Using Hints in DUNE
Remote Procedure Calls

Marc F. Pucci and J. L. Alberi Bellcore

ABSTRACT: Remote Procedure Calls (RPC) are an
established mechanism for coordinating activity
between multiple processors in a distributed system.
Their efficient use in Interprocess Communication
(IPC) is difficult because underlying network proto-
cols can have a great effect on system performance,
especially when the IPC is within the same proces-
sor. This problem is compounded if the distributed
system must work simultaneously over several
forms of interconnect. Designing an efficient solu-
tion for one medium may make accommodating
another awkward or impractical, while designing a
general solution for all may not take full advantage
of any specific medium.

This paper describes an enhanced remote procedure
call model of interprocess communication that is
generally efficient for many types of network, even
nontraditional ones. It is based on optional hints
supplied by the client of an operation, which enable
medium-specific optimizations in a uniformly struc-
tured interface. The model supports dynamic
rebinding of communications protocols, which is
necessary for the efficient treatment of migratable
system objects.

© Computing Systems, Vol. 3 » No. 1 * Winter 1990

47

48

1. Introduction

Distributed operating systems running on native hardware often
rely on special purpose protocols for interprocess communication
[Accetta et al. 1986; Cheriton 1984; Popek et al. 1981].! Special
protocols provide efficient operation by reducing the layering
inherent in general purpose protocols, but are difficult to adapt to
new network technology [Hutchinson et al. 1989]. Systems that
require several special purpose protocols to support different com-
munications media are difficult to implement and maintain
because of the complexity of the code. General-purpose layered
protocols [DOD 1980; ISO 1982]. provide easy adaptation to new
technology and support for multiple networks, but are slow, espe-
cially when each layer is mapped into a process [Clark 1985].

The DUNE distributed operating system establishes a flexible
yet efficient model of interprocess communication that allows
incorporation of virtually any data transport mechanism. DUNE
IPC extends the remote procedure call [Birrell & Nelson 1984;
Spector 1982] model of interprocess communication. The tradi-
tional RPC mechanism is modeled on the standard procedure call
found in almost all high level languages. Data and results are
transmitted across a network at the beginning and end of the RPC
transaction, respectively. The extensions we have provided
address the following points.

« First, we are interested in providing complicated services,
where the amount, source, and destination of the data

1. Other distributed systems that are built on top of general purpose operating systems
like UNIX are not addressed in this paper. Such systems generally establish interpro-
cess communication over the network facilities that the operating system provides
and consequently do not permit the tailoring of communications for efficiency.

Marc F. Pucci and J. L. Alberi

passing between the client and the server are unknown in
advance. Thus the RPC mechanism must reach back across
the network for additional data, as necessary. Examples of
such complex services include process migration and the
UNIX System V style of ioct/ call.

Second, we want to optimize the transfer of data as a func-
tion of the characteristics of differing communications chan-
nels. Breaking up large transfers into smaller packets may
be unnecessary for some communications technologies. We
want to retain the flexibility of allowing each interface to
decide how it should handle the data. For example, if two
processors can share a part of their address spaces, physi-
cally transferring data with a request for service is unneces-
sary; the data can be obtained directly when required at low
cost.

Third, with limited memory on individual processors the
operating system may not have enough space to buffer large
amounts of data accompanying a request. An example of
this occurs during process migration in DUNE where an
entire virtual address space is transmitted, but there is no
movement of text or data until the system allocates physical
memory for the remote process. Again, we require a
mechanism where the data could be acquired as needed
after sufficient space is allocated.

The DUNE IPC mechanism is called a service request and is
used to exchange control flow and information between cooperat-
ing clients and servers. The service request uses an access method
to support the optimized transfer of data. An access method
exists for each medium supported by DUNE.

2. The DUNE Distributed
Operating System

DUNE [Alberi & Pucci 1988; Pucci & Alberi 1988] is a distributed
operating system using several forms of interconnect for commun-
ications. It is not a shared memory based system, although it can
connect processors together using a conventional backplane. The

Using Hints in DUNE Remote Procedure Calls

49

50

Backplane Backplane
I I | I []
CPU| |CPU| |CPU CPU| |CPU| |CPU
MéM M%M MgM DISK MéM IM%M MéM DISK
Q ! 5 DISK]| |DISK
Ethernet
Backplane Backplane
I 1 [I [I | [
CEU DISK CEU CEU CEU CEU CEU CEU Disk
MEM MEM| [MEM| |[MEM| [MEM| |[MEM| |MEM

b Q DISK DISK

Figure 1: The current DUNE configuration. The Ethernet and
token ring are connected in parallel to adapters resident in the
backplane, which functions as another form of network.

current DUNE hardware configuration, shown in Figure 1, simul-
taneously supports service requests on the same processor, across
the same backplane, across an Ethernet network, and across a
high-speed token ring network. The DUNE system is composed of
commercially available hardware. The single board computers are
based on Motorola 68000 family processors with four megabytes of
private memory. Up to eight such processors are connected on a
single backplane, which is in turn connected to other backplanes
via network interfaces.

While some of the media used by DUNE support broadcast or
multicast operations in the hardware, not all do, and the conven-
tional RPC model does not easily adapt to such features. There
has been work done on RPC with multiple outstanding requests
[Gifford & Glasser 1988], but we have not incorporated this
feature into DUNE. The DUNE kernel simulates multicasts by
iterating RPC calls through dynamic lists of resources that require
the same operation. The kernel manages the lists as a function of
the service being performed. Because simulated multicasts

Marc F. Pucci and J. L. Alberi

happen infrequently in DUNE, we conclude the marginal perfor-
mance improvement is not worth the additional RPC complexity.
DUNE is a fully functional system with the semantics of the
UNIX operating system [Ritchie & Thompson 1978]. The archi-
tecture we will discuss was instrumental in the smooth evolution
of this system from its original form as a non-shared memory
multiprocessor system into a distributed system. DUNE elim-
inates any perceived processor boundaries by distributing both the
file system and processing space across all processors in the sys-
tem. The system-call interface is enhanced from AT&T System V
to include the Berkeley UNIX 4.2 network functions. The file sys-
tem is singly rooted, hierarchical and independent of process loca-
tion or user identity. A process can also read or write a physical
device independent of location. Physical storage for the file sys-
tem is scattered among the processors comprising the system.
User processes are uniquely named throughout the system and
may migrate between processors either automatically to balance
load or by an explicit system call. Signals and process groups are
fully developed in accordance with the semantics of UNIX
System V.

3. Software Architecture

As in traditional UNIX systems, a user request for a system opera-
tion is initiated by a system call. Figure 2 shows the DUNE archi-
tecture; network connections are omitted for clarity. Horizontal
lines represent interfaces between conceptual layers within the sys-
tem. A user program does not issue service requests directly, but
relies on the local kernel, hereinafter referred to as the client, to
act as their agent for an operation. Control passes to the client
via the usual system call trap. DUNE decomposes a UNIX system
call into one or more service requests addressed to appropriate
system resources, such as the root of the file system, the current
working directory or the child processes of the current process.
The service request is the basic mechanism that distributes
work either within the same processor or to other processors. The
service request is similar to standard RPC but as a side effect con-
ceptually transfers the entire client address space to the processor

Using Hints in DUNE Remote Procedure Calls

51

52

User
USER Code

RESOURCE FUNCTIONS LOCAL KERNEL Kernel
Functions

CLIENT and SERVER Service
Request

LOCAL BACKPLANE | TOKEN RING| ETHERNET | Access
Methods

Figure 2: Layers within the DUNE RPC architecture. The system
is symmetric with any processor acting as client or server.

containing the resource to be operated on by the request. This
processor invokes local procedures in the remote kernel to operate
directly (as far as it can tell) on any supplied or implied user data.
The client determines the binding for the service, gathers argu-
ments, constructs a hint describing the easily accessible data from
the user program, transmits the request to the resource, and blocks
awaiting the response. The request is queued at its destination
and awaits dispatch by a server process responsible for the
resource in the remote kernel. All servers are kernel processes and
can directly issue additional service requests to complete a task.
The interface to each service request call includes a binding to
the remote part of the request, outbound arguments (which can
include arbitrarily indirect references to additional user data), a
place to receive results, and optional Aints to assist the underlying
communications medium in optimizing data transfer. On the pro-
cessor receiving the request, the provider of the service in the
remote kernel has direct access to the explicit arguments and
results of the call, as well as complete access to any indirect data
references contained in the request. All access to the latter passes
through the hint mechanism of the communications channel for
device-specific optimizations. Each channel interface can also
resolve general indirect references that are not satisfied by hinting,

Marc F. Pucci and J. L. Alberi

providing complete (although possibly less efficient) access to the
entire caller’s environment.

The kernel layer that supports the service request is termed an
access method and incorporates a set of functions that deal with
transport protocol and hint manipulation. We make no architec-
tural distinction among network types, including the null network,
and the requirements on the network protocol level are minimal.
There is a null protocol for service requests to the same processor.
All higher level functions, e.g. flow control, error recovery and
connection management, are handled in end-to-end fashion at the
level of the service request [Saltzer et al. 1981]. The transport
functions may contain only error and duplicate detection or may
be a complete end-to-end protocol. Although the latter case is
redundant and causes performance degradation as will be shown
later, general communications protocols may be desirable for
other reasons, such as long haul transport.

An access method is a set of functions with a uniformly
defined interface that supports the service request. Each access
method is associated with a particular communications medium,
and may include functions to send hints to the server about
incoming data, move data between client and server, and send
and receive messages. However, the access-method model does
not require messages, and some access-method functions can be
null operations. The high level kernel never deals directly with
messages but only requests services from resources. Hint manipu-
lation typically involves memory management changes that makes
regions of address space available to other processors or physical
devices.

Although the kernel is well structured, the boundaries between
the layers in the kernel do not correspond to separate UNIX
processes [Clark 1985]. For example, the client, which is part of
the user’s thread of control, executes functions from all levels
including, in the case of the token ring, part of the network proto-
col. The efficiency of DUNE comes from this decoupling of
processes and levels within the kernel. In the case of the TCP/IP
protocol, performance is poor partly because the protocol is imple-
mented as a separate process and partly because of the multiple
layers in the protocol.

Using Hints in DUNE Remote Procedure Calls

53

54

3.1 The Hint

The service request is different from a traditional remote pro-
cedure call because it has implicit access to the entire address
space of the caller for both reading and writing. The hint reduces
this requirement to more manageable dimensions which can be
handled more efficiently. In practice, the entire address space of a
client is not needed at the resource. A small but predictable
region is sufficient, as long as unpredicted references can be
accommodated. The client uses the hint to define the regions of
data that it expects to be used by the resource. The access
method uses the hint to give these regions preferential treatment.

Placing responsibility for the hint with the client rather than
the server may appear nonintuitive. However, while complete
knowledge of the data the server will access only resides with the
server, by the time the server is activated, it is too late to optimize
any transport. Hence, it is necessary to provide the client with
some knowledge of what will occur at the server.

The hint can also add a degree of protection to a service
request. As an option, the caller can restrict resource accesses to
just the regions defined by the hint, thereby providing contain-
ment. This is possible since all server references to the client’s
data first pass through the hint mechanism to see if they have
been optimized. If the security feature is enabled, any references
not defined within the scope of the hint result in illegal access vio-
lations. In general, we have used this feature only for kernel-to-
kernel operations to minimize inadvertent data corruption during
testing of new features, and not for user processes.

3.2 Implementation of Service Requests

Permitting the lower level communications media to optimize cer-
tain data transfer operations justifies the added complexity to the
RPC mechanism. The hint mechanism provides enough addi-
tional information to make such optimization possible, while not
overly complicating the calling program. Since hints are optional,
optimization can be added at a later time.

The basic structure of the service request appears in the client
as:

Marc F. Pucci and J. L. Alberi

request (service, resource_link, arguments,
results, hint)

Service is the desired operation to be performed on the resource
identified by the resource_link. Arguments and results are the
explicit inbound and outbound parameters for the operation and
can be scalar or arbitrarily chained pointer references. Hint is a
structure describing the information about the regions of the
caller’s address space that are expected to be used by the service
request. For example, the hint for the process migration service
request describes the type (outbound user data), address (segment
origin) and size (segment length) for the text, data and stack
regions of the process.

The virtual addresses described in the request are re-
established in the server. Such information is crucial for the
proper handling of unexpected data references or operations where
complete semantics are unknown. Although it is possible to
translate the buffer address implied in a read request to a local
address appropriate to the server, it is not possible to remap flag
arguments or arguments that can function as flags or pointers
without knowing how these are to be used.

The service request is implemented on the client and server
processors as cooperating pairs of medium-specific functions,
which are summarized in Table 1. The behavior for each function
is dependent on the particular communications device (if any)
responsible for the connection. The prologue sets the stage for the
subsequent request. For example, in the backplane access method
described below, it is here that the memory management map-
pings of the buffers described by the hint will occur. If any data
are to be pre-sent, as in the token ring access method, this will
also occur here. The request transmits the actual message (if
necessary) for queueing the desired operation at the server respon-
sible for the resource.

During the actual use of client data at the server, a particular
datum may or may not have been described by the hint mechan-
ism. An expected datum reference will be satisfied on the server
processor without any intervention on the client’s processor. An
unexpected datum reference will result in a delay as the server
requests the datum from the client’s processor. The client, which

Using Hints in DUNE Remote Procedure Calls

55

56

Function At Client At Server

prologue act upon hint
act upon hint
request transmit request
await request, activate server
expected (not involved) access as though local
data request
unexpected request data from client
data request perform desired access
response transmit results

await results

epilogue tear down hint
tear down hint

Table 1: The structure of a service request.
Time increases in the downward direction.

is awaiting a response indicating it may proceed with its local exe-
cution, instead receives a request for access to its address space.

It performs the access, returns the datum, and awaits the comple-
tion response or an additional request for data. The access, which
is logically part of the service request, executes under the thread
of control of the user process.

Once the request has been satisfied, the epilogue tears down
the hint mechanisms established by the prologue. Any memory
management mappings are invalidated, and pre-sent data are
freed.

A further optimization occurs when the hint describes a small
amount of data. Rather than using the prologue and epilogue
functions for coordinating the data access, space for the data is
allocated within the message used for the request and response.
Currently, a hint composed of up to three defined regions and a
total of 96 bytes of data can be accommodated. Under these cir-
cumstances, a remote service request consists of simply a request
and a response message. The code used by the server to access
client data conceals whether the data are attained through the
message, the prologue/epilogue, or remote client access.

A 96 byte message buffer is chosen to accommodate most file
path names and small I/O requests on terminals, thereby

Marc F. Pucci and J. L. Alberi

eliminating extra IPC transmissions for many common system
calls. This value is also located close to the break-even point
between the costs of copying data into a message versus adjusting
memory management mappings to make the data available
directly. This can be noticed as the small discontinuity in the per-
formance chart for 96 byte backplane read operations shown in
Figure 3 (in §4, below).

3.3 Local Service Requests

We are extremely concerned with the performance of the IPC
mechanism in the degenerate case — when requests are satisfied on
the same processor. The studies in Bershad et al. [1989] show
that a large number of requests in a distributed system can be
directed at local resources. For the sake of uniformity, we require
that local operations continue to use the same IPC interface as
truly remote operations — we do not want to litter the client with
occurrences of:

if (local)
optimized code;
else
use IPC interface;

as such usage is clumsy and error prone. Neither can one use
early binding to convert general service requests to local function
calls at build time because resources can move dynamically
between processors, thereby altering the linkage between clients
and servers. Hence, if a process migrates to the processor contain-
ing a file it is using, future disk accesses should bypass any real
IPC operations.

Local calls are optimized in two ways: extra process switches
are avoided by borrowing the context of the client, and the use of
messages for a request is replaced by procedure calls. Since direct
access to resources is faster than using any form of IPC, the access
method functions dealing with hint manipulation are null pro-
cedures, and the request function calls the server function directly.
This is possible because the request mechanism is synchronous,
i.e., a requester suspends execution until the result is obtained.
Under these circumstances, it is possible to use the flow of control

Using Hints in DUNE Remote Procedure Calls

57

of the requesting process to satisfy its own service request, and
avoid two process switches between the client and a separate
server.

The timings for various levels of optimization, shown in Table
2, justify our concern for local access efficiency. Data were
obtained by constructing additional access methods with the
specified characteristics (e.g., queueing messages, fielding inter-
rupts, etc.) and measuring several thousand iterations of a simple
system service (seek). The first entry corresponds to complete
optimization — no messages are used and no context switches
occur. These measurements also include user-to-kernel system call
overhead.

Formatting, queueing, dequeueing and unformatting messages
(one for the request, one for the response) add 330 us. Most of
this time is spent in packaging the parameters that identify the
requester (user id, quotas, etc.).

The next entry includes the overhead of using separate server
processes (as would be necessary if requests were non-blocking).
Each process switch (client to server for request, server to client
for response) adds another 150 us.

Finally, if interrupts are used to deliver local messages, thereby
fully mimicking the remote style of IPC, latency for the two inter-
rupts involved adds another 330 us. This brings the local time in
close agreement with the communications cost of the shared
memory (backplane) medium shown in the last entry. The small
difference between the backplane time and that for the local case
with server and interrupts is attributed to two factors that almost
cancel each other: 1) There is greater expense in generating an
interprocessor interrupt than an internally generated programmed
interrupt; 2) Even though requests are synchronous, there is a

Condition Time (in us)
Local, fully optimized request 210
Above + formatting and queueing messages 540
Above + separate server process 840
Above + using interrupts for local delivery 1170
Remote backplane request 1200

Table 2: Round trip request times and the costs of layering

58 Marc F. Pucci and J. L. Alberi

small degree of parallelism as a request suspends on the local pro-
cessor while the service begins on the remote processor.

3.4 Backplane Service Requests

Although multiple processors connected through a backplane have
byte-random access to common memory, DUNE uses the back-
plane only as a communications device — processes do not share
data in an unconstrained manner across processor boundaries.
Backplane service requests can be optimized by taking advantage
of the memory management features of the processors, avoiding
any data copying. The private memory of a processor can be
dynamically mapped onto the address space of the backplane
where it can be accessed directly by other processors that share
the bus. Under these conditions, data movement is instantaneous
and error free.

Unlike local requests, messages are now necessary to package
and queue the requests and responses that cross processor boun-
daries. Backplane messages are allocated from a pool of memory
common to all of the processors. Actual message transmission
merely links the address of a message onto the receiver’s queue —
the message is not copied. The receiving processor is notified by a
mailbox interrupt that schedules a server to process the request.

The movement of any data associated with a request or
response is averted by the memory management mappings. The
hint mechanism provides the backplane access method with the
location and size of any data regions necessary for an operation.
The client’s prologue maps these regions onto the backplane’s phy-
sical address space, making them externally accessible, and
includes these mapped addresses in a part of the request message.
The server’s prologue uses both sets of addresses to alter the
server’s virtual address space. The address ranges described by
the client’s hint are re-established in the server but refer to the
backplane addresses that were set up by the client’s prologue.
Hence, the original client data are directly available to the server
at the same virtual addresses and as conventional program
references.

Using Hints in DUNE Remote Procedure Calls

59

60

3.5 Network Service Requests

Interprocess communication over a general network also uses the
service request to optimize data transfers. DUNE has two net-
works that support service requests, an Ethernet and an 80 mega-
bit token ring.

The protocol for the 80 megabit token ring is built into the
functions that make up its access method. Therefore the protocol
layer is distributed among the client process, the server process,
and the interrupt code. The hardware handles low level ack-
nowledgements and error detection. Because of the possibility of
data errors, the protocol protects against duplicate packets.
Higher level protocols, which apply to all access method, are con-
tained in the service request and in kernel functions residing
above the service request.

The TCP/IP protocol on the Ethernet is implemented in two
separate processes attached to the access method functions by spe-
cialized message queues. Therefore activation of this protocol
implies a context switch, which is costly even at the kernel level,
and the management of yet another set of message queues.

The service request model can reduce the number of messages
needed for an operation. Data small enough to fit in the request
are included in the message; data too large are sent to the server
before the request. This action implements the access method
hint for these two networks. Because the server that receives a
write request does not allocate buffer space for the data until it
begins processing, the pre-sent data are tagged and temporarily
sequestered by the kernel. The tag allows a server to retrieve the
information locally and avoid the expense of more messages over
the network. The data are retained on the server until the associ-
ated service request completes. Under heavy loads, the server
may have no space for the data contained in a hint. The hint is
then discarded, and the server must negotiate with the client via
the network to retransmit the data at the appropriate time.

Retransmitting hinted data that is uncachable in the server is
fundamentally different from returning to the client for unantici-
pated data. The prologue of the service request maps the hinted
data to be visible to the network interface. The direct memory
access feature built into both network interfaces allows efficient

Marc F. Pucci and J. L. Alberi

retransmission of the data. For the token ring, requeuing the
transmission of the hinted data occurs at the interrupt level
without interacting with the process that issued the original ser-
vice request. For TCP/IP on the Ethernet, retransmission of the
data requires some message passing and a context switch.

Within the architectural framework of the service request, the
network hint and shared memory hint are identical even though
they are operationally different. The shared memory hint is a
mapping function of the processors’ memory management units
while the network hint requires sending and receiving messages.
The local service request bypasses hints entirely. The hint
mechanism is generally broad enough to improve the efficiency of
almost any network.

4. Performance Analysis

The previous sections have described the IPC architecture for
DUNE. The following is a set of measurements under controlled
conditions that illustrate the system performance.

A test driver is installed in DUNE for demonstrating the
improvements to data transfer through optimized access methods.
The test device transfers an arbitrary amount of data, which are
not interpreted, between user space and a 1024-byte kernel buffer.
By eliminating all mechanical delays that arise from a real device
and by varying only the access methods over the tests, measure-
ments from the test device indicate the penalty imposed by each
different access method and its associated interconnect. Measure-
ments depicted in Figure 3 show the time to transfer a block of
data to or from the test device versus the amount of data
transferred. The abscissa is the number of bytes either read or
written, and the ordinate is the amount of time needed to make
the transfer. All measurements were taken on 68020 processor
modules running at 20 MHz.

Several features evident in Figure 3 are the result of the perfor-
mance improvements described above. The line labeled “Read
Local” shows the transfer time for reading through the local access
method. The write time in this case is not plotted as it is almost

Using Hints in DUNE Remote Procedure Calls

61

62

120

100 r
o
|

80
Time
msec.
60 Write Ethernet | -]
40] [Read Ethernet|
20
0
1 4 16 64 256 1024

Number of bytes transferred

16 /

14

1 #

10 |Write TR No Hinﬂ A
Time 7
msec. ¢ —'—l"/{//

Write TR

6 ——|Read TR|

4 Read BP

2 Read Local

0

1 4 16 64 256 1024

Number of bytes transferred

Figure 3: Transfer time as a function of data size for several
communication fabrics and optimization levels. The lower graph
illustrates (from bottom to top) reading from a local processor,
reading across a backplane, reading across a token ring, writing
across a token ring, and writing across a token ring with hints
disabled. The upper graph shows reading and writing across the
Ethernet using the TCP/IP protocol. Note the change in scale.

identical. The read time for one byte is 0.51 ms, and the time
increases linearly thereafter at the rate of 0.38 us/byte.

The penalty for having a remote server is illustrated in the plot
labeled “Read BP.” Because the read and write times are similar,
only the read time is shown. The single byte transfer time is 1.6

Marc F. Pucci and J. L. Alberi

ms. There is a step increase in transfer time at 96 bytes when the
data can no longer piggyback on the service request message. The
increased processing adds 0.5 ms to the transfer time at this point.

The two plots labeled “Read TR” and “Write TR illustrate
data transfer via the token ring. The basic 4.2 ms read or write
time for a single byte of data reflects the network protocol process-
ing and latency. The increased processing and message time is
also evident when the data size reaches 96 bytes, but the equality
of the read and write times at this point illustrates the lack of
extra messages to fetch the data on writes. The subsequent diver-
gence of read and write times arises when the server copies the
pre-sent data to its final destination under program control. The
divergence continues smoothly until the discontinuities at 1024
and 2048 bytes where multiple data messages are sent.

The physical characteristics of the network determine the need
for multiple data messages for large data transfers. Because code
for the network transport protocol resides in the access method,
networks that accommodate arbitrarily large packets size will not
cause these discontinuities. The backplane does not exhibit these
discontinuities because data transfer is via memory management
hardware on the individual processors.

The plot labeled “Write TR No Hint” demonstrates the effect
of the hint contained in the access method. Each discontinuity is
larger, which reflects the extra message traffic necessary to fetch
the data across the network.

The two plots labeled “Read Ethernet” and “Write Ethernet”
have features similar to those of the token ring except for the
degraded performance. A single byte of data is written or read in
31 ms, and the break in the data at 96 bytes transferred is also evi-
dent. There are also the same discontinuities at 1024 and 2048
bytes, indicating transmission of multiple messages. The minor
structure between these discontinuities arises from the fragmenta-
tion of messages and data into IP packets within the TCP/IP
protocol.

Service requests over the Ethernet are measured to be approxi-
mately seven times slower than those over the token ring. We
attribute this to several factors, including the complexity of the
functionality in the general purpose protocol and the additional
processes used in its implementation. Additionally, the

Using Hints in DUNE Remote Procedure Calls

63

64

inflexibility of the hardware device interface used in our current
configuration compounds the performance problem. We have
found results similar to those reported in Johnston & Campbell
[1989] where the network interface can be excessively slow.

In our present implementation, message size and the point at
which data are sent in a separate message are system wide con-
stants. These values should perhaps depend on the individual
access method invoked. The value that is best for the backplane
access method might not be appropriate for other methods. The
use of varying sized message buffers needs to be examined more
closely.

5. Relationship to Other Work

The service-request paradigm is an extension of the semantics of
the remote procedure call mechanism. The changes we have
made address our needs to adapt to different underlying intercon-
nects and handle complex operations. We have found it particu-
larly useful to move information between client and server in an
unstructured fashion. Supporting complex operations improves
performance by reducing the number of interactions across the
network that are required for a high-level user request.

While many systems have used RPC-like mechanisms for inter-
process communications, Accent [Fitzgerald & Rashid 1986],
Mach [Accetta et al. 1986], the V kernel [Cheriton 1984], and the
x-kernel [Hutchinson et al. 1989] have features comparable to
ours. Both Mach and Accent use features of the processor’s
memory management hardware in uniprocessor and multiproces-
sor systems to pass messages and to avoid the overhead of copying
data between processes. The access method for backplane inter-
connections works in much the same way. Connections for
transferring data are made by mapping areas of memory between
processes. Partial and random access may then be made to the
data. The V kernel, which is a network based system, can attach
data to a request message although it is not clear to us that its
protocol-driven mechanism can accommodate unforeseen data
transfers.

Marc F. Pucci and J. L. Alberi

Mach, Accent and V are all message-based systems, using
explicit send and receive primitives for communication. While
DUNE uses messages within some access methods, they are neither
evident to higher levels nor a part of the structure of the system.
Significant performance improvements are possible with local
operations when the formatting and queueing of messages is
avoided.

The access method for the local-area networks can both pre-
send data and transfer any unforeseen items in the client process’s
address space. Mach’s network servers, implemented as user
processes, perform interprocess communication over the network.
They correspond closely to the Ethernet access method and,
although general and flexible, may suffer from non-optimal perfor-
mance due to the extra layering and context switches. The
Ethernet-based RPC described in Birrell & Nelson [1984] also
bypasses the standard layers for a local network, but uses the pro-
tocol hierarchy for internetworking.

The x-kernel is designed to aid the construction of network
protocols. As such it is not oriented towards general purpose
computing like DUNE is. While not specifically oriented to RPC,
it is like DUNE in supporting a common interface to all its proto-
cols and run-time switching among protocols as a function of the
interconnection. Protocols are stackable, and decomposable so
that RPC can be built on a series of primitive layers. Unlike
DUNE, however, both the sending and receiving protocol stack is
encapsulated in a shepherding process. In DUNE parts of access
methods execute at both process and interrupt levels, thereby sav-
ing the time to dispatch a process.

We have extracted features from the above systems and encap-
sulated them into extensible access methods that keep the details
of the communication network hidden from the upper layers of
the system, while providing increased efficiency.

6. Conclusions

This paper describes the service request, which encourages specific
optimizations for particular devices while providing a simple and
consistent interface to the higher level kernel functions. This

Using Hints in DUNE Remote Procedure Calls

65

mechanism is adaptable to nonconventional forms of media; it
handles the degenerate case of local communications as well as
incorporating shared memory backplane accesses into the com-
munications model.

The networks supported by DUNE give some insight into the
service request architecture as well as the implications of using
special and general purpose protocols. The access method for
each communications fabric is implemented differently even
though functionally they are essentially the same.

The null access method for local service requests preserves the
uniformity of the architecture while not compromising the
efficiency of the system. This has proven to be quite useful, espe-
cially when the automatic load balancing features of DUNE
dynamically rebind remote connections into local ones. The back-
plane access method demonstrates the flexibility of the service
request architecture by efliciently treating a nontraditional inter-
connect as a communications network. The protocol for the 80
megabit token ring gains efficiency by eliminating additional
processes and collapsing layers within the system. In contrast, the
use of a layered protocol for the Ethernet permits it to function on
long haul networks but at the cost of decreased performance.

We conclude from our experiences with networks and proto-
cols that coalescing layers and moving end-to-end functionality to
a high level directly improve system performance. DUNE demon-
strates that a distributed operating system based on these princi-
ples can run efficiently on both multiprocessor and distributed
hardware by including device specific optimizations for disparate
networks.

66 Marc F. Pucci and J. L. Alberi

References

M. J. Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian and Micheal Young, “Mach: A New
Kernel Foundation For UNIX Development,” Proceedings of the
Summer USENIX Conference, pages 93-112, July 1986.

J. L. Alberi and M. F. Pucci, “The DUNE distributed operating system,”
Proceedings of the First Using National Conference, Denver, CO,
September 1988. Also available as a Bellcore Technical Report,
1987.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and
Henry M. Levy, “Lightweight Remote Procedure Call,” Operating
Systems Review, (23)5:102-113, December 1989.

A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, (2)1:39-59, February
1984,

D. R. Cheriton, “The V Kernel: A Software Base for Distributed Sys-
tems,” IEEE Software, 1(1):19-42, April 1984.

D. D. Clark, “The structuring of systems using upcalls,” Operating Sys-
tems Review, (19)5:171-180, December 1985.

[DOD] “DOD standard transmission control protocol,” RFC-761, Infor-
mation Sciences Institute, Marina del Rey, CA, January 1980.

R. Fitzgerald and R. Rashid, “The integration of virtual memory
management and interprocess communication in Accent,” 4CM
Transactions on Computer Systems, (4)2:147-177, May 1986.

David K. Gifford and Nathan Glasser, “Remote Pipes and Procedures
for Efficient Distributed Communication,” ACM Transactions on
Computer Systems, (6)3:258-283, August 1988.

Norman C. Hutchinson, Larry L. Peterson, Mark B. Abbott and Sean
O’Malley, “RPC in the x-Kernel: Evaluating New Design Tech-
niques,” Operating Systems Review, (23)5:91-101, December 1989.

[ISO] “Transport Protocol Specification,” ISO/TC 97/SC 16, N 1169, Inter-
national Organization for Standardization, June 1982.

G. M. Johnston and R. H. Campbell, “An object-oriented implemen-
tation of distributed virtual memory,” Proceedings of the First
Workshop on Distributed and Multiprocessor Systems, Fort
Lauderdale, FL, pages 39-57, October 1989.

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, and G. Thiel,
“LOCUS: A network transparent, high reliability distributed

Using Hints in DUNE Remote Procedure Calls

67

68

system,” Proceedings of the Eighth Symposium on Operating Sys-
tems Principles, pages 160-168, December 1981.

M. F. Pucci and J. L. Alberi, “Optimized communication in an extended
remote procedure call model,” Computer Architecture News, pages
37-44, September 1988. Also available as a Bellcore Technical
Report, 1987.

D. Ritchie and K. Thompson, “The UNIX timesharing system,” Bell Sys-
tem Technical Journal, (57)6 part 2, pages 1905-1930, July-August
1978.

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design” Proceedings of the Second International Conference
on Distributed Computing Systems, pages 509-512, April 1981.

A. Z. Spector, “Performing remote operations efficiently on a local com-
puter network,” Communications of the ACM, (25)4:246-260, April
1982.

Marc F. Pucci and J. L. Alberi

