Distributed Spooling in a
Heterogeneous Environment

Bernhard Wagner Ciba-Geigy AG

ABSTRACT: Distributed spooling systems exist for
many homogeneous systems. In this paper we
describe the overall architecture of a distributed
spooling system for a heterogeneous environment.
This system allows exchanging jobs among UNIX,
VMS, VM/CMS, and MVS operating systems con-
nected by a network which provides the internet
protocol suite (TCP/IP). The system’s primary pur-
pose is remote printing, but it is easily extensible to
serve other purposes. Important design goals are
portability, reliability, and user friendliness.

Some highlights of the implementation are
presented as a case study. We focus on problems
which arise especially in heterogeneous environ-
ments and explain why homogeneous solutions can
hardly be applied to the heterogeneous case.

For each of the different systems, there is a more or
less common implementation based on the
client/server model [Svobodova 1985]. The user
interface, however, is modeled specifically for each
command language. A critical review of the
project’s issues and our experiences implementing a
distributed heterogeneous system conclude the

paper.

© Computing Systems, Vol. 3 * No. 3 + Summer 1990 449

1. Introduction

The Scientific Computing Center of Ciba-Geigy AG is currently
conducting a major project the main goals of which are:

« connection of a number of heterogeneous computer systems
at the application layer [Zimmermann 1980]; and,

« offering services, for example, database access, workbench
for chemical researchers, etc., to users of these computer
systems.

One of the subprojects is the implementation of a spooling service
which allows the execution of jobs, particularly print jobs, in any
remote system of the network. It enables a user to keep track of
her jobs and to get mail upon their eventual completion.

1.1 Motivation

The need for a distributed spooling system can be illustrated by
the following scenario: A user working on system A (e.g., a VAX)
receives a PostScript file via electronic mail which she wants to
print. The only available PostScript printer, however, is attached
to system B (e.g., a Sun). Sending the file to system B (e.g., via
FTP or electronic mail) and printing it from there requires that the
user has: '

1. some working knowledge about B’s command language and
operating system; and,

2. a login account on system B.

In practice, both requirements have their drawbacks. Imagine, for
example, the commands a VM enthusiast might enter when trying
to delete a file from a UNIX system.

450 Bernhard Wagner

In order to reduce these problems we designed the distributed
spooling system so that the user executes commands only in the
style of the language she is used to. The submir command (see
Section 2.2), for example, transmits a file to the desired system,
prints it there, deletes the remote file afterwards, and sends mail
to the submitter upon completion of the print job. The user needs
no account on the remote system, she does not even need to know
which operating system is used by the remote host.

The distributed spooling system is open in the sense that any
command script may be executed remotely. (Such a script how-
ever, must be written in the style of the remote system.) To date,
remote printing is implemented for many formats (e.g. PostScript,
dvi, impress, pure ASCII) and plotters are connected to our sys-
tem. We think that storing files on a special device (for backup
purposes, e.g.) would also be a good candidate for implementation
on remote facility. This openness also allows to add accounting
and statistics facilities very easily.

When the distributed spooling subproject was begun in late
1987, we could find no commercially available product. Standard-
ization efforts show the need for such a product: in February
1988, the working group JTC1 SC18/WG4 of ISO/IEC decided to
start work on a Document Printing Application and to have this
registered as an official New Work Item. The European Computer
Manufacturers Association (ECMA) plans to publish a standard for
a Print Service and a Print Access Protocol soon.

1.2 Heterogeneity versus Homogeneity

Remote printing facilities having similar functionality exist for
homogeneous environments. All homogeneous solutions, how-
ever, are tailored to a specific computer system. As we will show,
there are many good reasons not to extend an existing homogene-
ous implementation.

« One has to deal with different philosophies in operating sys-
tems. In one system for example, it is easy to spawn a new
process which is impossible in another system.

Distributed Spooling in a Heterogeneous Environment

451

« One has to deal with different philosophies in file systems,
concerning for example the directory structures and access
rights.

« The data representation is not necessarily the same on all
machines.

o The number and types of privileges differ from operating
system to operating system, which raises important security
issues.

« In a heterogeneous environment, most involved machines
are autonomous concerning their availability and accessibil-
ity. In particular, there is no central authentication
instance.

« The code must be simple and understandable for people
who are not specialists for every involved operating system,
and it must not grow substantially if a new computer system
is added. Otherwise, the distributed spooler cannot be
maintained with reasonable costs.

1.3 Related Work

Possible approaches to distributed computing in heterogeneous
networks are remote procedure call (RPC) (see e.g., Bershad et al.
1987; Wagner & Schaub 1987) and remote command execution via
UNIX pipes (see e.g., Korb & Wills 1986). The RPC approach fails
if a job’s execution takes longer than the caller is willing to wait.
UNIX pipes cannot be guaranteed in a heterogeneous
environment.

Another approach would have been to extend an existing sys-
tem. BSD-UNIX (LP) and YMS for example, offer remote printing,
but only for homogeneous environments. MDQS [Kingston &
Muuss 1982] and the T’CP/IP PrintServer [Reid & Kent 1988; Kent
1988] are two other possible solutions to the problem of distri-
buted printing.

Simplicity would require using already existing spool systems.
The description of the existing approaches, however, makes clear
that for us it was cleaner and less complicated to write a spooler
tailored to our needs than undertaking the adoption of existing
schemes.

452 Bernhard Wagner

1.3.1 LP Spooler

A line printer (LP) spooler which allows printing on remote
machines is part of all derivatives of BSD-UNIX. On every
machine there exists a daemon process for coordinating and con-
trolling the spooling queues. If a request for spooling arrives, the
daemon spawns a copy of itself to process the request, i.e. to print
it or to transmit it to a remote daemon; the master daemon con-
tinues to listen for new requests. A file is submitted for spooling
by using the /pr command. Under SunOS 4.0.3, the daemon and
Ipr both need superuser privileges.

The LP spooler is easily extensible to serve our needs in a
UNIX environment, but implementing this approach would have
implied incurring the time and effort to write a VMS symbiont
and to spawn processes dynamically which is not an easy task in
an IBM-system. Second, LP requires a specific protocol. Using LP
would have forced us to implement servers understanding this
protocol on every other system. Third, LP barely supports the
retransmission of a job due to a communication error. These are
the main reasons why we discarded the extension of the LP
spooler from further consideration.

1.3.2 MDQS

The Multiple Device Queuing System (MDQS) was developed at
the U.S. Army Ballistics Research Laboratory in the early
eighties. MDQS is a general purpose queuing system for UNIX. In
comparison with our system, it has some additional features like
specification of a job’s start time, prioritization, output limits, and
modification of queue entries by the user. MDQS is very similar
to LP.

Since MDQS runs on homogeneous machines only, it is not a
solution for spooling in a heterogeneous environment. On the
other hand, the central queue of MDQS is managed by a privileged
daemon. As we did not want to use any privileges (see Section
3.1.4), we did not consider adapting MDQS to a heterogeneous
environment.

MDQS could be easily integrated in our system. Any server
which runs on a UNIX system may call MDQS when submitting a

Distributed Spooling in a Heterogeneous Environment

453

job to a printer queue. In this way, our system could support
multiple devices without adding extra code.

1.3.3 TCP/IP PrintServer

At the Western Research Laboratory of the Digital Equipment
Corporation, a TCP/IP PrintServer was developed recently. It has
many similarities and - concerning printing - basically the same
functionality as our system. For example, both are running on top
of TCP/IP and the administrator of our system corresponds exactly
to the management client of the PrintServer. The main
differences are:

1. The PrintServer does not provide any queuing. When a
client wants to submit a job, it has to establish a TCP con-
nection to the PrintServer and to keep it open until the job
is finished. In our system, a client submits its jobs to the
local system, so that unreliable communications and over-
loaded printers are handled in a user friendly way.

2. The PrintServer is designed to run on a free standing Ether-
net connected printer. Although most of our printers are
connected to an Ethernet, they are driven by specific hosts.
For the sake of simplicity, our system uses the hosts’ (com-
mercially available) driver software, so we could implement
our system on the hosts.

3. The PrintServer protocol requires the reliable transmission
of bulk data - a problem for which we use the FTP protocol.
Installing an FTP daemon on a printer, however, requires
too much overhead in most cases.

4. Since the PrintServer is running on printer machines only, it
is not extensible in the sense that it may remotely execute
any arbitrary command script.

1.4 Environment

The base on which our project is implemented is a network
with heterogeneous nodes connected by a homogeneous communi-
cation system at the transport layer. Its overall appearance is
sketched in Figure 1. The network, at present, contains computers
from four different vendors using five different operating systems:

454 Bernhard Wagner

HP VAX
UNIX ws

TCP/IP

iBM
MVs

Figure 1: Environment

Sun with UNIX (SunOS)!

Hewlett Packard with UNIX (HP/UX)?
VAX with YMS?

IBM with VM/CMS*

IBM with MVS’®

L

. The Sun/UNIX box represents four 3/280 servers and over forty diskless workstations
(mostly models 3/50 and 3/60) connected by Ethernet. Most user home directories
are mounted on all servers and workstations via NFS. We are now running SunOS
4.0.3, but the main implementation was done under SunOS 3.4.

. The HP/UNIX box represents an Ethernet connecting one HP 9000/350 server and a
number of HP 9000/340 workstations, all running HP/UX 6.2.

. The VAX/VMS box represents a cluster of two VAXen (8700, 8820) plus‘one Micro-
vAX II connected via DECnet. The operating systems are VMS 4.7 and MicrovMS
4.6. The implementation of the VMS parts was done on the MicrovAX and the code
transferred to the other VAXen later on. We are using Wollongong’s WIN/TCP pack-
age, version 3.1.

. The IBM/VM box represents one IBM 9370 running VM SPS. IBM provides a TCP/IP
package for VM; we have actually installed version 1.2. Thus the IBM/VM is part of
our TCP/IP network.

. The IBM/MVS box represents a number of many kinds of IBM machines connected
by SNA links and running MVS. There exists also an SNA link between the IBM/VM
system and one of these machines.

Distributed Spooling in a Heterogeneous Environment

455

1.5 Outline

The outline of the rest of this paper is as follows: in Section 2,
the generic user interface of the distributed spooling system is
described. This section is a part of the requirement specifications.
In Section 3, some important details of the implementation are
discussed and we present considerations which impacted the
design. In Section 4, we discuss some subtle aspects of the design,
such as security, and present some problems which showed up
during implementation. The final section contains some lessons
we have learned during the distributed spooling project.

2. User Interface

It is one of the most important aims of the distributed spooling
system that a user can access it without leaving the philosophy of
the operating system with which she is actually working. This
makes the whole system extremely user friendly, as a user may
execute jobs on a different system without learning anything about
it. Thus we designed support for a generic user interface with a
different “look and feel” for each command language.

2.1 Look and Feel

For example, printing the file blabla on the default printer of host
mist and requesting notification (mail) upon completion is indi-

cated by:

UNIX: lprem -Hmist -m blabla

VMS: dprint /host=mist /mot(ify) blabla.;1
VM/CMS: printr blabla text a (host mist mail .

MVS: exec SPOOLCL ’file(blabla),host(mist),notify’

Note that the command for MVS is a TSO-command which sub-
mits a batch job. The generic interface does not consider the
differences in the syntax, but rather defines the functionality.

456 Bernhard Wagner

2.2 Generic Interface

When discussing the user interface, one has to distinguish between
an ordinary user (henceforth simply called ‘“‘the user”’) and the
administrator. The latter plays a similar role for our system as
the administrator for a database.

The administrator must have a login for each computer system
on which the distributed spooling system is installed. The
administrator owns all files related to the distributed spooling sys-
tem and has read and write access to them. The administrator’s
identification and password are not fixed but may differ for each
system.

A user has the functionality of three commands for communi-
cation with the distributed spooling system:

1. submission: used to submit a job to the system. With this
command, the user may specify:

- the (remote) host on which the job should be exe-
cuted;

- the (printer) queue in which the job is placed on the
remote host;

- the name of the local file which will be sent to the
above mentioned host;

- the file’s format. At present, the system only supports
the printing of character files, device independent files,
and PostScript files. Below we will describe how the
administrator can introduce more formats, i.e., more
kinds of job handling;

- several other parameters such as the job’s name, title,
and request for notification upon completion.

2. listing: used to show information about job.® If this com-
mand is used by the administrator, the jobs of all users are
listed. By specifying a host, or a host together with a queue,
the user gets the status of the distributed spooling server or
of the queue at the remote site, respectively. This use of the

6. Only the jobs are shown which were submitted on the host on which the /isting
command is executed.

Distributed Spooling in a Heterogeneous Environment

457

listing command fulfills a similar function to the ping com-
mand of the internet protocol suite. It allows one to deter-
mine if the distributed spooling system is installed at a
specific host.

3. killing: used to remove a job’ from the system before it is
completed.

In order to introduce a new program for job handling, the
administrator has to take the following steps:

1. Select a key word which corresponds to the syntax of the
format parameter of the submission command.

2. At the server site, bind the keyword to a fully specified pro-
gram or script by adding both to a file.

If a job using the new key word is submitted, the program bound
to this key word is executed at the server site. Several parameters
are delivered to this program, among them the name of the queue,
the name of the job’s owner, and a file with arbitrary content.
Hence, it is possible that this file contains a command script
which is eventually executed by the program on the owner’s
behalf.

One has to distinguish two classes of remotely executable
tasks:

1. generic tasks which have a common design and a site
specific implementation. An example for a generic task is
printing.

2. specific tasks which are implemented on a specific site and
are executed only there.® An example of a specific task
could be doing some calculations on an array processor.

Our distributed spooling system may be extended to both classes
of tasks.

7. The same restrictions apply for killing as for listing.
8. This class is commonly known as remote job entry.

458 Bernhard Wagner

3. Implementation

3.1 Boundary Conditions

Conducting a project involving several heterogeneous systems, one
has to observe many restrictions. These restrictions are mainly
imposed by security considerations, by resource limitations, and
by the requirement for maintainability of the whole system. Our
boundary conditions for the implementation of the distributed
spooling system are:

3.1.1 Common Design

Despite the major differences of the several operating systems, we
decided to make a common design for the following reasons:

« We have to show for only one design that it is correct and
fulfills the requirement specifications. The correctness of
our system was shown by walkthroughs with experts of
every involved operating system.

» We were forced to concentrate on the most important
aspects of a distributed spooling system and to omit all the
fancy stuff which is easily implemented in one system, but
can be realized only with excessive effort in other systems.

« A common design is not specific to one system. It should be
understandable by people who need not be specialists for all
the involved computer systems. This reduces the mainte-
nance costs dramatically.

» The communication protocol has to be commonly designed
anyway.

« A common design is a necessary prerequisite for a common
implementation.

The drawbacks of this decision are that we could not use existing
spooling systems. There is also a trade-off between maintainabil-
ity and efficiency in terms of run time and memory requirements.

Distributed Spooling in a Heterogeneous Environment 459

3.1.2 Common Implementation

Since we had a common design, we tried to write common code
which can be compiled in all systems. We were quite successful:
10 modules out of 13 are used in all systems.” With the exception
of the user interface, all modules were written so that they could
be used in at least three systems.

The use of common code is on some systems not so efficient as
it could be, but for a heterogeneous spool system we consider
maintainability to be more important.

It is obvious that there is system specific code which requires
that there be several implementations of the same module. The
modules’ interfaces however, are identical. This happens in 3
modules out of 13: the code using the TCP/IP interface of
VM/CMS is completely different from all other systems.

There were no discussions as to which programming language
to use — C is a company internal standard for this kind of project
and compilers are available on all systems in our environment.

3.1.3 Portability

One of our most important aims was to design our system so that
the same code (with only slight modifications) could be used on
any other operating system. This goal of portability was reached
for UNIX and VMS. In MYVS, it appears to be attainable, as all of
our test programs run there. Since we do not need to print on
MYVS, however, we implemented only the client part on that
system.

In VM/CMS, we did not achieve the goal of portability. The
description of our protocol (Section 3.3) shows that the protocol
cannot be easily implemented if the server runs VM/CMS, because
this operating system does not support sharable files. It is impos-
sible to send a file via FTP to a user who has another process'®
running. Since we do not plan to use VM/CMS as a server, we
have had no need to implement the server side there so far.

Further aspects of portability are discussed in Section 4.3.1.

9. Minor differences are handled within each module by compiler directives. This has
the consequence of reducing the readability of the code.

10. In VM/CMS terminology: machine

460 Bernhard Wagner

3.1.4 Privileges

It is important that the distributed spooling system does not need
superuser privileges for the following reasons:'!

1. The administrator(s) would then have to have superuser
privileges on all systems running the distributed spooling
system. This is not in conformance with the company’s
security rules.

2. With superuser privilege, common caution, as well as man-
dated corporate procedure, requires a stringent safety review
of the code and of all accessible programs, with a final
approval by the managers responsible for each installation.
With so many machines involved, and the general extensi-
bility of the system, this becomes unmanageable.

We admit however, that the design and implementation of some
aspects would have been easier if we had had superuser privileges.
We will discuss these points in Section 4.2.1.

Having no superuser privileges also implies that we made no
kernel modifications.

3.1.5 Reliability

Since a system such as the distributed spooler may be widespread
over a big network, and must operate reliably without operator
invention, robustness and simplicity are important. For the sake
of maintainability, we also wanted to have a small system (which
also increases robustness).

One aspect helping us to meet the goals of simplicity and
maintainability is that all files containing information about the
distributed spooling system are character files which may be
modified using any simple editor. This saved us from developing
supervision and maintenance tools.

11. In Section 3.2.2 we will show why we needed some, but not all, privileges in the VMS
system.

Distributed Spooling in a Heterogeneous Environment

461

3.2 Architecture

The architecture of the distributed spooling system is shown in
Figure 2. It is based on the client/server model. A computer sys-
tem can be a client or a server or both.

On the client side, the user has access to the distributed spool-
ing system. Clients transmit jobs to the desired hosts and keep
track of them. Servers accept jobs and requests about the jobs’
state from any client and execute the accepted jobs. The main
differences between clients and servers lie in the protocol (see Sec-
tion 3.3).

Both sides each consist of two processes indicated by the cir-
cles in Figure 2. The user process circle represents all users who
may concurrently access the spooling system. On each side, the
processes have reading and writing access to a common spool file
containing a description of every actual job known to the side.!?
The communications between clients and servers are implemented
by protocols based on UDP [Postel 1980].

user

uDP

sarver

process

; v

(client spool file)

client site

cleanup

:

server

cleanup

;

(server spool file

)

server site

Figure 2: Architecture

3.2.1 Spool Files

A spool file consists of an administrative header and an entry
each for all actual jobs. Because of the existence of the header,
the file is never empty. All entries have the same length, which
facilitates the internal organization of the file.

12. Obviously, if a computer system is both client and server, there exist two spool files.

462 Bernhard Wagner

An entry contains all details of a job. Besides the parameters
given by the user, these details are the job’s state, the date/time of
submission, and a file name under which the user’s file is stored.
Figure 3 gives an schematic overview of the spool file.

Every job has a systemwide unique identification. It consists
of the host name of the machine where the job was submitted and
of a number which is locally unique to this host. In order to
create such numbers, a client’s spool file contains a value in its
header which is incremented whenever a new job is written to this
file.

3.2.2 Processes

The processes on each site are distinguished by their activation
dependency: the user process and the server are event dependent,
the cleanup processes are time dependent.

Whenever a user calls one of the commands described in Sec-
tion 2.2, the local spool file is read and/or written. The client
cleanup process checks the spool file periodically to see if there are
jobs which require an action. New jobs, for example, are sent to
the server process at the remote host. All network communication
on the client side is done by the cleanup process. Because several
users may attempt to access the spool file concurrently, we used a
mutual exclusion mechanism. There is no communication delay

[header| jobenty | jobenty | _ |

| host | number [status| description | file name

identification
¥ directory
file file file
to to to

print print print

Figure 3: Spool file

Distributed Spooling in a Heterogeneous Environment 463

during command execution, but trying to access the spool file may
cause a short delay for the user.

The server process waits for packets from any client in an end-
less loop. When a new job is completely received (for the proto-
col, see Section 3.3), it is executed by the server and the outcome
of the execution is written to the spool file. The server cleanup
process checks the spool file periodically to find outdated jobs,
which it removes. This helps to keep the protocol simple. The
implementation of the server cleanup process did not require an
extra effort, since the basic algorithm and the procedures for
mutual exclusion were needed for the client side anyway.

The cleanup processes and the server are running as daemons
[Lennert 1988; Saul et al. 1989] under the administrator’s
identification. In SunOS we could have used the inetd daemon
instead which supports the installation of servers. Since there is
nothing similar in other systems, we did not consider this
approach.

A critical point is the access of user processes to the adminis-
trator owned spool file. In UNIX and/or VM/CMS, this is easily
solved by setuid calls'®* and/or reader queues. In VMS, there is no
solution other than giving the bypass privilege to the administra-
tor (which contradicts the requirement of having no special
privileges'?).

3.3 Protocols

As stated in Section 1.3, the RPC protocol is not appropriate for
distributed spooling. Because of the possibility of having to
transmit large amounts of data, we introduced two logical com-
munication channels: a data channel and a control channel.

For transmissions over the data channel, we chose the FTP
protocol. The FTP program is invoked to transmit files directly
from the client’s spool area to the server’s spool area. We chose
FTP, because we wanted to use existing programs as much as pos-
sible, and because the simpler TFTP protocol is not available on
all machines. Another reason for choosing FTP is that this

13. The programs are setuid to the administrator, not to root.
14. Similarly, a system wide lock of a file needs the sysick privilege in VMS.

464 Bernhard Wagner

protocol is appropriate for heterogeneous systems. It deals with
all the file system and code differences of the two operating sys-
tems involved and it is reasonably reliable.

The use of FTP has a drawback: this protocol has no pro-
cedural interface. Calling a program from within a program as we
did with FTP, and getting the result of the file transfer is a painful
hack in most systems. In a homogeneous environment, we cer-
tainly had not used FTP, but rather a system specific program
instead of (in UNIX e.g. rcp).

The easiest way to implement the protocols of the control
channel would have been to use RPC. RPC, however, also was not
available on all systems, so we had to implement our own
protocols.

We designed simple handshake protocols, by which the client
can send control requests to the server. The server executes an
operation corresponding to each request and returns a response.
All operations of the server are idempotent, so that we can build
our protocols above UDP connections and, in case of errors, the
client may retransmit a control request without problem.

We preferred UDP over TCP for mainly two reasons. First,
because the cleanup processes deal with the uncertainties of the
communication, we do not need the reliability which is inherently
in TCP connections.

Second, the establishment of a logical connection (the connect
call) is much more efficient in UDP than in TCP. The latter
requires a packet exchange with the server. Since the distributed
spool system may concurrently handle jobs for many hosts, the
performance of connection establishment is an issue. The other
solution would have been to establish the TCP connection for
every job only once and to keep it active upon completion of the
job.

The drawback of not using TCP - although it is available on
every system - is that we have to deal with time-outs (see Section
4.2.2). Another solution would have been to introduce only one
logical communication channel, and to use the TCP protocol for
transmitting both data and control messages. In this case, how-
ever, we would have had to “reinvent the FTP wheel” without
having reduced the cleanup processes substantially, since we have

Distributed Spooling in a Heterogeneous Environment

465

to deal with other than communication errors anyway. Hence we
discarded this approach.

We never switch the roles of client and server. That means
that when a server has completed a job, it does not send the result
to the client, but rather waits until the client asks about the status
of the specific job.

If we had the client waiting for a packet containing the job’s
result at the server site, we could do that synchronously or asyn-
chronously. The former blocks the client as long as the server exe-
cutes a job whose duration is unpredictable. The latter requires
the installation of a server process at every client site, which
seems us to be too complicated. Piggybacking the job’s result with
packets of other jobs would be another solution for the asynchro-
nous case, but it does not work for client hosts which rarely sub-
mit jobs.

An important aspect of the protocols is the structure of the
packets which are transmitted. We have one union structure. It
basically consists of a structured component for every possible
request and/or reply. These components consist only of character
arrays and of positive integers fitting into one byte, so that the
conversion of one machine’s representation to another machine’s
representation is easily done. We use 7-bit ASCII as the common
representation for the transmission.

All user commands correspond to single control request with
the exception of submission, which is a composition of the simple
handshake protocol and FTP. An outline of the submission proto-
col is shown in Figure 4. It consists of several steps:

1. Prerequisite: the job has the status waiting on the client
site. In normal case, this means that the job is not already
in progress.

2. The client sends a new job request to the server using the
simple handshake protocol. The client’s request contains
the job’s identification and parameters. If the job is
accepted, the server returns a file name, otherwise, a nega-
tive acknowledgment. At the server site, the job gets the
status waiting.

3. The client sets the job’s status to in_transit and transfers
the job’s file to the remote host via FTP.

466 Bernhard Wagner

CLIENT SERVER
job status job status

waiting UDP”’eque ;
s

waiting

in_transit FTp

spooling

Figure 4. Submission Protocol

4. The client sends the result of the FTP transfer (okay or not
okay) to the server in a single packet without waiting for a
reply.

5. If the FTP transfer was okay, the client sets the job’s status
to spooling, otherwise to waiting. The server does the
same when it receives the packet containing the FTP result.

The cleanup processes are crucial for the proper function of
the protocol:

« On the client side, only the cleanup process executes the
protocol. Thus, a user does not have to wait interactively
for the termination of the protocol, which gave us more
freedom in its design. If any step of the above protocol
fails, the job on the client side stays in its current state. If a
job stays in one state for too long, the cleanup takes
appropriate action. For timing constraints, see Sec-
tion 4.2.2.

« On the server side, the cleanup process removes all outdated
jobs from the spool file. Hence the server does not have to
keep track of its clients, allowing the use of the faster con-
nectionless UDP protocol rather than TCP. The price we
have to pay is the installation of two processes. Since the

Distributed Spooling in a Heterogeneous Environment 467

function of the server depends on its cleanup process, a
common parent starts both of them. If the server or
cleanup dies, the parent restarts it, or kills the other one,
depending on the reason for the first one’s death.

« If the protocol is interrupted by an event caused from out-
side of our system (e.g. one of the participating processes
dies), the cleanup processes detects this by timing out and it
resets the job’s status to waiting and/or removes the job.
If a job is in waiting state, the cleanup process starts the
submission protocol anew sooner or later.

In summary, the protocols and the cleanup processes assure
that every site is self-contained. This means that no matter which
errors occur during the protocol, a site can recover to a consistent
state. During recovery however, a job may get lost.

3.4 Modules

The modules which build the distributed spooling system are
shown in Figure 5. The left hand side of the figure including the
middle row shows all modules which are used to build the client
site, the right hand side including the middle row shows all
modules for the server site. The modules in the four corners
represent the main programs which describe the processes of the
distributed spooling system (see Section 3.2.2).

The interface of each module consists of a number of pro-
cedures and type definitions which are known outside of each
module. The arrows designate the import relations. The base
module contains a bunch of useful procedures and is imported by
all other modules; the corresponding arrows are omitted from Fig-
ure 5 for the sake of clarity.

Note that Figure 5 is asymmetric. At the client site, because
all communication is conducted by the cleanup process, the user
module does not import procedures from the client protocol
module. The server site is structured by upcalls [Clark 1985].
The main program calls the server initialization procedure
imported from the server udp module; this procedure has as
parameter the protocol handling procedure imported from the
server protocol module. To return an answer, a procedure of the

468 Bernhard Wagner

user

1
client
convert
udp
base
| file
manager

server
cleanup

client
cleanup

Figure 5: Modules

server udp module is called by the server protocol module. A more
detailed explanation how to implement upcalls can be found in
Wagner [1986].

Despite there being two spool files with different content!’
there is only one module for file handling. This comes about
because the structure of both files is the same (see Figure 3). We
implemented the file manager by using a set of procedure vari-
ables which are set at initialization time depending on whether the
module is used by a client or by a server.

15. E.g. the structure of a client’s entry is different from the structure of a server’s entry.

Distributed Spooling in a Heterogeneous Environment

469

4. Discussion

4.1 Security Aspects

In a system like the distributed spooler, which involves many
heterogeneous computers and which is open to the world via any
kind of network, data integrity and security aspects play an impor-
tant role. First, we have taken care to use the least privilege pos-
sible. Second, the access to the system may be restricted, and the
identification of all users is known.

4.1.1 Trusted Host and Network

We cannot burden the distributed spool system with all security
issues. Hence we make trusted hosts and trusted network
prerequisites.

The concept of trusted hosts means that users identify them-
selves by their local login password which is a sufficient authenti-
cation for the distributed spooling system. A more sophisticated
user authentication, e.g. an authentication server, can be added to
the distributed spooling if necessary.

Trusted network means that access to the network is possible
only by trusted hosts. Therefore we do not need encryption on
the network level and no one unauthorized may listen to the
traffic.

Faking packets is theoretically possible, but it requires the
knowledge of the exact structure of the packet which is nowhere
described in public. The spool system checks the contents of
every received packet. If a packet has wrong contents, its is dis-
carded without further notice.

Every job description contains the host at which the job was
submitted and the user who owns it. Both parameters are
automatically set by the submission command. Hence, it is always
possible to determine the real owner of a job. This knowledge
may be used for accounting or for introducing access control on a
user basis.

470 Bernhard Wagner

4.1.2 Access Control

The access to the distributed spooling system is controlled by the
servers. Every server has a list of hosts (names and/or IP
addresses) whence it accepts jobs. When the new job request
packet is sent from a host which is not contained in this list, the
server returns a negative acknowledgment.

Restricting the access by host rather than by user has as its
motijvation the avoidance of administrative overhead. Using the
TCP/IP protocol suite, host names and/or IP addresses are known,
but no user names.

For similar reasons, the control check is done on the server
side, although this implies some unnecessary computations and
network traffic. From the administration point of view, it is easier
to restrict the access to a service at the point where the service is
offered instead of where it is requested.

4.2 Problems

In implementing the distributed spooling system, we faced several
problems which will be discussed in this section. Most problems
are due to restrictions which were presented in Section 3.1.

4.2.1 Privileges

Due to the renunciation of superuser privileges, our system has
some defects in the following points:

« Though the owner of a job is known at the server site, the
job must run under the administrator’s identification and
with the administrator’s privileges. This may cause some
security flaws since the administrator usually has access to
files which the user is not allowed to read and/or write. On
the other hand, since it is undesirable that every (potential)
user have an identification on a server, a more sophisticated
solution is needed for this problem anyway. Using more
privileges would give more freedom in finding such a
solution.

« It is obvious that a user needs at least read permission for a
file which she wants to print. During the submission com-
mand this permission is granted to the administrator (see

Distributed Spooling in a Heterogeneous Environment

471

also Section 3.2.2). This implies that the administrator has
to copy the file to one of her directories because, after the
termination of the submission command, she can no longer
read the user’s file. The renunciation of superuser privileges
prevents the faster and more elegant solution of storing a
pointer to the file'® at submission time and, later on, copy-
ing the file directly to the server via FTP.

» We cannot use a well-known port smaller than 1024 for the
server. We found under SunOS that the port provided for
the server may already be in use when the server is started,
even if the port number is stored in the services file. The
actual solution is to start the server at boot time and take a
very large port number!’ which is most likely unused at that
time. A better solution would be for the port numbers
stored in the services file to be used only upon explicit
request.

4.2.2 Timing

A well-known problem facing the designers of distributed pro-
grams is the choice for values of the time-out parameters when
calling the procedure which implements the handshake protocol at
the client site. In Birrell & Nelson [1984] it is proposed to use no
time-outs at all, but this can not be applied to a wide area, hetero-
geneous network about whose reliability no assumptions can be
made.

The issues which influence the choice of proper time-out
values may be summarized as:

1. If the time-out value is too short, the client may decide that
a job has not been transmitted even if no error occurred.

2. If the time-out value is too long, much time is wasted in the
case of error.

3. There is no information available about the throughput of
the (logical) line between any two given hosts. In an IP net,
this throughput may vary by several orders of magnitude,
depending on the paths involved.

16. In SunOS, a symbolic link.
17. Actually 15000.

472 Bemhard Wagner

For the sake of simplicity, we decided to deal with the time-
out problem in the following way: For packet exchange, there is a
fixed time-out value and a retransmission factor. Because of the
dynamic environment of an IP net, both values are stored in a file
so that they may be changed without recompilation. This allows
easy experimentation to find the appropriate values.

Additionally, the time-out for the FTP transmission'® is com-
puted from the size of the file to transmit.

In order to make the system more reliable, the fixed time-out
values are slightly longer than needed. Because of the architecture
of our system (see Section 3.2), this only influences the client
cleanup process, but not the user.

Another problem related to timing is the trade-off between
response time and completeness of information in a distributed
system. With the listing command, the user requires information
which is generally stored on several machines. Since there is no
maximum time limit for reliable data transmission, we decided to
use only locally available information. Hence, the user will get a
fast, but possibly incomplete response to the /isting command.

4.2.3 Concurrence

Locking, which is stateful, contradicts the philosophy of NFS,
which is stateless. We had problems with the lock daemon on
SunOS as long as we tried to lock a file from several machines and
then to modify the file. Finally, we decided to change the design
by introducing empty files for locking purposes only.

4.3 Lessons Learned

The distributed spooling system is a utility program; it is very
close to the operating system, since it contains real time aspects,
concurrence, and uses the file system in a nontrivial way. Since
this program is requested (among other things) to be portable to
many machines and operating systems, and to be extensible for
new user requests, its design and implementation are not obvious.
The lessons we learned from this project concern mainly com-
patibility and design rules. Let us examine both in greater detail.

18. In certain circumstances, FTP may hang indefinitely.

Distributed Spooling in a Heterogeneous Environment

473

4.3.1 Compatibility

The programming language C is known to be portable. There are
syntactic and semantic differences in system calls, however, which
influenced the design of the distributed spooling system.

Let us take the system call vfork as an example. In UNIX,
there exist the similar calls fork and (BSD) vfork, in VMS only
vfork, and in YM/CMS nothing similar. The semantics of vfork in
VMS differ from those in UNIX in the treatment of open files."”

There are even subtle differences between two types of UNIX:
if the system call gethostname succeeds, it returns 0 in SunOS, but
a non negative integer in HP/UX. And there is no help to detect
semantic differences at compile time.

Another obstacle to compatibility lies in the file system philo-
sophy, which may be different in every operating system. The
richness of file formats in VMS, for example, cannot be mapped to
UNIX or VM/CMS. The simple requirement of writing a character
file and then reading its content requires a different open mode in
every operating system. This brings up the question: “What is a
default file which can be handled by a portable C program?”’

Our solution for these and similar problems lies in applying
the design rules described next.

4.3.2 Design Rules for Portable Programs

From our experience, the design of a portable utility program for
a heterogeneous environment should contain the following steps:

« Top down path: Create a concept which contains all func-
tions the system should, in the best case, have. Refine this
concept until you have defined a number of module inter-
faces. Every interface should consist only of type definitions
and procedure headers and be fully portable.

« Bottom up path: To implement the above defined inter-
faces, start with the low level procedures and try to imple-
ment them with common code. Make sure that all system
and library calls which are used have the same semantics in
the different operating systems. When the code is becoming

19. In VMS, if stdout is connected to a stream file, these standard streams will be
redirected to the NUL device [VAX 1987].

474 Bernhard Wagner

too awkward because of special casing, go to the next higher
abstraction level. Define the (partially) common functional-
ity of the procedures, but implement them separately.
Repeat this step for every abstraction level until all module
interfaces are implemented.

» Redesign step: During the bottom up path, one may learn
that for some machines some of the required modules can
be implemented only at unreasonable expense. This implies
a redesign for these machines on the base of the already
existing modules.

S. Conclusions

We have described a user-friendly yet simple distributed spooling
system for a heterogeneous environment. Its interface is adapted
to each command language in which it is used. Although the
system’s main purpose is remote printing, it is open in the sense
that it supports the remote execution of any job. Simplicity and
portability were the main issues for the implementation. We
showed that a large part of the system can be written in portable
code, at least if one is willing to allow some restrictions.

It would be an interesting experience to install our distributed
spooler on other, differing systems (e.g., on a VAX with Ultrix or
on an IBM with AIX), but to date we have not had the opportunity
of doing so.

Acknowledgments

Hans-Dieter Rhein implemented the user interface for YMS and
helped me install the distributed spooler there. Wolfgang
Reimann did the same for the VM/CMS and the MVS systems.
Hans W. Barz was the project’s supervisor. I would like to thank
all of them for their valuable help.

Many thanks are owed to Bruce K. Haddon for carefully read-
ing earlier drafts of this paper and for making many valuable
comments which clarified the presentation.

Distributed Spooling in a Heterogeneous Environment

475

References

Brian Bershad, Dennis Ching, Edward Lazowska, Jan Sanislo, and
Michael Schwartz, A Remote Procedure Call Facility for Intercon-
necting Heterogeneous Computer Systems, IEEE Transactions on
Software Engineering, SE-13(8):880-894, August 1987.

Michael Schroeder, Andrew Birrell, and Roger Needham, Experience
with Grapevine: The Growth of a Distributed System, ACM Tran-
.. sactions on Computer Systems, 2(1):3-23, February 1984. Also in
Xerox PARC technical report CSL-83-12.

David Clark, The Structuring of Systems using Upcalls, Operating Sys-
tems Review, 19(5):171-180, 1985.

Christopher Kent, TCP/IP PrintServer: Server Architecture and Imple-
mentation, Technical Note 7, DEC Western Research Laboratory,
Palo Alto, CA, November 1988.

Douglas Kingston and Michael Muuss, The Multiple Device Queueing
System, Summer USENIX Conference, Boston, 1982.

John Korb and Craig Wills, Command Execution in a Heterogeneous
Environment, SIGCOMM’86 Symposium on Communications
Architectures and Protocols, pages 68-74, Stowe, VT, August 1986.

Dave Lennert, How to Write UNIX Daemons, UNIX World,
V(12):107-117, December 1988.

John Postel, User Datagram Protocol, RFC 768, August 1980.

Brian Reid and Christopher Kent, TCP/IP PrintServer: Print Server Pro-
tocol, Technical Note 4, DEC Western Research Laboratory, Palo
Alto, CA, September 1988.

Mike Saul, Larry Lace, David Robinson, and Jerry Toporek, Develop-
ment of a VAX/VMS Server, SunTechnology, 2(1):85-88, Winter
1989.

Liba Svobodova, Client/Server Model of Distributed Processing, In Kom-
munikation in Verteilten Systemen I, Eds. D. Heger, G. Krueger,
Otto Spaniol, et al., pages 485-498, Berlin: Springer-Verlag, March
1985. Informatik-Fachberichte 95.

[VAX] VAX C Run-Time Library Reference Manual, Maynard, MA: Digi-
tal Equipment Corp., March 1987. Order Number AI-JP84A-TE.

Bernhard Wagner, Cipon: A Model for Distributed Systems, Ph.D.
Thesis, ETH Zurich, 1986. Diss. ETH Nr. 7988.

476 Bernhard Wagner

Bernhard Wagner and Markus Schaub, Design and Implementation of an
Extendible Distributed System, In Kommunikation in Verteilten
Systemen, Eds. N. Gerner and Otto Spaniol, pages 216-228, Berlin:
Springer-Verlag, February 1987. Informatik-Fachberichte 130.

Hubert Zimmermann, OSI Reference Model — The ISO Model of Archi-
tecture for Open Systems Interconnection, IEEE Transactions on
Communications, COM28(4):425-432, April 1980.

[submitted Nov. 29, 1989; revised March 29, 1990; accepted May 8, 1990]

Distributed Spooling in a Heterogeneous Environment 477

