
Fine-Grain Adaptive
Scheduling using Feedback

Henry Massalin and Calton Pu

Columbia University

ABSTRACT: We describe an implementation of a
fine-grain adaptive scheduling mechanism, based on
software feedback. Conventional scheduling makes
job assignment exclusively a function of time. We
broaden the meaning of the term "scheduling" to
include job assignment as a function of a sequence

of events, such as timer interrupts, I/O operations,
queue overflodunderflow, and system call traps.

Our implementation of software feedback in the
Synthesis operating system is analogous to the
hardware phase locked loop. Very low overhead
context switches and scheduling cost (a few
microseconds on a 68020-based machine) makes this
implementation useful to practical applications such

as digital signal processing. Since scheduling
actions and policy adjustments occur at very frne
granularity (sub-millisecond intervals), Synthesis
adaptive scheduling is very sensitive. Interesting
applications of fine-grain adaptive scheduling
include I/O device management, real-time schedul-
ing, and distributed adaptive scheduling.

@ Computing Systems, Vol. 3'No. I 'Winter 1990 L39

1. Introduction

Traditional scheduling policies use some global property, such as
job priority, to reorder the jobs in the ready queue. A scheduling
algorithm is adaptive if the global property changes dynamically;
an example of dynamic global properties is the rate a job con-
sumes CPU. Typical global scheduling policies assume that all
jobs are independent of each other. Often this assumption does
not hold. For example, in a pipeline of UNIx processes, where
successive stages are coupled through their input and output. In
fact, a global adaptive scheduling algorithm may lower the priority
of a CPU-intensive stage, making it the bottleneck and slowing
down the whole pipeline.

To take into account the connection between the stages of the
pipeline when scheduling them, \rye use a software feedback
mechanism to do adaptive scheduling. For example, if a job in
the pipeline is "too slow," say its input queue is getting full, we
schedule it more often and let it run longer. In general, the
software feedback compÍres the progress of a job to some measur-
able sequence of events. In this example we monitor the queue
length and the job's CPU quantum changes accordingly. This is
the first distinguishing character of our work the ability to moni-
tor a sequence of events. We describe the software feedback for
adaptive scheduling in Section 2.

The interaction between jobs may happen very often. In our
example, processes may read and write many characters to a pipe
during their CPU quanta. For our software feedback mechanism
to monitor the variations of queue length and take appropriate
scheduling action, we need very low-overhead mechanisms. We
call a scheduling mechanism fine-grain if it is capable of taking

1,40 Henry Massalin and Calton Pu

many scheduling actions for typical jobs, for example, a few hun-
dred context switches while completing a job of l0 milliseconds.
This is the second novel aspect of our work: the extremely fine
granularity of adaptation.

We have implemented fine-grain adaptive scheduling in the
Synthesis operating system. This includes fast intemrpt process-

ing, fast context switching, and fast dispatching, typically costing a
few dozen machine instructions. Also, the scheduling algorithm
should be simple, since we want to avoid a lengthy search or cal-
culations for each decision. This is the third contribution of our
work: a practical demonstration of feasibility. In Section 3 we

describe the Synthesis implementation with the necessary
performance.

In addition to CPU scheduling, software feedback can be

apptied to many situations when we have a source of events
(called a reference frame) and we want to impose a desired
behavior based on the reference frame. In fine-grain scheduling,
we divide the job into sufrciently short chunks and schedule them
according to the timer interrupts. Other examples of reference
frames include I/O device intemrpts or output from another pro-
gram. In Section 4 we outline various applications of software
feedback in Synthesis, such as disk sector frnding, real-time
scheduling, and distributed adaptive scheduling.

2. Principles of Software Feedback

2.1 Software Feedback

The goal ofa feedback system is to adjust an output sequence

according to the observation of input, essentially estimating the
immediate future based on observations of the recent past. The
difference between input and output is called aî error. A feed-
back system has two properties: stability and tracking accuracy.
A stable system has bounded error. Intuitively it produces a, rea-

sonable output sequence, in response to reasonable input. A sys-

tem tracks well when the error is small.

Fine-Grain Adaptive Scheduling using Feedback l4l

Figure l: Software Feedback System

Software feedback systems are analogous to hardware feedback
systems - one kind of control systems.l In Figure I we show a
generic software feedback system. Its input is a sequence of
events and output some other events. The input and output are
linked by a feedback loop, which allows the adjustment of output
according to the changes in the input. V/e call the software feed-
back system that measures and adjusts the event frequency of the
input (events/second) an event frequency feedback system (EFF).
Alternatively, we can measure and adjust the time interval
between inputs (seconds/event), called a time interval feedback sys-
tem (TlF). Other kinds of software feedback systems, say measur-
ing time and adjusting frequency, are beyond the scope of this
paper.

There are three main components in a software feedback, the
meter/counter, the frlter, and output generator. The meter cap-
tures the observation of the input and compares it to the output.
Concretely, EFF measures event frequency by counting them, so
the simplest behavior is to maintain the number of output events
(and thus the frequency) equal to the input. Since TIF measures
intervals, the simplest behavior is to maintain the time interval
between consecutive output events equal to the input.

This simple behavior can be modifred with filters.2 The
overall response of a software feedback system is determined by
the kind of frlter it uses to transform measurements into adjust-
ments. We have studied filters that have well-understood
hardware analogs. For example, a low-pass frlter accumulates the

For readers unfamiliar with control systems, we include a summary in Appendix A,
Filter and error are names chosen because of their hardware analogs (summarized in
Appendix 4.2).

l.
2.

142 Henry Massalin and Calton Pu

recent past to eliminate rapid transient changes in the input. It
makes the EFF output frequency and TIF output intervals more
uniform, but it also delays the feedback response, worsening the
tracking accuracy. To decrease the error accumulated due to
linear increases or decreases in either frequency or interval, we

use an integrator filter, which improves the tracking accuracy of
both EFF and TIF. A derivative filter improves response time
when the input frequency or interval changes suddenly but stays

with the new value. Like their hardware analogs, these frlters can

be combined to improve both the tracking accuracy and stability
of both EFF and TIF.

All the program examples in this paper include filters that
show good stability and tracking accuracy. A formal analysis of
software filter stability and tracking accuracy is beyond the scope

of this paper.

2.2 Application Domains

At frrst, measuring and adjusting frequency and intervals seem

equivalent, since one is the reciprocal of the other, and both kinds
of feedback will work. We choose the appropriate feedback
mechanism depending on the desired accuracy and application.
Accuracy is an important consideration because we can only
measure integer quantities: either the number of events (fre-
quency), or the clock ticks between events (interval). We would
like to measure the larger quantity of the two since it carries
higher precision.

Let us consider a scenario that favors TIF. Suppose we have a

microsecond-resolution interval timer and the input event occurs
about once per second. To make the output interval match the
input interval, the TIF counter measures second-long intervals
with a microsecond resolution timer, achieving 6-frgure accuracy
with only two events. Consequently, TIF stabilizes very quickly.
In contrast, by measuring frequency (counting events), EFF needs

more events to detect and adjust the error signal. In simple exper-
iment, it takes about 50 input events (in about 50 seconds) for the

output to stabilize to within 100/o of the desired value.
A second scenario favors EFF. Suppose we have an interval

timer with the resolution of one-sixtieth of a second. The input

Fine-Grain Adaptive Scheduling using Feedbøck 143

event occurs 30 times a second (once every 33 milliseconds).
Since EFF is independent of timer resolution, the output will still
stabilize to within 100/o after seeing about 50 events (in about 1.7

seconds). However, since the event interval is comparable to the
resolution of the timer, TIF will suffer loss of accuracy. In this
example, the measured interval will be either 1,2 or 3 ticks,
depending on the relative timing between the clock and input.
Thus TIF output can have an error of as much as 5090.

Generally, slow input rates and high resolution timers favor
TIF, while high input rates and low resolution timers favor EFF.

Sometimes the problem at hand forces a particular choice. For
example, in queue handling procedures, the number of get-queue

operations must equal the number of put-queue operations. This
forces the use of EFF, since the actual number of events control
the actions. In another example, subdivision of a time interval (as

in the disk sector finder, described in Section 3.3). TIF is best.

3. Synthesis Implementation

3.1 Synthesis Operating System

Synthesis is a distributed operating system being developed by the
authors at Columbia University, Department of Computer Sci-
ence. The combination of a high-level model of computation with
high performance distinguishes Synthesis from other operating
systems. The Synthesis kernel interface is at a level comparable to
that of UNIX, supporting threads (light-weight processes), memory
management, and I/O devices. To achieve high performance with
a high-level interface, we use kernel code synthesis, which is
described in another paper [Pu et al. 1988]. The main idea of ker-
nel code synthesis is to generate specialized (thus short and small)
code at run-time for frequently executed kernel calls. A relevant
example of kernel-generated code is the context switch. Each
thread has its own context switch routines. Two procedures,

switch-out and the switch-in, are specifically customized for that
thread. During execution, the timer intemrpt vector points to the
current thread's switch-out procedure. When the CPU quantum is
exhausted, timer interrupt branches to the switch-out procedure in

144 Henry Massalin and Calton Pu

the thread's control table, which saves the registers in the thread's
control table. The final instruction of the switch-out branches to
the next ready thread's switch-in, which restores the registers,
changes the timer interrupt vector to its own switch-out pro-
cedure, and resumes execution of the thread.

The current implementation of Synthesis runs on an experi-
mental machine (called the Quamachíne\, which is similar to a
Sun-3: a Motorola 68020 CPU, 2.5MB no'wait state main memory,
390M8 hard disk, 3Vzínch floppy drive. In addition, it has some

unusual I/O devices: a two-channel 16-bit analog output port,
two-channel l6-bit analog input port, a compact disc (CD) player
interface, and a 2Kx2Kx8-bit framebuffer with graphics co-
processor. The Quamachine is designed and instrumented to aid
systems research. Measurement facilities include an instruction
counter, a memory reference counter, hardware program tracing,
and a microsecond-resolution interval timer. The CPU can
operate at any clock speed from I MHz up to 50 MHz. Normally
we run the Quamachine at 50 MHz. By setting the CPU speed to
16.7 trl}Jz and introducing I wait-state into the memory access, the

Quamachine can emulate the performance of a Sun-3/160, allow-
ing a fair comparison. We have validated this emulation with
some CPU- and memory-intensive programs, which report the
same wall-clock time for the Sun-3 and Quamachine.

Since the low overhead of Synthesis kernel is crucial to the frne
granularity of our adaptive scheduling, we include some perfor-
mance frgures here. The kernel call synthesized to read one char-
acter from /dev/mem takes about 15 microseconds on the

Quamachine. This and other important aspects of the Synthesis
kernel implementation are described in a companion paper [Mas-
salin & Pu l9S9l. For this paper, the most important feature to
the Synthesis implementation of frne-grain adaptive scheduling is
the extremely fast interrupt handling and context switches. Figure
2 contains measurements of Synthesis thread primitives taken
from the Quamachine in the Sun-3 emulation mode. For com-
parison, context switches take a few hundreds of microseconds in
a high performance real-time operating system [Karsten et al.

re87l.

Fine-Grain Adaptive Scheduling using Feedback 145

oDeratio¡ tino (ssec)

oreate thread 142
sta¡t/stop I
fi¡ll context switch 11*
EFF/TlFupdatestep 2

Block/Unblock throad 4

*Ifthe thr€ad does not use the Floating Point co-processor

Figure 2: $ynthesis Fine-Graiû Schefuling

3.2 EFr Examples

int residue=O, freq=O;

/* Master (refore¡ce fraoe) ,xf

i1()
{

residue .ç= 4i
freq += re'idue;

(do work)

return;
)

/* Slave (derived interrupt) */
i2o
{

freq += residue;
residue--;

(do work)

nerct-tíne = l{0Vil + I,/freq.;
echedintr(i2, next-tine) ;

retur¡;
)
Figure 3: Sample EFF - No Filter

146 llenry Massalin and C,altoa Pu

int residue=O, freq=O, Iopass=O;

iro
{

residue += 4i
lopass = (7*lopass + resídue)/8;
freq += loPass;

(do work)

tetotn;
)

i2o
{

residue--;
lopass = (7*Iopass + residue)/8;
freq += IoPass;

(do work)

o"*t_tire = NoW + I/freq;
schedintr(i2, nelrt-tine) ;

return;
)
Figure 4: Sample EFF - Low-pass Filter

int residue=O, freq=O, lopass=O, o1d-r=O;

ilo
{
1.1 residue += 4i
1.2 lopass = (Txlopass + residue)/8;
1.3 freq += Iopass + (residue - o1d-r)
1.4 old-r = residue;

(do work)

Fine-Grain Adaptive Scheduling using Feedback 147

return;
)

i2o
{
2. L residue--;
2.2 Lopass = (7*lopass + residue)/8;
2.3 freq += loPass;

<¿å wort>

a.¿ next-tine = NOül + l,/treq;
2.6 schedintr(i2, nexb-tine) ;

return;
)
Fþre 5: Sample EFF - Derivative and l"ow-pass Filter

int residue=O, freq=O, integral=O;

ilo
{

residue += 4i
integral += resiù¡e;
freq += integral;

(do work)

return;
)

i2o
{

reeidue--;
integral += residue;
freq += iategral;

(do work)

next-tine = N0hl + L/freq;

148 Henry Massalin and C¿lton Pu

schedintr(i2, next-time) ;

return;
)
Fþre 6: Sample EFF - Integral Filter

Applying the feedback idea to scheduling, we use EFF to keep
two threads or interrupt sources running at some algebraic func-
tion of each other. Figure 3 shows the general abstract algorithm
(without filters) when one source of interrupts happens at 4 times
the rate of the other. The algorithms described in Figures 3, 4, 5,

and 6 describe frlters to improve the responsiveness and stability
of Bpp. Each one of them has a control system analog outlined in
Appendix 4.2. All the sample EFF algorithms shown in this sec-

tion are meant to illustrate the EFF mechanism; they are not
actual Synthesis code. Appendix B holds examples of working
code for IBM PC/AT class of machines. Figure 5 contains line
numbers (1.1,2.1, etc.) that are referenced in Appendix B.

The algorithm in Fþre 3 is a simple example of EFF. The
phase variable, residue, keeps track ofrelative rates of il and
i2. The variable freq holds the frequency of i2 interrupts, and
I/tueqthe time between successive i2 intemrpts. freq has
residueaddedtoiteachtime i1 or í2 executes. Adding
residue to freq is equivalent to an integrator filter, which
improves long-term tracking accuracy. The thread il is the refer-
ence; it runs at its own rate; and each time it executes it adds ¿ to
the residue counter. Thread i2 runs at 4 times the rate of il
and each time i2 executes it decrements the residue counter.
If i2 and i1 were running at the perfect relative rate of 4 to l,
residue would tend to zero and no correction would result. In
contrast, if i2 is slower than 4 times il, residue will become
positive, increasing the frequency of i2 intemrpts and causing i2
to speed up. Similarly, if i2 is faster than 4 times í1", L2 will be
slowed down. As the difference in relative speeds increases, the
correction gets correspondingly larger. As il and 12 approach
the exact rate of l:4, the difference decreases and we reach the
minimum correction with residue being decremented by one

and incremented by four, therefore cycling between [-2,+2J. The
cycling residue will cause the i2 execution frequency to oscil-
late around the ideal execution rate, with error bounded by 2.

Fine-Grain Adaptive Scheduling using Feedback L49

A low-pass filter in the program helps eliminate this oscillation
at the expense of convergence time. Figure 4 shows an EFF with
low-pass filter. The variable lopass keeps a "history" of what

the most recent value of residue. Each update adds 1/8 of the

new residue to 7 /8 of the old lopass. This calculation has the
effect of taking a weighted average of recent residues. When
residue is positive for many iterations, as is the case when i2 is
too slow, lopass will eventually be equal to residue. But if
residue oscillates, as in the situation described in the previous
paragraph, lopass will go to zero.

The problem now is increased convergence time. The low-pass

frlter has a lag effect on the EFF response. If il speeds up
quickly, i2 will lag behind il while lopass o'charges up." Con-
vergence time can be decreased by adding a differentiator filter in
the il loop (Figure 5). The expression (residue - old-r)
approximates the first derivative of residue. Since it appears only
in the it loop, it does not magnify the high frequency i2 oscilla-
tion. The correction due to derivative is higher when il execu-

tion rate varies quickly, pushing i2 towards the correct rate
faster.

Finally, we show an integrator frlter in Figure 6. This kind of
fllter is useful for accurate tracking of interrupt sources with
linearly increasing (or decreasing) rates. Since integrals frlter out
high frequencies naturally, there is less need for a low-pass filter to
deal with oscillations.

3.3 Synthesis Examples

We have used the frne-grain adaptive scheduling to handle a wide
variety ofjobs in Synthesis. These are:

r a speciâl effects sound processing program that uses TIF to
find rhythms in music;

o an intem¡pt generator using TIF to generate an intemrpt a

few microseconds before each sector passes under the disk
head;

. a digital oversampling interpolator for a CD player; the
interpolator uses EFF to adjust its I/O rate to match the CD
player output.

150 Henry Massalin and Calton Pu

The special effects program takes as input a stereo sound
source sampled at 44,100 lJ:ertz. The program processes the input
in real time and produces output which is sent to the digital to
analog converters and eventually to the speakers. The program is
a pipeline of delay elements, echo and reverberation filters, adju-
stable low-pass, band-pass and high-pass filters. A correlator and
feature extraction unit extracts rhythm pulses from the music.
The next stage uses TIF to generate a stream of intemrpts syn-
chronized to the beat of the music. These intemrpts drive a drum
synthesizer, which adds more drum beats to the music. We can
also get pretty pictures synchronized to the music when we plot
the TIF input versus output on a graphics display. We rely on the
system scheduler EFF (described in Section 4.3) to maintain the
high data rate flowing through the pipeline in real-time. The frne-
grain adaptive scheduler keeps the data flowing smoothly at the
44.1KIlz sampling rate, regardless of how many CPU-intensive
jobs might be executing in the background.

In the second application, TIF helps the disk driver minimize
rotational delay. Many simple disk controllers generate a
hardware interrupt once every disk revolution. This sequence of
intemrpts (once per revolution) is used by TIF to generate a faster
sequence of timer interrupts, which happens once per sector
(about 17 times each revolution). With the new sequence of sector
interrupts, the disk driver knows what sectors are closest to the
disk heads and can minimize rotational delay in addition to nor-
mal seek optimization aþrithms. Good buffering may increase

data throughput for some applications, but important applications
such as database logging may benefit from rotational delay optimi-
zation. Our example works for simple disk controllers using pro-
tocols such as ESDI, but not for other controllers, e.g. those using
the SCSI protocol. More intelligent controllers supply the current
sector number under the head for OS-level optimization, for exam-
ple, based on heuristics [Stevens 1989].

In the third application, EFF is used in the digital oversam-
pling interpolator for the CD player. The interpolator takes as

input a stream of sampled data and creates additional samples
between the original ones by interpolation. This oversampling
increases the accuracy of analog reconstruction of digital signals.

We generate 4 samples using interpolation from each CD sample

Fine-Grain Adaptive Scheduling using Feedback 151

(4:l oversampling). The CD player produces 44,100 new data sam-
ples per second, or one every 22.68 mícroseconds. The interpo-
lated data output generated by EFF is four times this rate, or one
every 5.67 microseconds.3 This example shows the feasibility of
scheduling at this fine granularity.

3.4 Discussion

The implementation and the previous examples support three
important points that we make explicit here. First, a conventional
scheduler cannot accomplish the kind of adaptive scheduling
based on frne-grain feedback. This is illustrated by the rhythm
tracker. Without the feedback mechanism it is impossible to cap-
ture the rhythm modulation given the amount of processing power

available. Second, the processing requirements are so demanding
that only an extremely short critical path can keep the programs
running in real-time. This is shown by the CD player at the 5.67

microsecond output cycle. Third, the combination of fine-grain
and adaptation is uniquely powerful. The disk driver sector inter-
rupt generator is an example. Even if we could speed up the pro-
cessor (or slow down the disk rotation) to try to do it using con-
ventional scheduling, the output sequence will soon go out of syn-
chronization. Section 4.1 discusses this point in more detail.

A formal analysis of the properties of frne-grain adaptive
scheduling is beyond the scope of this paper. However, we would
like to give the readers an intuitive feeling about two situations:
saturation and cheating. As the CPU becomes saturated (no idle
times), the frne-grain adaptive scheduler degrades gradually. Since
the hardware interrupts cause scheduling actions, the threads
closest to device drivers will get their share of CpU. Conse-
quently, the threads further away from I/O intemrpts become
slower due to competition. This gradually fills the queues starting
from the I/O devices. Ifthe system recovers before the queues

overflow, we have a graceful degradation and recovery. This is
the desired behavior, especially in a real-time system with high I/o
rates.

3. This program runs on the Quamachine at 50 MHz clock rate.

152 Henry Massalin and Calton Pu

Another potential problem is cheating (consuming resources

unnecessarily to increase priority), since feedback-based schedul-
ing tends to give more CPU to threads that consume more. How-
ever, cheating cannot be done easily from within a thread or by
cooperation of several threads. First, unnecessary loops within a

program does not help the cheater, since they do not speed up
data flow in the pipeline of threads. Second, the schedule is
arranged so that I/O within a group of threads only shifts Clu
quanta within the group. A thread that reads from itself gains
quantum for input, but loses the exact amount in the self-
generated output. To increase the priority of a thread, it must
read from a real input device, such as the CD player. In this case,

it is virtually impossible for the OS kernel to distinguish the real
I/O from cheating I/O. This kind of cheating would succeed under
existing schedulers. In Section 4.3 we discuss cheating further.

4. Applications

We apply fine-grain scheduling policies to three kinds of situa-
tions:

. interruÞt source coupled to interrupt source, described in
Section 4.1,

. intemrpt source coupled to program progress, described in
Section 4.2, and

o progfÍufi progress coupled to program progress, described in
Sections 4.3 and 4.4.

4.1 Clock Accuracy and Synchronization

An interval timer shows differential stability, i.e., the intervals
between consecutive clock ticks are very much the same. How-
ever, any small inaccuracy in the clock tick will accumulate in the
long term into a noticeable difference between the clock and the
absolute time. A timing device exhibits integral stability when it
is able to limit this difference even for the long run. EFF provides
integral stability, i.e., in the long-term the accumulated difference
between the reference frame and generated interrupts is bounded

Fine-Grain Adaptive Scheduting using Feedback 153

by a constant, even though any individual interval may differ
from the reference. This property of EFF avoids the need for very
accurate interval timers for some important applications.

A fundamental application is clock synchronization. We con-
sider asymmetric clock synchronization first, where slave clocks
try to follow accurately a master clock, usually ticking at a coarse
granularity. (For example, the world-wide broadcast time refer-
ence has the resolution of one second.) EFF solves this problem
well, taking the master clock tick as input and producing the slave

clock ticks at some rational (p /q) rate of the input, at a higher pre-

cision. The feedback adjusts an interval timer to generate the
interrupts "missing from the input." The precision of a slave
clock is only limited by its interval timer. The integral stability of
EFF bounds the difference between the master and slave. Note
the similarity of asymmetric clock synchronization with the CD
oversampling interpolator (Section 3.3).

A more sophisticated problem is symmetric clock synchroniza-
tion, where we advance the participating clocks in some kind of
lock-step, i.e., the relative differences among the participating
clocks should be bounded. Traditional distributed clock syn-
chronization algorithms use agreement protocols to find the aver-
age time, and the bound on the difference is tighter if we run the
agreement protocols more often. Software feedback can be useful
in reducing the error bound or the frequency of agreement proto-
col, or both. The intuitive idea is that using EFF each clock learns
whether it is advancing or lagging with respect to the average and
compensates for it.

A third problem is making accurate timing measurements with
a coarse interval timer. A recent report [Danzig & Melvin 1990]

describes two ways to make accurate measurements on Sun works-
tations, which have a 2O-millisecond resolution interval timer.
The flrst method is to take many measurements and average them.
The drawback is that we need a large number (thousands to hun-
dreds of thousands) of data points to achieve one or two orders of
magnitude accuracy improvement. The second method is to build
a high-resolution hardware clock, but this is expensive. In con-
trast, software feedback (EFF) can achieve high-resolution timing
with only low-resolution clocks. The use of nrr does not
significantly reduce the number of measurements that must be

154 Henry Massalin and Calton Pu

made to achieve a specified accuracy, but it can provide a con-

tinuous stream of "best guesses" while converging to the ultimate
answer. This feature proves useful in some highlv dynamic
environments when a good guess is better than no information at

all. Finally, the fine-grain (cheap) mechanism ensures that the
timing is as unobtrusive as possible.

4.2 Real-Time Scheduling

Real-time scheduling is the problem of scheduling jobs with dead-
lines. A soft-deadline job loses its value gradually as the deadline
passes. A hard-deadline job may cause catastrophic system failure
if not completed by its deadline. For example, a computer-
controlled valve better open before the increasing pressure causes

an explosion. Simple versions of real-time scheduling problem
have been shown to be NP-hard and the hard-deadline real-time
scheduling is in general a very difficult problem [Stankovic &
Ramamritham 19881.

In our discussion, we divide hard-deadline jobs into two
categories: short ones and long ones. A short job is one that must
be completed in a time frame within two orders of magnitude of
intemrpt and context switch overhead. For example, a job taking
up to 50 microseconds would be a short job in Synthesis. Short
jobs are scheduled as they arrive and run to completion without
preemption.

Long jobs take longer than 100 times the overhead of an inter-
rupt and context switch. In Synthesis this includes all the jobs

that take more than 1 millisecond, which includes most of the
practical applications. The main problem with long jobs is the
variance they introduce into scheduling. Since most traditional
hard-deadline scheduling approaches try to guarantee the
schedule, they must be prepared for the worst scenario. If the
variance is large, the CPU requirements for the worst case is much
higher and more expensive than the average case. Therefore, the
hardware remains unused most of the time.

To use fine-grain adaptive scheduling for long jobs, we break a
long job into small strips. If the real-time program is written in
assembler language (frequently this is done to minimize overhead
and guarantee response-time), the programmer knows enough

Fine-Grain Adaptive Scheduling using Feedback 155

details of the code to choose the strips. If the program is in a
highJevel language, say Ada, we can combine compiler support
with heuristics. For example, procedure boundaries in modular
programs would be good candidates for delimiting strips. Another
piece of useful information is the estimated run-time of the entire
job. This could be done by measuring the program CPU con-
sumption to frnd the execution profrle statistics of the expected
and maximum completion time. In the rest of this section we
assume suitable strips can be found, since too complex jobs are
not good building blocks of real-time systems.

For simplicity of analysis we assume each strip to have the
same execution time ET. We define the estimated CPU time to
finish job ,/ as:

Estimate(J) : ßllguru
For a long job, it is not necessary to know ET exactly since the
software feedback "measures" it and continually adjusts the
schedule in lock step with the actual execution time. In particu-
lar, if Estimate(J)>l then we know from the current estimate that

"r will not make the deadline. If we have two jobs, A and B, with
Estimate(A)+Estimate(B)>l then we may want to consider aborting
the less important one and calling an short emergency routine to
recover.

Unlike traditional hard-deadline scheduling algorithms, which
either guarantee completion or nothing, frne-grain scheduling pro-
vides the ability to predict the deadline miss. V/e think this is an
important practical concern to real-time application programmers,
especially in recovery from faults. (For a good discussion of
issues in real-time computing, see Stankovic [1988].)

4.3 Adaptive Scheduling

Current operating systems, e.g. UNIX, use a simplistic adaptive
strategy to improve system throughput. Usually, they have a
priority-based scheduling mechanism. CPU-intensive jobs have
their priority lowered and l/O-intensive jobs priority increased. In
UNIX, if a job has exhausted its CPU quantum when de-scheduled
then it is likely to be CPU-intensive. Also, if a job accumulates

156 Henry Massalin and Calton Pu

enough CPU minutes it is automatically demoted to a lower prior-
ity. This scheme works very well with jobs of long duration, since

the scheduling decision is based on the average behavior of the
job.

However, as we mentioned in the introduction, this aþrithm
assumes the jobs are independent of each other. Serious problems

arise even in simple cases, for example, the pipeline of threads
each with one input and output. Each stage of the pipeline is a
consumer of data from the previous stage and producer of data
for the next stage. If one particular stage in the pipeline needs a

relatively large amount of CPU (compared to the other stages), the
above simple adaptive scheduling would lower its priority, causing
congestion to form at the stage. In the Synthesis world of many
threads connected in a graph, avoiding this kind of congestion is
crucial for good performance.

First we note that a smooth flow of data through the pipeline
would best use the resources of the system, since each stage will be

running at just the right speed, without idling or congestion. In
the above scenario, data flow slows down at the CPU-intensive
stage, so the entire pipeline runs at the speed of the lowest priority
stage. To solve this problem with frne-grain adaptive scheduling,
we adjust the thread priority according to the length of its input
queue. The frequency and length of the CPU quantum of a stage

is directly proportional to the length of its input queue and
inversely proportional to the length of its output queue. If the
input queue is full, then this stage is a bottleneck and should be

scheduled more often and with a larger quantum of CPU, in the
hope that it will start consuming its input faster. Similarþ, if a

thread has frlled its output queue, then it is "too fast" and should
have a smaller quantum and be scheduled less often.

In the Synthesis fine-grain adaptive scheduling, the kernel
detects when a queue approaches empty or full and makes the
adjustments to the thread's quantum. This way, a CPU-intensive
thread in a pipeline will be scheduled more often and "run faster"
to keep up with the rest of the pipeline. We should note that Syn-

thesis does not currently do any significant global CPU accounting.
With only local adjustments based on queue length, fine-grain
scheduling policies exhibits global stability, i.e., the pipeline of
threads run smoothly.

Fine-Grain Adaptive Scheduling using Feedback 157

Since the Synthesis adaptive algorithm varies thread priority
dynamically, we need 1o put a limit on the CPU allocated to each
thread to avoid monopoly. For example, a thread that reads from
a higþ data rate I/O source (say a sound digitizer at 50,000 samples
per second) may be able to capture a lot of CPU because the digi-
tized sound data come in at a very high rate. We impose an
upper limit on the thread CPU quantum and scheduling frequency
to prevent any thread from monopolizing the CPU. This restric-
tion may be relaxed for dedicated real-time systems.

4.4 Multiprocessor and
Distributed Scheduling

We think the adaptiveness of gpp promises good results in mul-
tiprocessor and distributed systems. At the risk of
oversimplification, we describe an example with frxed buffer size

and execution time. We recognize that given a load we can
always frnd the optimal scheduling statically by calculating the
best buffer size and CPU quantum. We emphasize the main
advantage of software feedback the ability to dynamically adjust
towards the best buffer size and CPU quantum. This is important
when we have a system with variable load, jobs with variable CPU
demands, a reconfrgurable system with a variable number of
CPUs, or an application program designed for machines with
different speed parameters.

Figure 7 shows static scheduling for a two-processor shared-
memory system with a common disk (transfer rate of 2
MByte/second). We assume that both processes access the disk
drive at the full transfer rate, e.g. reading and writing entire
tracks. Process I runs on processor I (Pl) and process 2 runs on

Figure 7: Two Processors, Static Scheduling

158 Henry Massalin and Calton Pu

processor 2 (P2\. Process I reads 100 KByte from the disk into a

buffer, takes 100 msec to process the data, and writes 100 KByte
through a pipe into process 2. Process 2 reads 100 KByte from the
pipe, takes another 100 msec to process them, and writes 100

KByte out to disk. In the frgure, process I starts to read at time 0.

All disk activities appear in the bottom row, Pl and P2 show the
processor usage, and shaded quadrangles show idle time. Figure 8

shows the frne-grain scheduling mechanism (using EFF) for the
same system. We assume that process I starts by filling its 100

Kbyte buffer, but soon after it starts to write to the output pipe,
process 2 starts. Both processes run to exhaust the bufer, when
process I will read from the disk again. After some convergence
time, depending on the filter used in the software feedback, the
stable situation is for the disk to remain continuously active, alter-
natively reading into process I and writing from process 2. Both
processes will also run continuously, with the smallest buffer that
maintains the nominal transfer rate.

The above example illustrates the benefrts of ûne-grain
scheduling policies in parallel processing. In a distributed
environment, the analysis is more complicated due to network
message overhead and variance. In those situations, calculating
statically the optimal scheduling becomes increasingly difrcult.
We expect the fine-grain scheduling to show increasing usefulness
as it adapts to an increasingly complicated environment.

P1 execute

P2 execute

disk read T t

me t msec

Figure 8: Two Processors, Fine-Grain Scheduling

Fine-Grain Adaptive Scheduting using Feedback 159

5. Conclusion

We have described a fine-grain adaptive scheduling mechanism
based on software feedback. The fine granularity uses frequent
state checks and dispatching actions to adapt quickly to system
changes. Quick adjustments make better use of system resources,

since we avoid queue/buffer overflow and other mismatches
between the old scheduling policy and the new situation. The fine
granularity also allows the software feedback to take into account
local state changes, such as the queue length connecting the con-
secutive stages of a pipeline. Finally, the frne granularity enables

early warning of deadline misses, giving the real-time application
programs more time to attempt an emergency recovery before the
disaster strikes.

We have implemented the fine-grain adaptive scheduling in
the Synthesis distributed operating system. Synthesis kernel
makes adjustments every few hundreds of microseconds based on
local information, such as the number of characters waiting in an
input queue. Fundamental to our implementation are the low-
overhead kernel facilities. These include scheduling actions (a few
tens of microseconds), context switch for dispatching (less then
ten microseconds), checking local state (a few machine instruc-
tions), and intemrpt processing (also a few machine instructions).

The software feedback mechanism can be used in situations
other than CPU scheduling. Given a sequence of events we can
generate another related sequence. In the current version of Syn-

thesis, we have used it in I/o device management and real-time
scheduling. Looking into the future, distributed applications
stand to benefrt from the software feedback, since they will be able

to track the input events despite variances introduced by message

delays. Concrete applications we are studying include load
balancing, distributed clock synchronization, smart caching in
memory management and real-time scheduling.

160 Henry Massalin and Calton Pu

Acknowledgements

We would like to thank the reviewers for the Special Issue. They
made valuable comments that improved the presentation of this
paper considerably.

This work is partially funded by the New York State Center
for Advanced Technology on Computer and Information Systems
under the grant NYSSTF CU-0112580, the National Science Foun-
dation under the grant CDA-88-20754,the AT&T Foundation
under a Special Purpose Grant, the Digital Equipment Corpora-
tion under the External Research Program, IBM Fellowships, and
Sun Microsystems. Also, we would like to thank AMD, Hitachi,
Intel, Motorola, National Semiconductor and Mupac for their
contributions of hardware samples for the experimental machine.

Fine-Grøin Adaptive Scheduling using Feedback 161

Appendix A:
Properties of Hardware
Feedback Systems

A.1 Phase Locked Loops

Figure 9: PLL Picture

To explain the software feedback systems, we start with a

hardware analog, the phase locked loop (PLL). Fþre 9 shows the
PLL as a block diagram. The PLL synchronizes an output fre-
quency with an input frequency. If the rate divider (N) is set to
unity, then the PLL generates an output that is frequency and
phase synchronized to the input (frequency is the time derivative
of phase). The phase comparator outputs a signal proportional to
the difference in phase (frequency) between its two inputs. The
filter is used to tailor the time-domain response of the loop. An
example is a low-pass filter that attenuates the quickly varying
phase differences and passes the slowly varying phase differences.
The oscillator (in hardware implemented as a voltage-controlled
oscillator - VCO) generates an output frequency proportional to
its input, which comes from the output of the frlter. The overall
loop operates to compensate for variatioûs on input, so that if the
output rate is lower (higher) than the input rate, the phase com-
parator, filter, and oscillator work together to increase (decrease)

the output rate until it matches the input. When the two rates

match, the output rate tracks the input rate, and the loop is said
to be locked to the input rate.

output
frequency

162 Henry Massalin and Calton Pu

A software feedback system has the same three elements of the
PLL. First, we track the difference between the running rate of a
job and the reference frame; this is analogous to a phase compara-
tor. Second, we use a frlter to dampen the oscillations in the
difference, like the PLL filter. Third, we re-schedule the running
job to minimize its error compared to the reference, in the same

way the VCO is adjusted.

A.2 Filters in PLL

Like all feedback control systems, aPLL may be stable or
unstable. The informal arguments for the stability presented in
this section follow established control theory, in particular PLL
frequency synthesis [Rohde 1983]. A PLL can be modeled as a

three-stage cascaded feedback system (Figure 10). In control
theory, we use Laplace Transforms to analyze system behavior
and determine stability. In Figure l0 we have a generic feedback

system with the open-loop function G and the feedback function
fr. The Laplace Transform (function of S) of the closed-loop
function is:

out(S) = G
tn(S) l+G*H

For the PLL in Fþre 10, we have

G = Ka* f(S) * KolS : K'¡F(,S)/,S

where K¿ is the sensitivity of phase comparator (also called gain

factor) in volts/radian, K¡ is the responsiveness of VCO in

Figure l0: Feedback System

Fine-Grain Adaptive Scheduling using Feedback L63

(radian/second)/volt. The loop gain K is the constant product of
K¿ by K6. The feedback function is fI: l/N because the output is
divided by tr/ before it is fed into the phase comparator. Substi-
tuting the terms we have:

out(S) _ K*j7(,S)/S _ K*F(S)
in(S) I +K *I'(,S)/S/N,S +K *r(S)/¡r

We say that a feedback system is stable if for all bounded input it
produces bounded output. A particular feedback system is stable
if all the singularities of its closed-loop function have the real part
less than zero.

To study the stability of PLLs, we need to fill in the
unspecified filter function r(S). Some useful filter functions and
their Laplace Transfonns are given below. These filters may be
used alone, cascaded, or superimposed. We can calculate the
composite frlter functions using two properties of Laplace
Transforms: cascaded elements (serial connection) multiply, and
combined signals (superimposed) add.

. Null filter: .F(S)=I.

. Gain (proportional) filter: r(s)=C (some constant).

. Simple low-pass filter: .F (,S) : / where <o is the
I +(-:-) * S

cut-off frequency in radian/sec.

. Integrator frlter: r'(S)=l/S.

. Differentiator fllter: F(S)=S.

Each of these frlters has certain general tendencies (not iron-clad
rules) summarized in Table l. Table t tells the influence of each
filter on the feedback system: tracking accuracy, stability, and
convergence time. Tracking accuracy refers to the classes of input
functions a feedback system can follow without steady-state error.
Improving stability moves the real part of the closed-loop function
singularity towards minus infrnite. Convergence time is the time
it takes for the output to reach its final value. Noise immunity
tells how sensitive the system is to input noise and oscillations.

The simplest PLLs have no frlter at all, or perhaps just a gain

frlter. This type of PLL will always have some error. The steady

1,64 Henry Massalin and Calton Pu

null
low-pass

integrator
differentiator

Table l: Informal Filter Characteristics

state error in response to step changes in input frequency is
inversely proportional to the open loop gain (rK). High gain is
required to reduce the error, but increased gain makes the PLL
response noisy and eventually unstable.

To reduce the noise in the output and make PLL more stable,
we can add a low-pass filter, which removes the high frequency
transients. Low-pass frltering results in a weighted average of
recent input. Occasional input transients will contribute little to
the weighted average and affect the output less.

To remove the error completely, we use integrator filters. A
feedback system with one integrator frlter will track constant input
with no error, linearly increasing input with constant (non-
increasing) error, and quadratic input with ever-increasing error.
A feedback system with two integrator filters will track linearly
increasing input with no error, quadratic input with constant
error, and so on. In general, feedback system tracking accuracy
improves with the number of integrator filters.

In a PLL, the VCO contains an implicit integrator, since it gen-

erates constant frequency (linearly increasing phase angles) for
constant input. Consequently, a PLL with a null filter behaves as

a feedback system with one integrator, which appears as the K6l,S
factor in PLL's open-loop function.

Integrator filters lessens PLL stability and lengthens conver-
gence time. We can use differentiator frlters to counteract these
tendencies. Differentiator filters are never connected in cascade,

since they will cancel the effect of integrator filters. They are
superimposed with gain filters or more integrator frlters.
Differentiator filters increase loop stability, allowing the loop gain
to be increased, therefore decreasing convergence time. In gen-

eral, one can use integrator and differentiator filters to tailor sys-

tem response according to the expected input.

tracking
accuracy

lmprove
lessen

stabiliry

rmprove
lessen

improve

Convergence
Time

lengthen
lengthen
shorten

Noise
Immunity

rmprove
improve

lessen

Fine-Grain Adaptive Scheduling using Feedback 165

A.3 Analyzing PLL and Software Feedback

In the previous section, we have summarized the mathematical
analysis of filters for hardware PLL. Since the software implemen-
tation of feedback is analogous to the hardware one, tve would like
to analyze the software feedback similarþ. However, two kinds of
signifrcant differences make the formal analysis difficult the ones

dealing with the discrete-time nature of the software feedback, and
the ones dealing with frequency and interval measurements and
adjustments. We will consider each in turn.

In the frrst place, the hardware PLL is a continuous-time sys-

tem, while the software feedback is a discrete-time system. In
particular, the hardware PLL has a continuous frequency range,

while the EFF has a discrete frequency range. The resolution of
the hardware interval timer limits the choice of frequencies in the
EFF. When a desired frequency falls between two available fre-
quencies, the EFF will alternate between the two available ones.

This behavior can be modeled by inserting a floor function frlter
in the hardware PLL to simulate the quantized nature of the EFF.

The floor function introduces nonJinearity into the model, mak-
ing it difrcult to anaþe.

If the discreteness were the only difference, we could use

Z-Transforms instead of Laplace Transforms to analyze the
software feedback systems. One example of additional complica-
tions is the non-constant sampling rate in EFF: samples occur
whenever i1 or i2 runs. We can change the variables appropri-
atety to place the sample points on a frxed grid, but these changes

of variables will introduce other non-linearities, complicating the
model further.

Yet another problem is peculiar to TIF, which measures time
intervals intead of frequency. Since the period is the inverse of
frequency, we could insert an llx frlter right before the vCO in the
PLL in Figure 9 to model TIF, converting a frequency adjustment
into a period adjustment. The l/x function would introduce
another non-linearity into the model. Similarþ, TIF adjustment

of time intervals requires another 1/¡ function between the com-
parator and the frlter.

Our work on mathematically ana|yzing the software feedback

is in progress. In the mean time, we have written a few test

166 Henry Massalin and Calton Pu

programs to empirically observe the stability of different algo-
rithms and frlters. One such program is found in Appendix B.

Fine-Grain Adaptive Scheduling using Feedback L67

Appendix B:
Fun Demo for Your PC

Readers who want to play with software feedback can run the fol-
lowing programs (Figures I I and l2), written for the IBM PC and
compatibles. Type it in and compile! It has been tested using the
Microsoft C compiler. You may have to change the def ine
getkeyO on other compilers. The function getkeyQ is a non-

blocking read ofkeyboard that returns the key pressed or -l ifno
key has been pressed. Run it. Push and hold down the "1" key,
letting auto-repeat generate a steady stream of "events" and watch
the error oscillate a few times to stabilize towards zero. Try play-

ing with the parameters, change the filters, the gain constant, ...
Enjoy!

The EFF demo program is patterned after the template pro-
gram in Figure 5 (EFF - Derivative and Low-Pass Filter). All the
line references point to that figure, including the line numbers and

specific statements.

. The variable timekeeps track of simulated time, which is
incremented by one each loop.

. EFF synchronizes to a multiple of an external event, in this
case the pushing of a key. The multiple is determined by
the numeric key being pushed (L = yr,2 = l, ...,9 = 4Vz)

[KeY = multiPle]'
. The output is two rotating bars, the first rotating with each

key push, the second rotating at the EFF output frequency.
The other numbers displayed show the current error and
instantaneous frequency.

. The statement g¡¡ += $:k (c-'0'); corresponds to
line l.l.

. The statement if (tine > next) corresponds to the inter-
val timer expiring and causing an intemrpt.

. The statement err -= 6 corresponds to line 2.1.

. The statement x = f ilter(err) corresponds to line 2.2.

. The statement freq += x corresponds to line 2.3.

168 Henry Massalin and Calton Pu

. The statement next += 200000l/freq corresponds to the
line schedint¡r(.. .) in Figure 5.

/x an example of EFF x/
#ínclude <stdio.h>
#define ESC 2T
#define getkeyO (kbhito ? getcho : -1)

f ilter(x)
int x;
t
static int lopaes, old-x;

int r;
lopass = (3*lopass + x) >> 2;
r = Iopass + 15*(x - o1d-x);
oLd-x = x;
retur¡ r;

)
naino
{
static char ¡ar[] - nll-\\''

int il, j,2, event, freq, err, x, c;
long tine, next, 1aet, t!tP;

it'.12=err=event=0;
tine=next=last=O;
freq = 269'
while((c = getkeyo) != ESC)

t
tine++;

/* this is il */
if (c >= '1' && c (= '9') {

s¡¡ += g * (c_,0r);
x = filter(err);
freq += xi if(freq <= 0) freq = 1;
nêxt = last + 200000l/freq;
il =¡i1+1)&B;

þ'ine-Grain Adaptive Scheduting using Feedbaclc 169

event = 1;
)
/* this ís 12 */
if(tine > next) {

lagt = next;
err -= 6;
x = filter(err);
freq += ¡ç; if (freq <= 0) freq = t;
next = Iast + 200000l/freq;
í2=(i2+t)&3;
event = 1;

)
if(event) {

event = 0;
printf (u'lrc 'l,,c '1,+¿.ga '1,+4.3d %5d\ru,

bar[il], barlí2f , err, x, freq);
)

)
)
Figure 11: EFF Demo Program

/* a example of TÍF */
#include <stdio.b>
#define ESC 27
#define getkey0 (kbhitO ? getcho : -1)

long fitter(x)
long x;
{
static int lopass;

x ((= 8;
lopass = (63*Iopass + x) >> 6;
return (lopass+l28)>>8;

)

170 Henry Massalin and Calton Pu

naino
{
static char bar[] = ull-\\u'

int i1, 12, event, c, nul;
long tine, next, Iastl, 1ast2,

intvl, intv2, err, x;

time = next = Iastl = 1ast2 = intvl = intv2 = 0;
Lt=12=event=0;
err = 0;
nul = 2;
while((c = getkeyo) != ESC)

{
tine++;

/* this is il */
if (c >= '1' && c (= '9') {

mul = (c- ,0,) ;

intvl=tine-lastl;
lastl = time;
err = ((intvl<<1)/nu1) - intv2;
x = filter(err);
intv2 += x; if(intv2 <= 0) intv2 = 0;
next=1ast2+intv2;
il=(i1+1)&3;
event = 1;

)
/* this Ls 12 */
if(tine > next) {

if (tine - lastl > intvl)
intvl=time-last1;

err = ((intvl<<1)/nul) - intv2;
x = filter(err);
intv2 += xi if(intv2 <= 0) intv2 = 0;
last2 = next;
next=1ast2+intv2;
12=(i2+1)&3;
event = 1;

)

Fine-Grain Adaptive Scheduling using Feedback 171

if(event) {
event = 0;
printf (tt'/,c '/,c %91d 7.gld\r",

bar[i1] , barliZl, intvl, intv2);
)

)
)
Figure 12: TIF Demo Program

172 Henry Massalin and Calton Pu

References

P. Danzig and S. Melvin, High resolution timing with low resolution
clocks and a microsecond resolution timer for Sun workstations,
ACM SIGOPS Operating Systems Review,24(l):23-26, January 1990.

S. Karsten, T. Bihari, B. W. Weide, and G. Taulbee, High-performance
operating system primitives for robotics and real-time control sys-
tems, ACM Transactions on Computer Syslems, 5(3):189-231,
August 1987.

H. Massalin and C. Pu, Threads and input/output in the Synthesis ker-
nel, In Proceedings of the Twelfth Symposium on Operating Sys-
tems Principles, Arizon4 December 1989.

C. Pu, H. Massalin, and J. Ioannidis, The Synthesis kernel, Computing
Systems,l(l):l l-32, Winter t988.

U. L. Rohde, Digital PLL Frequency Synthesizers: Theory and Design,
Prentice-Hall, Inc., frrst edition, 1983.

J. A. Stankovic, Misconceptions about real-time computing: A serious
problem for next-generation systems, IEEE Computer, 2l(10):10-19,
October 1988.

J. A. Stankovic and K. Ramamritham, editors, Tutorial: Hard Real-
Time System.s, Computer Society Press of IEEE, 1988.

W. R. Stevens, Heuristics for disk drive positioning in 4.3BSD, Comput-
ing Systems, 2(3):25 l-273, Summer I 989.

Fine-Grain Adaptive Scheduling using Feedback 17 3

