
expect: Scripts for Controlling
Interactive Processes

Don Libes National Institute of Standards

and Technology

ABSTRACT Contemporary shells provide minimal
control (starting, stopping, etc) over programs, leaving
interaction up to users. This means that you cannot run
some programs non-interactively, such as passwd.
Some programs can be run non-interactively but only
with a loss of flexibility, such as fsck. This is where
the tool-building philosophy of UNIX begins to break
down. expect crosses this line, solving a number of
long-standing problems in the UNIX environment.

expect uses Tcl as a language core. In addition, expect
can use any UNIX program whether or not it is
interactive. The result is a classic example of a little
language synergistically generating large power when
combined with the rest of the UNIX workbench.

Previous papers have described the implementation
of expect and compared it to other tools. This paper
concentrates on the language, primarily by presenting
a variety of scripts. Several scripts demonstrate
brand-new features of expect.

@ Computing Systems, Vol. 4 ' No. 2 ' Spring 1991 99

I. Introduction

fsck, the UNIX file system check program, can be run from a shell
script only with the -y or -n options. The manual [fsck 1989]

defines the -y option as follows:

'Assume a yes response to all questions asked by fsck; this should be
usedwith extreme caution, as it is afree license to continue, even
after severe problems are encountered."

The -n option is safer, but almost uselessly so. This kind of interface
is inexcusably bad, yet many programs have the same style. ftp, a file
transfer program, has an option that disables interactive prompting so

that it can be run from a script. But it provides no way to take alterna-
tive action should an error occur.

expect is a tool for controlling interactive programs. It solves the
fsck problem, providing all the interactive functionality non-interac-
tively. expect is not specifically designed for fsck, and can handle

ftp's errors as well.
The problems with fsck and ftp illustrate a major limitation in the

user interface offered by shells such as sh, csh, and others (which will
generically be referred to as the shell in the rest of the paper). The

shell does not provide a way of reading output and writing input from
a program. This means the shell can run fsck but only by missing out

on some of its useful features. Some programs cannot be run at all.
For example, passwd cannot be run without a user interactively sup-

plying the input. Similar programs that cannot be automated in a shell

script are telnet, crypt, su, rlogin, etc. A large number of application
programs are written with the same fault of demanding user input.

* For readability, times roman bold is used for display of file or program names,
helvetica for keyword or other language elements, and courier for literal strings or
code fragments.

100 Don Libes

expect was designed specifically to interact with interactive pro-
grams. An expect programmer can write a script describing the

dialogue. Then the expect program can run the "interactive" program

non-interactively. Writing scripts for interactive programs is as simple

as writing scripts for non-interactive programs. expect can also be

used to automate parts of a dialogue, since control can be passed from
the script to the keyboard and vice versa.

2. A Brief Overview of expect

The implementation and philosophy of expect is described at length by
Libes [19904]. Briefly, scripts are written in an interpreted language.
(A library is available for C and C+ + programmers but it will not be

further discussed in this paper.) Commands are provided to create in-
teractive processes and to read and write their output and input. ex-
pect is named after the specific command which waits for ouþut from
a program.

The language of expect is based on Tcl. Tcl is actually a subrou-

tine library, which becomes embedded into an application and provides
language services. The resulting language looks very much like a typi-
cal shell language. There are commands to set variables (set), control
flow (if, for, continue, etc), and perform the usual rnath and string op-
erations. Of course, UNIX programs can be called (exec). All of these

facilities are available to any Tcl application. Tcl is completd de-

scribed by Ousterhout [1990A, 19908].
expect is built on top of Tcl and provides additional commands.

The spawn command invokes a UNIX program for interactive use.

send sends strings to a process. expect waits for strings from a pro-
cess. expect supports regular expressions and can wait for multiple
strings at the same time, executing a different action for each string.
expect also understands exceptional conditions such as timeout and

end-of-fiIe.
The expect command is styled after Tcl's case command which

matches a string against a number of other strings. (V/henever possi-

ble, new commands were modeled after existing Tcl commands so that
the language remained a coherent set of tools.) The following
definition of expect is paraphrased from the manual page [Libes, to be

publishedl:

expect: Scripts for Controlling Interactive Processes 101

expeOt patlistl øctionl pailist2 action2 . . .

waits until one of the patterns matches the output of the current
process, a specified time period has passed, or an end-of-file is
found. If the frnal action is null, it may be omitted.

Each patlisr consists of a single pattern or list of patterns. If a

pattern is matched, the corresponding action is executed. The re-
sult of the action is returned from expect. The exact string
matched (or read but unmatched, if a timeout occurred) is stored
in the variable expeclmatch.If patlisr is eof or timeout, the
corresponding action is executed upon end-of-file or timeout, re-
spectively. The default timeout period is 10 seconds but may, for
example, be set to 30 by the command set tirneout 30.

The following fragment is from a script that involves a login.
abort is a procedure defined elsewhere in the script, while the
other actions use Tcl primitives similar to their C namesakes.

expect "*welcome*" break \
"*busy*" {print busy; continue} \
"*failed*" abort \
timeout abort

Patterns are the usual C-shell-style regular expressions. Patterns
must match the entire output of the current process since the pre-
vious expect or interact (hence the reason most are surrounded
by the * wildcard). However, more than 2000 bytes of output
can force earlier bytes to be "forgotten". This may be changed
by setting the variable match-max.

expect actually demonstrates the best and worst of expect. In par-
ticular, its flexibility comes at the price of an occasionally confusing
syntax. The pattern-lists can contain multiple patterns except for key-
word patterns (e.g., eof, timeout) which must appear by themselves.
This provides a guaranteed way of distinguishing them. However,
breaking up the lists requires a second scan, which can interpret \r
and \n as whitespace if not correctly quoted. This is exacerbated by
Tcl providing two forms of string quoting: braces and double quotes.
(If unambiguous, Tcl does not require strings to be quoted at all.)
There is a separate section in the expect manual page to explain this
complexity. Fortunately, a healthy set of examples seems to have held
back complaints. Nonetheless, this aspect will probably be revisited in

102 Don Libes

a future release. For readability in this paper, scripts are presented as

if double quotes sufficed.
Characters can be individually quoted with a backslash. Back-

slashes are also used to continue statements, which otherwise are ter-
minated at the end of a line. This is inherent to Tcl. Tcl also continues

scanning when there is an open brace or double-quote. In addition,
semicolons can be used to separate multiple statements on a single

line. This sounds confusing, but is typical of interpreters (e.g.,

/b¡dsh). Nonetheless, it is one of the less elegant aspects of Tcl.

3. callback

It is surprising how little scripting is necessary to produce something

useful. Below is a script that dials a phone. It is used to reverse the

charges so that long-distance phone calls are charged to the computer.

It is invoked as expect callback. exp L2oL64423gz where the

script is named callback.exp and + 1 (201) 644-2332 is the phone

number to be dialed.

first give the user sone time to logout
exec sleep 4
spawn tip modem
expect rt*connected* rl

send "ATDlindex $argv 1l\r"
nodern takes a while to connect
set tineout 60
expect n *CONNECT* rr

The first line is a comment. The second illustrates how a UNIX
command with no interaction can be called. sleep ¿ will cause the
program to block for four seconds, giving the user a chance to logout
since the modem will presumably call back to the same phone number

that the user is already using.
The next line starts tip using spawn so that tip's output can be

read by expect and its input written by send. Once tip says it is con-
nected, the modem is told to dial the number. (The modem is assumed

to be Hayes compatible, but it is easy to expand the script to handle

others.) No matter what happens, expect terminates. If the call fails, it
is possible for expect to retry, but that is not the point here. If the call
succeeds, getty will detect DTR on the line after expect exits, and

expect: Scripts for Controlling Interactive Processes 103

prompt the user with login: . (Actual scripts usually do more error
checking.)

This script illustrates the use of command-line parameters, made
available to the script as a list named argv (in the same style as the C
language). In this case, element I is the phone number. The brackets
cause the enclosed text to be evaluated as a command, and the result is
substituted for the original text. This is similar to the way backquotes
work in csh.

This script replaced a 60K program (written in C) that did the
same thing.

4. passwd & Conformance Testing

Earlier, passwd was mentioned as a program that cannot be run wiih-
out user interaction. passwd ignores I/O redirection and cannot be em-
bedded in a pipeline so that input comes from another program or file.
It insists on performing all I/O directly with a real user. passwd was
designed this way for security reasons, but the result is that there is no
way to test passwd non-interactively. It is ironic that a program so
critical to system security has no way of being reliably tested.

passwd takes a username as an argument, and interactively
prompts for a password. The following expect script takes a username
and password as arguments, and can be run non-interactively:

spawn passwd [index $argv 1l
set password lindex gargr.' 2]
expect tt*passtvord: It

send "$password\rn
expect ttxpassword:rl
send "$password\r"
expect eof

The first line starts the passwd program, with the username passed as

an argument. The next line saves the password in a variable for conve-
nience. Like the shell, variables do not have to be declared in advance.

In the third line, expect looks for the pattern password: . The
asterisk allows it to match other data in the input, and is a useful
shortcut to avoid specifying everything in detail. There is no action
specified, so expect just waits until the pattern is found before
continuing.

lO4 Don Libes

After receiving the prompt, the next line sends a password to the

current process. The \r indicates a carriage-return. (All the "usual" C

conventions are supported.) There are two expect-send sequences

because passwd asks the password to be typed twice as a spelling

verification. There is no point to this in a non-interactive passwd, but

the script has to do this because passwd assumes it is interacting with
a human that does not type consistently.

Lastly, the line expect eof searches for the end-of-file in the out-

put of passwd and demonstrates the use of keyword patterns. Another
such pattern is timeout, used to denote the failure of any pattern to

match in a given amount of time. Here, eof is necessary only because

passwd is carefully written to check that all of its I/O succeeds, in-
cluding the final newline produced after the password has been entered

a second time.
This script is sufficient to show the basic interaction of the passwd

command. A more complete script would verify other behaviors. For

example, the following script checks several other aspects of the

passwd program. Complete prompts are checked. Correct handling of
garbage input is checked. Process death, unusally slow response, or

any other unexpected behavior is also trapped.

spawn passwd lindex $argv 1]
expect eof

tineout
tt*No such user. *rl

'r*New password: tt

send " [index $argv 2] \ru
expect eof

tineout
"*Password too long*"
rr*Pass[¡ord too short*"
"*Retype new Password: "

send " [index $argv 3] \r'l
expect timeout

tt *Mismatch*tt
" *Password trnchanged* Ì "
't \¡\¡tt

expect timeout
r*ll

eof

{exit
{ exit
{exit

{exit
{ exit

{exit
{ exit
{ exit

{exit 4

{exit 2

{exit 5

{exit 5

1)
2l
3)

2\
6)
7|

2\
6Ì

expect: Scripts for Controlling Interactive Processes 105

This script exits with a numeric indication of what happened. 0 in-
dicates passwd ran normally, I that it died unexpected, 2 that it
locked up, and so on. Numbers are used for simplicity-expect could
just as easily pass back strings, including any messages from the
spawned program itself. Indeed, it is typical to save the entire interac-
tion to a file, deleting it only if the command under test behaves as ex-

pected. Otherwise the log is available for further examination.
This passwd testing script is designed to be driven by another

script. This second script reads a ûle or arguments and expected re-
sults. For each set, it calls the first script and then compares the re-
sults to the expected results. (Since this task is non-interactive, a plain
old shell can be used to interpret this second script.) For example, a
data file for passwd could look like this:

passwd. exp 3
passwd. exp 0
passwd. exp 5
passwd. exp 5
passwd. exp 6
passwd. exp 4

bogus
fred abledabl abledabl
fred abcdefghijklm
fred abc
fred foobar bar
fred "C

The first field names the regression script to be run. The second

field is the exit value that should match the result of the script. The
third field is the username. The fourth and fifth fields are the pass-

words to be entered when prompted. The hyphen is just a placeholder
for values that will never be read. In the first test, bogus is a user-
name that is invalid, to which passwd will respond No such user. ex-
pect will exit the script with a value of 3, which also appears as the
second element in the first line of the regression suite data file. In the
last test, a control-C is actually sent to the program to verify that it
aborts gracefully.

In this way, expect can be used for testing and debugging interac-
tive software, such as required by IEEE POSX 1003.2 (Shells and

Tools) conformance testing. This is described in more detail in Libes

[to appear].

5. rogue & Pseudo:Terminals

UNIX users are familiar with processes connected to other processes

by pipes (e.9. a shell pipeline). expect uses ptys (pseudo-terminals) to

106 Don Libes

connect spawned processes. Ptys provide terminal semantics so that
programs think they are performing I/O with a real terminal.

As an example, the BSD adventure game rogue runs in raw mode,

and assumes a character-addressable terminal exists at the other end

of the connection. expect can actually be programmed to play rogue

using the human interface that comes with it.
rogue is an adventure game which presents you with a player that

has various physical attributes such as a strength rating. Most of the

time, the strength is 16, but every so often-maybe one out of 20

games-you get an unusually good strength of 18. A lot of rogue
players know this, but no one in their right mind restarts the game 20

times to find those really good configurations. The following script
does it for you.

for{}{r}{}{
spawn rogue
expect ttxstr: 18x" break \

tt*StI' : 161. t'

close
wait

Ì
interact

The first line is a for loop, with the same control arguments as in C.

rogue is started, and then the strength checked to see if it is 18 or 16.

If it is 16, the dialogue is terminated via close and wait (which re-
spectively closes the connection to the pty and waits for the process to
exit). rogue reads an end-of-file and goes away, after which the loop
is restarted, creating a new game of rogue to test.

When a strength of 18 is found, control breaks out of the loop and

drops down to the last line of the script. interact passes control to the

user so that they can play this particular game.

Imagine running this script. What you will actually see is 20 or
30 initial configurations fly across your screen in less than a second,

finally stopping with a great game for you to play. The only way to
play rogue better is under the debugger!

It is important to realize that rogue is a graphics program which
uses Curses. expect programmers must understand that Curses does

not necessarily create screens in an intuitive manner. Forfunately, it is
not a problem in this example. A future enhancement to expect may

expect: Scripts for Controlling Interactive Processes 107

include a built-in terminal emulator in order to support the understand-
ing of character graphics regions.

6. ftp
The first script actually written with expect did not print out hello
world. Instead, it did something much more useful. It ran ftp without
user interaction. ftp is a program which performs file transfer over
TCP/IP networks such as the Internet. The ubiquitous implementation
requires the user to provide input for all but the most simple uses.

The script below retrieves a file from a host using anonymous ftp.
The hostname is the first argument to the script. The filename is the
second argument.

spawn ftp lindex $argv 1]
expect rr *Nanne* rr

send "anon¡rmous\r"
expect rr*Password: *tl
send [exec whoami]
exPect 'r

*ok*f tp>* "
send "get [index $argv 2] \r"
exPect rr*ftp>*rr

Dedicated programs have been written to perform background ftp.
While they use the same underþing mechanisms as expect, their pro-
grammability leaves much to be desired. Since expect provides a high-
level language, you can customize it to your needs. For example, you
can add:

. persistence-if the connection or transfer fails, you can retry
every minute, hour, or even aperiodic intervals that depend on
other factors such as user load.

. notification-you can be notified upon transmission via mail,
write or any other mechanism of your choice. You can even be
notified of failure.

. initialization-each user can have their own initialization file
(e.g., .ftprc) in a high-level language for further customization,
much like csh uses .cshrc.

expect could do many more sophisticated things. For example, it
could use McGill University's Archie system. Archie is an anonymous

108 Don Libes

telnet service that provides access to a database describing the con-
tents of the entire Internet's anonymous ftp repositories. Using this, a

script could ask Archie where a file is, and then download it to your
system. This requires only a few more lines at the beginning of the ftp
script above.

No known background-ftp programs provide even one of the fea-

tures mentioned above, no less all of them. In expect, the implemen-
tation is trivial. Persistence requires a loop in the expect script.
Notification is an exec of mail or write. An initialization file can be

read with one command (source . f tprc does just the right thing)
and can use any expect command.

Although these features can be added by hooks into existing pro-
grams, there is still no guarantee that everyone's needs will have been

met. The only way to have such confidence is to provide a general-
purpose language. A good solution would be to integrate Tcl, itself,
directly into ftp and other applications. Indeed, that was the original
intent of Tcl's design. Until this is done, expect provides much of the
benefit of Tcl to many applications without any rewriting at all.

7. fsck

fsck is yet another example of a program with an inadequate user in-
terface. fsck provides almost no way of answering questions in ad-

vance. About all you can say is "answer everything yes" or "answer

everything no".
The following fragment shows how a script can automatically an-

swer some questions "yes", and the rest "no". The script begins by
spawning fsck, and then answering "yes" to two types of questions,

and "no" to everything else.

for{}{1}{}{
expect \

eof break \
::iHffi''å;,'T;:ïP' " 1::* ::íì:,:T ì
u * ? tt

{ send "n\rtr }

Ì

In the next version, the two questions are answered differently.

expect: Scripts for Controlling Interactive Processes 109

Also, if the script sees something it doesn't understand, it executes the
interact command which passes control back to the user. The user
keystrokes go directly to fsck. When done, the user can exit or return
control to the script, here triggered by pressing the plus key. If con-
trol is returned to the script, it continues automated processing where
it left off.

for{}{1}{}{
expect \

eof
N *UNREF FILE*CLEAR? ''
'I
*BAD INODE*FIX? ''

ll rß? ll

break \
send tty\rtt) \
send ttn\rttÌ \
interact +)

Ì

Without expect, fsck can be run non-interactively only with very re-
duced functionality. It is barely programmable and yet it is the most
critical of system administration tools. Many other tools have similarþ
deficient user interfaces. In fact, the large number of these is precisely
what inspired the original development of expect.

8. Controlling Multiple Processes: Job
Control

expect's concept of job control finesses some of the usual implemen-
tation difficulties. Two issues are involved: The first is how expect
handles classic job control, such as occurs when you press ^Z at the
terminal. The second is how expect handles multiple processes.

The answer to the first issue is: Ignore it. expect doesn't under-
stand anything about classic job control. For example, if you spawn a
program and then send it a'.nZ, it will stop (courtesy of the pty driver)
and expect will wait forever.

In practice, however, this is not a problem. There is no reason for
an expect script to ever send anZto a process. It doesn't haveto stop
a process, per se. expect simply ignores a process, and turns its atten-
tion elsewhere. This is expect's idea of job control and it works quite
well.

110 Don Libes

The user view of this is as follows: When a process is started by
spawn, the variable spawn-id is set to a descriptor referring to that
process. The process described by spawn-id is considered the current
process. (This descriptor is exactly the pty file descriptor, although the
user treats it as an opaque object.) expect and send interact only with
the current process. Thus, to switch jobs all that is necessary is to as-
sign the descriptor of another process to the variable spawn-id.

Here is an example showing how job control can be used to have
two chess processes interact. After spawning them, one process is told
to move first. In a loop, a move is sent from one process to the other,
and vice versa. The read-move and send-move procedures are left as

an exercise for the reader. (They are actually very easy to write, but
too long to include here.)

spawn chess ;f start player one
set id1 $spawn--id
expect "Chess\r\n"
send "first\r" ;# force it to first
read:nove
spawn chess ; # statl" player two
set id2 $spawn-id
expect "Chess\r\n"

for{ } {r} { } {
send-move
read-move
set spawn-id $idl

senLmove
reaùmove
set spawn-id $idz

)

Some applications are not like a chess game where players alternate
moves in lock step. The following script implements a spoofer. It will
control a terminal so that a user will be able to log in and work nor-
mally. However, whenever the system prompts for either password or
login, expect begins recording keystrokes until the user presses re-
turn. This effectively collects just the logins and passwords of a user
without the usual spoofer problem of seeing rncorrect password-

Øcpect: Scripts for Controlling Interactive Processes 1 I I

try again. Plus, if the user connects to another host, those additional
logins will be recorded also!*

spawn tip /dev/tty77 ;# open connection to
set tty $spawn-id ;# tLy to be spoofed

spawn login ;/ open connection to
set login $spawn-id ; # Iogin process

log-user 0

for{}{r}{}{
set ready [select $tty $login]
case $Iogin in $ready {

set spawn--id $Iogin
expect {"*password*" uxloginx"}

{
senLuser $expeet--:natch
set log 1

Ì ,*, ;# ignore everything else
set spawn-id $tty; send $expect-¡natch

Ì
case $tty in $ready {

set spawn-id $tty
exPect u*\r*t'{

if $Ioe {
send-user $expect--rnateh
set 1og 0

Ì
Ì

il*il

if $roe {
send-user $expect:natch

Ì
set spawn-id $login; send $expect--rnatch

Ì
Ì

The script works as follows. First connections are made to a login
process and terminal. By default, an entire session is logged to the
standard output (via send-user). Since this is not of interest, it is dis-
abled by the command log-user 0. (A variety of commands are

available to control exactly what is seen or logged.)

* The usual defense against a spoofer is to disallow write access so that the spoofer cannot
open public terminals to begin with.

ll2 Don Libes

In a loop, select. waits for activity from either the terminal or the
process and returns a list of spawn-ids with pending input. case exe-
cutes an action if a value is found in a list. For example, if the string
login appears in the output of the login process, the prompt is logged
to the standard output and a flag is set so that the script will begin
recording the user's keystrokes until a return is pressed. Whatever was

received is echoed to the terminal. A corresponding action occurs in
the terminal half of the script.

These examples have demonstrated expect's form of job control.
By interposing itself in a dialogue, expect can build arbitrarily com-
plex I/O flow between processes. Multiple fan-out, multiplexed fan-in,
and dynamically data-dependent process graphs are all possible.

In contrast, the shell makes it extraordinarily difficult just to read
through a file one line at a time. The shell forces the user to press

control characters ("2, "C) and keywords (fg, bg) to switch jobs.

These cannot be used from shell scripts. Similarly, the shell running
non-interactively does not deal with history and other features de-
signed solely for interactive use. This presents a similar problem as

with passwd earlier. Namely, that it is impossible to build shell scripts
which regressively test certain shell behavior. The result is that these

aspects of the shell will inevitably not be rigorously tested.

Using expect, it is possible to drive the shell using its interactive
job control features. A spawned shell thinks it is running interactively,
and will handle job control as usual. Not only does it solve the prob-
lem of testing shells and other programs that handle job control, but it
also enables the shell to handle the job for expect when necessary.

Processes to be manþlated with shell-style job control can be backed
with a shell. This means that first a shell is spawned, and then a com-
mand is sent to the shell to start the process. If the process is sus-

pended by, for example, sending anZ, the process stops and control
returns to the shell. As far as expect is concerned, it is still dealing
with the same process (the original shell).

Not only is expect's approach flexible, it also avoids duplicating
the job control software that is already in the shell. By using the shell,
you get the job control of your choice since you can pick the shell to

* select calls poll0 on USG systems and, in retrospect, should have been called something
less biased and more meaningful.

expect: Scripts for Controlling Interactive Processes I 13

spawn. And should you need to (such as when testing), you really can

drive a shell so that it thinks it is running interactively. This is also

useful for programs that change the way they buffer output after detect-

ing whether they are running interactively or not.
To further pin things down, during interact, expect puts the con-

trolling terminal (the one expect was invoked from, not the pty) into
raw mode so that all characters pass to the spawned process verbatim.
When expect is not executing interact, the terminal is in cooked
mode, at which time shell job control can be used on expect itself.

9. Using expect Interactively

Earlier were shown scripts that are used interactively with interact.
interact essentially gives a user free access to the dialogue, but some-
times finer control is desired. This can be achieved using expect
which can read from the standard input just as easily as it reads from
a process. A predefined spawn-id maps to the standard input and

the standard output. Alternatively, the commands expecluser and

send-user perform I/O with the standard input and the standard out-
put without changing spawn-id.

The following script reads a line from the standard input for a
given amount of time. This script (named timed-read) can be called
from, for example, a csh script as set answer :'timed--read 30'.

#l /usr /local/bin/expect -f
set tineout [index $argv 1l
expect-user "*\n"
send-user $expect--rnatch

The third line accepts any newline-terminated line from the user. The
last line returns it to the standard ouþut. If nothing is typed before the
timeout, nothing is returned.

The first line allows systems that support the #t, magic to invoke
the script directly (without saying expect before the script name) if
its execute permission is set. Of course a script can always be invoked
explicitly, as "expect script". Options preceded by a -c flag are

executed as commands before any in the script. For example, an ex-
pect script can be traced without reediting by invoking it as expect

ll4 Don Libes

-c Ittrace
tion).

" script (where the ellipsis represents a tracing op-

Multiple commands may be strung together on a single script line
or within braces, separated by semi-colons. Naturally, this extends to
the -c argument. For example, the following command runs program
foo for 20 seconds.

expect -c "set timeout 2O; spawn foo; expect"

Once the timeout is set and the program is spawned, expect waits for
either an end-of-file or the 20 seconds to pass. If the end-of-file is
seen, the program has (almost certainly) exited, and expect returns. If
the timeout has passed, expect returns. In either case expect exits,
implicitly killing the current process.

It is educational to try and solve these last two examples without
using expect. In both cases, the usual approach is to fork a second
process that sleeps and then signals the original shell. If the process or
read finishes first, the shell kills the sleeper. Passing pids and prevent-
ing the background process start message is a stumbling block for all
but the most expert shell programmers. Providing a general approach
to starting multiple processes this way complicates the shell script im-
mensely. Invariably, the programmer writes a special-purpose C pro-
gram.

expecluser, send-user, and send-error (for writing to the stan-
dard error) are frequently used in longer expect scripts which translate
a complex interaction from a process to a simple one for the user.
Libes [1990B] describes how adb could be securely wrapped with a
script, preventing a system administrator from needing to master the
intricacies of adb, which at the same time dramatically lessening the
likelihood of a system crash due to an errant keystroke.

A simpler example is automating ftp to retrieve files from a per-
sonal account. In this case, a password must be supplied. Storing the
cleartext password in a file should be avoided even if the file permis-
sions are heavily restricted. Supplying passwords as arguments to a
script is also a security risk due to the ability of ps to retrieve them.
A solution is to call expecluser at the beginning of the script for
each password that the script must supply later. The password will be
available to the script (and only to the script), even if it has to retry
ftp every hour.

øepect: Scripts for Contolling Interacrtve Processes I 15

This technique is useful even if the information is to be entered
immediately. For example, you can write a script which changes your
password on every machine on which you have an account, whether or
not the machines share a common password database (or even run
UNIX). By hand, you might have to telnet to each machine and then
enter the new password. With expect, you enter the password once

and let the script do the rest of the work.
expecluser and interact can also be mixed in a single script.

Imagine debugging a program that only fails after many iterations of a
loop. An expect script could drive the debugger, setting breakpoints,
running the program for the appropriate number of loops, and then re-
turning control to the keyboard. It could also alternate between loop-
ing and testing for a condition, before returning control.

10. Programming ucpect Interactively

expect may be programmed interactively. For example, if expect is
run with no arguments, it prompts for commands. This is similar to
what one normally does when interactively using a shell. This interac-
tive mode may also be entered by pressing a user-defined string during
interact.

Once prompted by the interpreter, you can type expect commands

which are executed immediatd. You can call defined procedures, per-
form job control, or even recursively invoke interact. For example,

suppose you are running a script to automate fsck. You answer some

of the questions yourself, and then decide that the rest should all be

answered "yes". You can escape from interact to the expect inter-
preter and invoke a procedure to answer the remaining questions with-
out further interaction from you. This can be made as complex as you

like.
The arguments to interact are actually string-action pairs. (The de-

fault action is to invoke the interpreter interactively.) This generalized

mechanism can support all the usual styles of escapes. such as tip's
--prefixed commands or csh's single-character job control keys. Ac-
tions may be any expect command. As an example, the following line
maps the strings -y, -ã, and the ^C and ^Z characterc.

116 Don Libes

interact \
-y {yes} \
-a {send '; ¡exec datel "; send-user ',heIlo world,,} \
\Cc {exit} \
\Cz {exec kill -STOP 0}

When -y is typed, a procedure called les is invoked. This could fur-
ther automate the fsck interaction just described, so that the user does
not have to explicitly start the interpreter and type yes. -a invokes a

more complex action. 'When typed, hello world is seen at the termi-
nal and the current date is sent to the process as if the user had typed
it. The other pairs exit or suspend an expect session while interacting
with a spawned process. (V/ith no map, the characters would be
passed uninterpreted to the current process.) Appropriate maps can
simulate csh-style job control or much fancier actions. For instance,

"Z could pass control to the interactive expect interpreter-analogous
to what ^Z does in the shell-or it could change jobs to a spawned
shell and resume the interaction.

An unrealistic but amusing application of character mapping is the
following script which runs a shell with a Dvorak keyboard. For
brevity, only lowercase letters are mapped.

proc dvorak {} {
interact -q {return continue} -d {} \

q
r
u
p
f
j
x
b

\;

w
t
i
S
d
b

k
c
n

e
v
o
d
h
I
v

I

send I

send p
send g
send I
send u
send h
send q
send x
send v

send ,

send y
send c
send o
send i
send t
send j
send b
send z
{send

send
send f
send r
send e
send d
send n
send k
send w
send -

{send s} z f ;Ì \
Ì

Iog-user 0
scan [exec printenv SHELL] "7os" shell
spa\ryn $sheLl
log-user 1

send-user "-d for dvorak, -q for qwerty (default) \n"
send-user "Enter - sequences using qwerty keys\n"
interact -d dvorak -S { }

expect: Scripts for Controlling Interactive Processes ll7

This script has two interacts. The user switches between them by typ-
ing -d (for Dvorak) and -q (for qwerty). The Dvorak translation oc-
curs in the procedure dvorak defined with proc. Within dvorak, an

interact gives each character an action that corresponds to sending its
Dvorak counterpart instead. Nothing has to be sent to the user, since

the character will be echoed (if necessary) by the current process.

The return continue action for -q causes the Dvorak interact to
return the value continue to its caller. interact's caller happens to be

an earlier interact (at the bottom of the script) which evaluates the
continue and literally continues. This isn't anything magical. They
are just Tcl commands that are appropriately handled.

The script chooses the desired shell by examining the SHELL envi-
ronment variable. Since printenv appends a newline to the end of its
output, this has to be strþed off and is done here by scan-an equiv-
alent to scanf in the C programming language.

This script is excessive and is not at all what this feature of inter-
act was intended for. Nevertheless it works and demonstrates a num-
ber of interesting aspects.

I I . Non-interactive Programs are

Controlled Differentþ

Some interactive programs have non-interactive alternatives. However,
it is often the case that these alternatives are controlled in a way quite
unlike the original interactive program. Thus, you need to learn two
ways of doing things: interactively and non-interactively.

For example, suppose you want to locate a printer server. This is
described by the rn value in the printcap file. Interactively, you

might use an editor, or even, more, to search the file for the correct
printer and then begin scanning for the rm field. To automate this, you
must switch to a completely different program, such as awk.

Alternatively, you could just translate the interaction you were do-
ing by hand into send/expect sequences. The following fragment does

exactly this. It was used by a larger script that manipulated printers by
running lpc, the interactive interface to the BSD line printer system.

118 Don Libes

spawn ed /etc/printcap
expect {*tn} ; f discard character count
send "/$printer/\r"
for {} {1} {} {

exPect "*\r\n*'¡¡-*\¡*" {
f found rm, now get value
set i lstring f irst t 1'¡n- gexpect__:natch]
scan [range gexpect-_:natch [expr gi+4] end cl \

"7o\ [^ : \] " server
break

Ì "*\r\n*\\\r\n" {
Iook at next line of entry
send tt\rtt

1tt*11'1¡*\n" {
no more lines in entry - give up
break

Ì
Ì

This script uses ed although any editor could be used. First ed is di-
rected to search for the printer. Once the printer is found, returns are
sent to get the successive lines until the value is either located or no
more lines remain.

Using a specialized tool such as awk might seem like a better al-
ternative, except if you aren't familiar with awk's style of processing.
While the same claim could be made about expect, this script illus-
trates the idea that (ignoring syntax differences) you can automate a
procedure you know how to do interactively by simply translating it
into send/expect sequences.

12. Is expect Too Fast?

The previous example demonstrated how expect can use an editor to
read a file. expect has simpler ways of reading files. For instance the
command send [exec cat /etc/motd] writes the contents of /etc/
motd to the current process. Calling a UNIX program to read a file
may not seem like a fast method but it is a lot faster than having a user

expect: Scripts for Controlling Interactive Processes I 19

type it in, which is the alternative. Even in a window environment,
cutting and pasting is a slow operation. Realistically,blazing speed is

hardly needed in a program that simulates users.

The speed of expect operations is described by Libes [19904].
One side-effect not discussed is that expect can overrun input buffers

designed for hlman typists. send supports a slow option (send -s)
specifically to avoid this problem. It is controlled by parameters which

describe the number of bytes to send atomically and a length of time

to wait between each packet.

send also supports a simulation of actual human typing speed

(send -h) according to a modiûed Weibull distribution [Johnson-Kotz
l97}l, a coûtmon statistical tool to simulate interarrival times. The

algorithm is driven by a random number generator and several user-

chosen parameters. The parameters describe two average character in-
terarrival times (default and word endings), minimum and maximum
interarrival times, and a variability "shape". Errors are not simulated

as this can be done by the user directly. Simplistic errors may be gen-

erated by embedding typing mistakes and corrections (if desired) in a
sêrìd argument. A more sophisticated approach could use an expert
system as a coroutine.

13. Security

The passwd script shown earlier was designed solely to be used for
conformance testing. Many system administrators want such a script to

embed in a comprehensive adduser script, which would set up every-

thing that a generic new user needs including an account and pass-

word. Unfortunately, calling the passwd script from another script
reopens the very problem that the passwd program was designed to

solve. Passwords should not be used as arguments to programs because

they can be seen by ps and similar programs.

The solution is to have the expect script generate the passwords di-
rectly. This closes the hole, while at the same time forcing the use of
computer-generated passwords which are generally more difficult to
guess than human-generated passwords.

This technique does not extend to programs such as telnet, ftp, su,

etc., where a human really does need to provide the password' The so-

lution is to have the expect script prompt for the password interac-

120 Don Libes

tively via expecluser. In contrast to the program (or shell script)
prompting when the password is needed, expect can prompt at the be-
ginning of a script for all the passwords that will be needed. Even if
the same password is used in several programs, the user need only en-
ter it once since the script will remember it until it is needed.

Often, it is convenient to run such scripts in the background. Start-
ing processes asynchronously from the shell, however, prevents them
from reading keyboard input. Thus expect scripts must be started syn-
chronously. The fork and disconnect commands are used later to
move expect into the background.

For example, the following script reads the password, disconnects
itself from the terminal, sleeps for one hour, and then goes on to exe-
cute commands that require a password.

system stty -echo
send-user rrPassword: rl

expect-user "*\nu
send-user tt\ntt
system stty echo
scan $expect--:natch rrTosrr pass
if lfork] !:0 exit

;# disable echoing

;# echo newline

;# strip off terminating \n

disconnect
sleep 36O0
spawn su
expect rr*Password: *rl
send "$pass\r"
more conmands follow

This script begins by disabling echo so that the password can be typed
unseen. Unlike exec which manipulates its standard I/O so that it is
accessible to expect, the system command does no manipulation,
thereby allowing stty to effect the terminal.

fork literally causes expect to fork. Like the UNIX system call of
the same name, it returns the child process ID to the parent. Since the
parent has nothing else to do, it immediately exits. Ths shell will de-
tect this as normal program termination. Meanwhile, disconnect
breaks the association between the child process and the terminal so
that the rest of the script can continue immune to the user logging out.

This paradigm provides a secure way of starting long-running
background processes which require passwords. This works well with
security schemes such as MIT's Kerberos system. In order to run a

expect: Scripts for Controlling Interactive Processes l2l

process authenticated by Kerberos, all that is necessary is to spawn

kinit to get a ticket, and similarly kdestroy when the ticket is no
longer needed.

Before expect, there was no way to achieve such results. The
choice was either inflexibility or insecurity. expect has made this
choice unnecessary, and given us the best of both worlds.

14. Conclusions

expect provides a means of automating interactive programs. There
are a great many such programs in the UNIX domain that lack non-
interactive alternatives. expect leverages off of these programs with
only a small amount of programming effort.

expect solves a variety of problems with programs that 1) don't
run non-interactively (rlogin, telnet); 2) "know" they're running inter-
actively and change their behavior (csh, rn); 3) bypass stdio and open

lllevltty (crypt, passwd); 4) don't provide their full functionality non-
interactively (fsck, ftp); or 5) don't provide the friendliest user inter-
face (adb, rogue). All of the "new" non-interactive versions that
result can now by usefully called from shell scripts because they can

return meaningful error codes and no longer require user interaction.
expect provides help even when you want to run programs inter-

actively. If they lack a programmable interface, you can partially
automate the interaction and then share control. Of course, the ideal
solution is to rewrite the application with a programmable front-end.
For new applications, there is no excuse not to use Tcl. It is small,
efficient, easy to use, and probably suffices for 90Vo of all tools. Build-
ing Tcl into an application will always be better than an after-the-fact
solution like expect. But for tools which don't warrant the Tcl library,
or are too old to be rewritten, expect is a fast solution.

expect is actually quite small. On a Sun 3, the current version is

64k. This includes the entire Tcl language. expect has few built-in
functions. For example, expect doesn't have a communications pro-
tocol, nor does it know about sophisticated file access methods. It
doesn't need to. It can invoke another program to do the work. At the
same time, this gives you the flexibility of using any software you al-
ready have. Do you need to communicate with a serial line? Use tip,
cu, or kermit. With a TCP socket? Use telnet. You make the choice.

122 Don Libes

This building block philosophy is very much in keeping with the
UNIX tradition of hooking small programs together to build larger
ones. In this respect, expect functions as a new kind of glue, much
like the shell itself. Unfortunately, shell job control was designed only
with interactive use in mind and cannot automatically control interac-
tive processes. expect's job control is generalized and has no such
restriction. The two forms of job control do not interfere and can
be used together.

While expect only runs on UNIX, it can be useful in managing
non-UNIX sites as long as they are networked to a UNIX host. Via
telnet or tip, a script can login and play its usual interactive games.

My site has scripts that do exactly this on VMS and Symbolics Lisp
machines. Our VMS wizards would rather avoid UNIX entirely, but
they know a timesaver when they see it.

15. Acknowledgments

This work was supported by the National Institute of Standards and
Technology (NIST) Automated Manufacturing Research Facility
(AMRF). The AMRF is funded by both NIST and the Navy Manufac-
turing Technology Program.

Thanks to Scott Paisley who wrote the callback script. John
Ousterhout is responsible for Tcl, without which expect would not
have been written. John also critiqued expect as well as the first paper
about it. I am indebted to him.

Several people made important observations or wrote earþ scripts
while I was still developing the command semantics. Thanks to Rob
Densock, Ken Manheimer, Eric Newton, Scott Paisley, Steve Ray,
Sandy Ressler, Harry Bochner, Ira Fuchs, Craig lVarren, Barry
Warsaw, Keith Eberhardt, Jerry Friesen, and Dan Bernstein. Thanks
to Mike Gourlay, Clem Cole, Andy Holyer, and Alan Crosswell for
help in porting expect to various UNIX platforms. Thanks to Steve
Simmons, Joe Gorman, and Corey Satten for fixing some of the bugs.
Finally, thanks to K.C. Morris, Chuck Dinkel, Sue Mulroney, and the
anonymous Computing Systems reviewers, who gave me extensive sug-
gestions on improving this paper.

Certain trade names and company products are mentioned in order
to adequately specify procedures and equipment used. In no case does

ø(pect: Scripts for Contolling Interactive Processes 123

such identification imply recommendation or endorsement by the Na-

tional Institute of Standards and Tþchnology, nor does it imply that the

products are necessarily the best available for the purpose.

16. Availability

Since the design and implementation was paid for by the U.S. govern-

ment, expect is in the public domain. However, the author and NIST

would like credit if this program, documentation or portions of them

are used. expect may bJ ftped anonymously as pub/expect/expect.

shar.Z from durer.cme.nist.gov. Request email delivery by mailing
to librar¡r@cne. nist. gov. The contents of the message should be

(no subject line) send pub/expect/enpect. shar. Z.

As of August, 1991, over 2500 sites had refieved expect.

124 Don Libes

References

fsck, UNIX Programmer's Manual, Section 8, Sun Microsystems, Inc.,
Mountain View, CA, September, 1989.

Norman Johnson and Samuel Kotz, "Continuous Univariate Distributions",
Vol. 1, Houghton Mifflin Co, New York, NY 1970.

Don Libes, "expect: Curing Those Uncontrollable Fits of Interaction", Pro-
ceedings of the Sumrner 1990 USENIX Conference, Anaheim, Califor-
nia, June 11-15, 1990. (19904)

Don Libes, "Using,expect to Automate Systems Adminstration Tasks", Pro-
ceedings of the Fourth USENIX Large Installation Systems Administa-
rtons (LISA) Conference, Colorado Springs, Colorado, October 17-19,
1990. (1990B)

Don Libes, "Regression Testing and Conformance Testing Interactive Pro-
grams", to appear in IEEE Transactions on Software Engineering, New
York, NY.

Don Libes, "expect User Manual", to be published as N/SZ IR 744-91, Na-
tional Institute of Standards and Technology, Gaithersburg, MD.

John Ousterhout, "Tcl: An Embeddable Command Language," Proceedings of
the Winter 1990 USENIX Conference, Washington, D.C., January
22-26,1990. (1990A)

John Ousterhout, "tcl(3)-overview of tool command language facilities",
unpublished manual page, University of California at Berkeley, Janu-
ary 1990. (19908).

lsubmitted Feb. 8, 1991; revised March 15,I99l; accepted Apr.22,l99ll
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the Computing Systems copyright notice and its
date appear, and notice is given that copying is by permission of the Regents of the University of
Califomia. To copy otherwise, or to republish, requires a fee and/or specific permission. See inside
front cover for details.

expect: Scripts for Controlling Interactive Processes 125

