server termination.

On each host the NS process knows the state of local processes,

that is which processes are running and which are terminated. If
all local PCs are terminated, the NS process forces the termination
of the local IN and OUT processes, then performs its termination.
When all the run-time support processes on a node are ter-

minated, it is notified to other nodes by the disconnection of sock-

ets between the IN process and the remote OUT processes. The

last node to terminate is the node in which the application was

initiated and the NETLOG process was executing.

7. Conclusion

This paper has described the concurrent language and the tools of
the NERECO system. This system is the distributed implemen-

tation of a message-passing concurrent model derived from the

CSP model.
Using the NERECO system, a user can develop distributed

applications constituted of a set of concurrent processes located

on different nodes of the network. Each process carries out one of
the program functionalities.

Using the tools offered by the language, the programmer can

achieve many benefrts in the development and testing of con-

current programs in comparison with the deficiencies of the tradi-
tional approaches.

The distributed concurrent language offers mechanisms to

obtain location transparency, fault handling, modularity, and

reliability.
Location transparency is provided because the concurrent

language offers uniform communication mechanisms both between

local and remote Processes.
Fault handling can be implemented using the mechanisms

offered by the language to handle explicitly the faults that can

occur.

444 G. Spezzano, D. Talia, and M. Vanneschi

Modularity is implemented by isolating particular functionali-
ties inside the single processes.

Reliability is provided by the language's strong checks at
compile-time and static checks of consistency among the
processes.

At present, NERECO is used to develop distributed programs.
The system has proved that a highJevel language is very useful in
developing reliable distributed programs ISpezzano &.Taha tgSg].

A Concurrent Programming Support for Distributed Systems 445

ì

References

Ada Joint Program Ofrce, Reference Manual for the Ada programming
language, ANSI/MILSTD l8l5 A, (1983).

A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques
and Tools, Reading, MA: Addison-Welsey, 1986.

F. Baiardi, L. Ricci and M. Vanneschi, Stating checking of interprocess
communication in ECSP, ACM Sigplan Notices, 19:290-299, 1984.

F. Baiardi, L. Ricci, A. Tomasi and M. Vanneschi, Structuring processes

for a cooperative approach to fault-tolerant distributed software,
Proceedings 4th IEEE Symposium on Reliability in Distributed
Software and Database Systems, 1984a.

H. E. Bal, J. G. Steiner, A. S. Tanenbaum, Programming Languages for
Distributed Computing Systems, ACM Computing Surveys,
2l(3):26t-322, 1989.

P. Brinch Hansen, Operating System Principles, Englewood Cliffs, NJ:

Prentice-Hall, 197 3 .

P. Brinch Hansen, Joyce - A Programming Language for Distributed
Systems, Software - Practice and Experience, L7:29-50, 1987.

D. Crookes and J. W. G. Elder, An experiment in language design for
distributed systems, Software - Practice and Experience,14:.957-
971,1984.

L. DeFerrari, G. Spezzano, and D. Talia, NERECO: Architecture, Techn-

ical Report, CRAI, Rende, 1985.

N. H. Gehani, Broadcasting Sequential Processes (BSP), IEEE Trans. on

Software Engineering, 10(4):343-35 1, I 984.

C. A. R. Hoare, Communicating Sequential Processes, Communications
of the ACM, 2l:666-677, 1978.

Inmos, Occam Programming Manual, Englewood Cliffs, NJ: Prentice-
Hall, 1984.

M. Jazayeri et al., CSP/80: A language for communicating sequential
processes, IEEE Compcon Fall 1980 Conference Proceedings, pages

736-740,1980.

B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Englewood Cliffs, NJ: Prentice-Hall, 1978.

446 G. Spezzano, D. Talia, and M. Vanneschi

S. J. Leffler, R. S. Fabry and W. N. Joy, A 4.2BSD interprocess communi-
cation primer, UNIX Programmer's Manual Berkeley Software Dis-
tribution, Virtual VAX-l I Version, University of California, Berke-
ley,1983.

B. Lyon et al., Overview Of The Sun Network File System, Sun's Net-
work File System Documentation, Sun Microsystems, 1984.

J. Magee, J. K¡amer and Sloman, The Conic support environment for
distributed systems, Proceedings of mtrO Advanced Study Insti-
tute, Distributed Operating Systems: Theory and Practice,lzmir,
Turkey, 1986.

D. M. Ritchie and K. Thompson, The UNIX time-sharing system, Bell
System Technical Journal, 57(6): 1905-1929, 1978.

G. Spezzano, D. Talia and M. Vanneschi, NERECO: An Environment
for the Development of Distributed Software, EUUG Conference
Proceedings, pages 153-167, Dublin, Sept. 1987.

G. Spezzano and D. Talia, A Language Based Approach for Reliable Dis-
tributed Computing, Proc. of rcnn Worl<shop on the Future Trends
of Distributed Comp. Sys/., pages 262-269, Hong Kong, Sept. 1 988.

G. Spezzano and D. Talia, The Design of Fault-tolerant Distributed
Software Using a Concurrent Language, Proc. of 12th FTSD Int.
Conference, pages 260-265, Praga, Sept. I 989.

R. E. Strom and S. Yemini, NIL: An integrated language and system for
distributed programmin g, SIGPLAN Symposium on Programm in g
Language Issues in Software Systems, pages 73-82, 1983.

lsubmitted Sept. 29, 1989; revised March 21, 1990; accepted May 16, 19901

A Concurrent Programming Support for Distributed Systems 447

