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ABSTRACT: The CLOUDS operating system supports a
distributed environment consisting of compute servers,
data servers and user workstations. The resulting
environment logically simulates an integrated,
centralized computing system. In addition, CLOUDS
supports a programming paradigm that makes
distributed programming simpler. Distributed programs
can be written in a centralized fashion and yet they can
exploit parallelism and distribution at runtime.

The system paradigm is based on an object/thread
model. The basic building blocks for applications are
persistent memory (called objects) and computation
(called threads). Unlike most systems, CLOUDS
separates the notion of memory from computation.
Programming environments based on these
abstractions, though unconventional, provide powerful
tools for composing applications that exploit
concurrency and distribution.
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This paper discusses programming techniques that
use persistence and distribution of memory. The
examples show how separation of computation from
memory can be used to the programmer’s advantage.
We also present a distributed programming technique
called implicit distributed programming. The
implementation details of the programming support
subsystems are presented. The system performance
measurements demonstrate the usability of CLOUDS
as a distributed programming platform.

1. Introduction

The CLOUDS operating system supports a distributed environment
consisting of compute servers, data servers and user workstations. The
resulting environment logically simulates an integrated, centralized
computing system.

The basic building blocks of a CLOUDS application are persistent
memory and computation. Persistent memory is encapsulated in an ob-
ject specified through a program. Computations are encapsulated by
threads, which are created at runtime, under user control or under
program control. Thus, memory and computation are treated as or-
thogonal entities. The separation of storage and execution allows con-
current threads in the same address space and allows a thread to exe-
cute in multiple address spaces. In addition, persistent memory unifies
several levels of the storage hierarchy into a single level store. We call
this system model the object/thread paradigm.

In addition, location of an object is orthogonal to its use. That is,
the site which provides persistent store for the object need not be the
same as the site where the object is being used. This property makes
applications completely independent of sites. If several computations
share the object and execute on different sites, CLOUDS preserves
single-copy semantics of the object.

Programming environments exploit these features to support an ap-
plication development platform. Applications built using these environ-
ments indicate that the programming paradigm based on object/threads
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is more natural to program than comparable applications built using
other paradigms. This property is mainly due to the absence of code
necessary to deal with location, distribution, secondary storage, and
message passing.

1.1 Objectives

In this paper we explore the programming paradigm and techniques
that allow implementation of complex distributed applications in a sim-
ple manner. To this end, we:

* Present the system architecture, the programming paradigm and
the mechanisms that support transparent distribution, namely,
Distributed Shared Memory and Remote Object Invocation.

* Provide details on the Distributed C++ (DC++) programming
environment (Section 3) to provide insight into the actual pro-
gram specification of the features of CLOUDS.

* Show how distributed programs are structured and how
“transparent” distribution facilities are made available to the user
(Section 5). In our paradigm, distributed applications can be
written in a centralized fashion and yet exploit the parallelism
provided by distribution at runtime. The novelty of the
CLOUDS programming paradigm allows the above program-
ming strategy.

* Provide implementation details on the system environment. We
will present implementation details of the key operating system
features that support the distributed programming environments.

* Discuss why the separation of processing from memory leads to
the building of versatile programming environments. Many
other systems offer comparable programming environments. A
comparison with these systems is included in section 9.

In addition, we present performance measurements that demon-
strate the feasibility of our approach (Section 8).

2. An Overview of Clouds

The user view of CLOUDS consists of a system architecture and a
programming model. The system architecture comprises of a set of
servers as discussed in section 2.1. The programming model consists
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of objects, threads and invocations (sections 2.2, 2.3). While such a
programming model could be used for structuring applications on a
single machine, in CLOUDS, distributed shared memory and remote
object invocations are used to achieve transparent distribution as dis-
cussed in section 2.4.

2.1 The Clouds System Architecture

The CLOUDS system integrates a set of machines into one seam-less
environment that behaves like one, large computer. The system
configuration is composed of three logical categories of machines, each
supporting a different logical function. These machine categories are
compute servers, data servers and user workstations (see Figure 1).
The core of the system consists of a set of homogeneous machines
of the compute server category. Compute servers do not have any
secondary storage. These machines provide an execution service for
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Figure 1: CLOUDS Logical System Architecture
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threads. The compute servers run the Clouds operating system in na-
tive mode.

Secondary storage is provided by data servers. Data servers are
used to store CLOUDS objects. The data servers can be machines of
any type and can run any operating system, as long as processes can
run services necessary by Clouds. In our system the data servers run
Unix as well as the RaTP (the Clouds communication protocol) and
some data service processes.

The third machine category is the user workstation, which is ex-
pected to support high-power graphics and other interface capabilities.
In our implementation the user workstation is an X-Server running un-
der Unix.

The logical machine categories do not have to be mapped to physi-
cal machines using a one-to-one scheme. Although a disk-less machine
can function only as a compute server, a machine with a disk can
simultaneously be a compute and data server. This configuration en-
hances computing performance, since data access via local disk is
faster than data access over a network. However, in our system, we
use a one-to-one mapping, in order to keep the system implementation
and configuration simpler.

2.2 Objects and Threads

Objects and threads are the artifacts of programming in CLOUDS. An
object is a persistent virtual address space consisting of code, data and
entry points. Each object is a named instance of a specification (or a
class) programmed by the programmer in any language supported by
CLOUDS. Once the object is instantiated, it exists “forever”, that is
until explicitly deleted.

While objects are passive abstractions of memory, a thread is an
active abstraction of a CPU. A thread starts executing inside an initial
object and traverses between objects through invocations. On an invo-
cation, the thread leaves the address space of the invoking object and
enters the address space of the invoked object. Parameters, if any, are
transferred between the invoker and the invoked object on invocation
startup and results are returned on termination.

The mapping between threads and objects is defined at runtime by
the invocation mechanism. The invocation causes a thread to enter an
object. If several invocations occur on an object concurrently, multiple
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threads will be executing within the object. The invocation mecha-
nisms also allows a thread to execute in multiple address spaces.

Persistent objects provide storage as well as sharing. Files, which
are the units of permanent storage in other systems, are not necessary
in CLOUDS, since objects are persistent. In a way, objects are similar
to files in that both files and objects are structured containers of per-
sistent data. However, objects provide a means of combining the data
with the code that is used to manipulate the data. Thus, objects are
more structured than files.

Further, the shared memory provided by objects makes message
passing unnecessary when the shared memory is used for purposes
other than synchronization. Synchronization using shared memory im-
poses a heavy overhead in the form of network traffic and hence is re-
alized by separate mechanisms, such as semaphores, supported by
CLOUDS, as discussed later.

The separation of computation from the address space has far
reaching effects. It allows concurrency to be pervasive, that is, all
code is potentially concurrent. Programs need not explicitly specify
concurrency requirements. Also, the thread is not tied to its current
environment. Using the invocation mechanisms it can reach out to en-
vironments that it shared with other threads and applications. This fea-
ture is especially appealing when shared and distributed repositories of
data are managed and accessed by distributed computations.

Threads execute on compute servers. The permanent storage
repository for object content storage is on data servers. Since threads
execute within objects, the object being invoked is brought to the
compute server running the thread at the time of invocation. The sepa-
ration of object storage sites and object execution sites allow any
thread executing on any compute server C to invoke any object re-
gardless of its storage site. The object will be executed on site C. If
two thread 7' and 7, executing on compute servers C; and C, use the
same object O, O will be available at both C; and C, concurrently.
The coherence of the object contents will be maintained by the sys-
tem.

2.3 Invocations

As mentioned earlier, object invocation is the mechanism that makes
threads and objects interact. A new thread starts its lifetime when it
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Figure 2: Objects, Threads and Invocations

invokes an object and it terminates when this invocation is over. Thus,
one thread performs exactly one top-level invocation.

In the course of this invocation, it may perform nested invocations.
Each nested invocation is done by a thread upon executing an invoke
directive in the program it is executing. The invoke directive is an ex-
ternal procedure call (similar to a remote procedure call).

Each nested invocation can be of two basic types:

* A synchronous invocation causes thread T to leave the address
space it is currently executing and enter an entry point in an-
other address space (or object). After this invocation terminates,
T returns to the original object as if it has completed a proce-
dure call.

* An asynchronous invocation causes 7T to create a new thread 7''.
T’ performs a synchronous invocation on the target address
space (or object). T continues to execute in the invoking object,
in parallel with 7’'. When the asynchronous invocation exits, T’
terminates. T can check for the termination of 7 'or wait and
collect the result of the invocation that 7' computed.
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As noted earlier, a thread can invoke any object at any site. This
makes CLOUDS appear to be a centralized system where all objects
are available at any compute server. To allow distributed programming
we allow invocations to have two additional properties.

* A Local Invocation causes the target object to be invoked at the
same compute server as the thread making the invocation.

* A Remote Invocation causes the target object to be invoked at
some other compute server. The target compute server may be
provided explicitly as an argument to the invocation request, or
can be implicitly assigned by the system.

The combination of synchronicity of invocations with the location
properties of invocations give rise to four invocation types. These four
types of invocations, combined with the concepts of separate persistent
memory and threads makes CLOUDS a powerful distributed program-
ming environment. We shall discuss later the use of these forms of in-
vocations for writing distributed programs. As an example, we will
show how the remote asynchronous invocation is a simple but power-
ful mechanism that can be used to start up distributed, parallel compu-
tations.

2.4 DSM and ROI

The compute and data servers interact to provide a distributed operat-
ing system environment. These interactions occur through the follow-
ing CLOUDS operating system mechanisms:

* Distributed Shared Memory (DSM)
* Remote Object Invocation (ROI)

DSM is used to store and share objects in the system. For exam-
ple, let us assume that a thread is to be run on a particular compute
server. The object in which the thread has to execute must be paged
from the data server to the compute server. This facility requires a re-
mote paging facility, which is provided by DSM. DSM supports the
notion of shared memory on a non-shared memory, distributed archi-
tecture [AMMR90].

In CLOUDS, there is potential for concurrent invocation of the

250 P. Dasgupta, R. Apanthanarayanan, S. Menon, A. Mohindra, and R. Chen



same object by threads at different compute servers, resulting in multi-
ple copies of the same object being used at several compute servers.
Hence, DSM has to be cognizant of the need to provide the coherence
of shared pages.

The coherence specification of an object O being used at two
nodes A and B, requires that A and B see the same contents of O. This
is called one-copy semantics. The maintenance of one-copy semantics
is achieved by coherence protocols that are an integral part of the
DSM access strategy [LH86] [RAKS89].

Suppose a thread is created on compute server A to invoke object
O,. The compute server retrieves a header for the object from the ap-
propriate data server', sets up the object space, and starts the execu-
tion of the thread in that space. As the thread executes in that object
space, the code and data of O, accessed by the thread, are demand
paged from the data server (possibly over the network) to A.

The implication of the CLOUDS DSM mechanism is that every
object in the system logically resides at every node. This powerful
concept separates object storage from its usage, effectively exploiting
the physical nature of distributed systems composed of compute servers
and data servers.

The second method of interaction between servers in the system is
based on the ROI facility. In order to start a user level computation, a
compute server must be selected to execute the thread. The selection is
controlled explicitly by the programmer, or implicitly by the system
based on scheduling policies. The thread is started on the selected
compute server by sending an ROI request to the server. The compute
server completes an ROI request by obtaining a copy of the object (via
DSM) and executing the thread. Thus, ROI can be used by threads to
distribute computations by initiating further processing on different
system compute servers.

If the thread executing in O, generates an invocation to object O,
the invocation may happen on A or B on depending on whether a local
or remote invocation was requested by the programmer. In the former
case, if the required pages of object O, are at other nodes, they have
to be brought to node A using DSM. Once the object has been brought

1. The data is retrieved from the data server that contains the object segments. The system-
level name of the object contains the identity of the data server.
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to A, the invocation proceeds. In the latter case, the thread sends an
invocation request to B, which invokes the object O, and returns the
results to the thread at A. More details on object sharing is provided
in Section 6.2.

CLOUDS ROI is similar to remote procedure call (RPC) mecha-
nisms supported by other distributed systems such as the V system
[Che88]. However, it is more general because a ROI can be sent to
any machine and the target does not have to store the called object. A
similar effect can be obtained in other RPC systems, when used in
conjunction with a distributed file system. However, additional mecha-
nisms for maintaining coherence of replicated file data will be neces-
sary. Such issues are handled in a uniform manner by the DSM system
[AMMR90].

To summarize:

* The DSM coherence protocol ensures that objects are globally
accessible and data in an object is seen by concurrent threads in
a consistent fashion even if they are executing on different com-
pute servers.

» The ROI facility allows for distribution of computation.

The system structure discussed above allows us to support different
kinds of structuring of applications, as described in Section CLOUDS.
In the next section, we give a brief overview of the specific program-
ming environments supported in CLOUDS.

3. The Clouds Programming
Environments

Currently CLOUDS supports three varied programming environments,
namely Distributed C++ (DC++), Distributed Eiffel and CLiDE.
DC++ provides a system programming environment based on the
C++ language. Distributed Eiffel is an application programming envi-
ronment based on FEiffel [GL90]. CLiDE is a lisp-based distributed
symbolic processing system [PD90]. In this paper we will present pro-
gramming paradigms for using the DC++ language.
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3.1 Basic Programming Environment

The basic environment supports an object-oriented paradigm. The pro-
grammer is provided with two kinds of structuring tools: classes (tem-
plates) and instances (objects). CLOUDS objects encapsulate particular
application behavior and are large grained. A class is the template that
is used to generate instances. Object instances may be invoked by user
threads. In order to write application programs for CLOUDS, a pro-
grammer specifies one or more CLOUDS classes that define the code
and data of the application. The programmer then creates the requisite
number of instances of these classes. The application is executed by
creating a thread to execute the top-level invocation that runs the ap-
plication.

A user develops CLOUDS programs using the DC++ language
and then compiles them on a user workstation. Once compiled, gener-
ated objects are automatically loaded onto a data server, making them
available to all compute servers. Any compute node (with initiation
from a user) can create instances of these classes. Once a class is in-
stantiated, the resulting object becomes part of the persistent object
memory and can be invoked until explicitly deleted.

Threads are started in objects either interactively or by explicit
thread creation under program control. A user invokes an object by
specifying the object, the entry point and the arguments in a
CLOUDS shell session running on a user workstation. This shell sends
an invocation request to a compute server and the invocation com-
mences. Users may communicate with the created thread via an X-
terminal window on a user workstation.

3.2 The DC++ Environment

DC++ is a programming language and environment that provides sup-
port for CLOUDS classes, objects, instantiation, inheritance and nam-
ing [Ana91]. DC++ is an extension of the C++ language [Str86]. To
give the reader a flavor of programming CLOUDS objects in DC++,
we present a simple example.

In this example, we program a CLOUDS class called rectangle
represented by using the state variables length and width. The
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object has two entry points, one for setting the size of the rectangle
and the other for computing its area. The class rectangle is defined
as follows:
clouds_class rectangle
int length, width;
// persistent data for rect.
entry size (int length, width);
// set size of rect.
entry int area ();
// return area of rect.
end_class

Once the class is compiled, instances may be created. Suppose the
rectangle class is instantiated, and the instance is called Recto1.
Now Rect01.size can be used to set the size and Rect01. area can
be invoked to return the area of this rectangle. The entry point in the
object may be invoked by using a command in the CLOUDS shell
command interpreter. Entry points may also be invoked in a user pro-
gram, allowing one object to call another.

Objects are idenitified by the CLOUDS system using unique sys-
tem names. Users associate a user level mnemonic name with an ob-
ject upon instantiation. The DC++ runtime system includes a name
server which manages the mapping of user level names to system
names.

CLOUDS objects are referenced from other objects through a spe-
cial class defined by the language. This class is called a clouds object
reference class. It is represented by the suffix _ref appended to the
CLOUDS class. The reference class has methods to instantiate and
bind the object, and methods which act as stubs to invoke the user
defined entry points of the CLOUDS class.

User-level names are bound to the system name of an object before
invocations can be performed. This binding is achieved by the bind
operation in the reference class. The following code fragment details
the steps in gaining access to a CLOUDS object Rect01 and invoking
operations on it:

rectangle ref rect; // rect is a local program
handle that refers
// to an object of
type rectangle

rect.bind ("Rect01") // call to name server
rect.size (5, 10) // 1invocation of RectO1l
printf ("%d", rect.area()); // will print 50
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The execution of rect. size and rect. area results in the pro-
cessing of a local synchronous invocation to the object instance
RectO1.

In addition to the local synchronous invocations depicted above,
the the operations can be invoked in a local asynchronous manner by
using the syntax rect!area or rect! size. Remote object invoca-
tions (ROI), both synchronous and asynchronous can be programmed
via the virtual node facility (see Section 5.1).

The above example demonstrates programming one CLOUDS ob-
ject. Since DC++ is an extension of C++, CLOUDS objects can also
contain C++ classes and instances. These C++ language entities
stored in the address spaces of CLOUDS objects share the properties
of CLOUDS objects: they are persistent and can be accessed concur-
rently via multiple threads that invoke a particular CLOUDS object.
Because an object invocation on a CLOUDS object is at least an
order of magnitude more expensive than a simple procedure call, a
CLOUDS object is appropriate for use as a module that contains sev-
eral fine-grained entities.

DC+ + also provides a variety of other mechanisms to support ob-
ject programming. These include synchronization, static type check-
ing, built-in data types, memory support services, user I/O support
and facilities to define user interfaces. Some of these facilities are out-
lined in later sections.

User objects and their entry points are typed by the language
definition. Static type checking is performed on the object and entry
point at compile time. No runtime type checking is done by
CLOUDS.

Modification of classes and instances is discussed briefly in the next
section.

4. Programming A Dictionary

To present the power of combining the building blocks provided by
CLOUDS, we present a simplistic implementation of a dictionary. The
example dictionary is an object supporting the functionalities of inser-
tion, look up and deletion of entries.

The following class defines the dictionary in DC++. We have
used descriptive names for some internal procedures, the code for
which is not shown.
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clouds_class dictionary

RecordType data[MAX];
// storage for the database

entry insert (RecordType item) {
index = hash(item);
lock data_record(index) ;
insert_item(index, item);
unlock data record (index) ;

entry RecordType lookup (KeyType key) {
index = hash (item);
return(data[item]) ;

entry delete (KeyType item) {
index = hash(item);
delete item(index);

}

end_class

This implementation of the dictionary stores data as an array in
the object. This array is persistent by definition and never needs to be
explicitly written out to a file. Also, the usual conversion overhead be-
tween internal memory representation and external data format is
completely eliminated. Not only does this feature save a lot of code in
the implementation of objects, but also is more natural as the pro-
grammer deals with only one type of storage—memory.

An instance of the dictionary may be used by computations by in-
voking entry points in it. Since these computations can be executing
concurrently in the system, the dictionary may be operated upon con-
currently by several threads, even if the threads are executing on dif-
ferent compute servers. Note that there is no special program
specification necessary on the part of the programmer to achieve con-
currency. That is, though the dictionary is a concurrent program, no
concurrent programming library or routines are necessary to imple-
ment it. However, since all code is potentially concurrent, the pro-
grammer needs to use locks to ensure re-entrancy of appropriate por-
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tions of the code. On the other hand, the need for locking does not
prove to be a problem either. If a programmer does not want concur-
rency, the compiler can be instructed to protect all entry points with a
lock, like in a monitor.

The lookup entry point does not modify the data contained in the
dictionary. Consequently, when threads at several sites invoke the
lookup entry point, the dictionary gets replicated, automatically.
There is no replication code specified in the program itself. The DSM
mechanism provides replicated copies to all users of the dictionary, if
the lookup entry point is the only one invoked. The replication is
done at runtime with no hints from the programmer (that is the
lookup function was not defined to be a read-only function). Hence,
operations on an object that do not modify the data in it can be exe-
cuted completely in parallel, even though the computation is performed
on different sites. However, note that this form of replication enhances
the performance of the system, but not the fault-tolerance.

When a thread at any site invokes an entry point that modifies the
dictionary (for example, the delete entry point), the page containing
the data being modified is automatically yanked (invalidated) from all
replicated copies of the data. Later, if any thread reads that page, the
new (updated) copy is automatically provided. Note that this automatic
replication is due to DSM and is not programmed by the user.

The example shows some of the ease of programming in
CLOUDS. Concurrency, read-replication, transparent distribution and
persistence are all used in this simple program. The programmer does
not have to explicitly program these features into the objects, but they
are provided by CLOUDS.

4.1 Modifying the Dictionary

The above dictionary can be modified only by the insert and
delete entry points. This may not be suitable when the dictionary
may need to be re-initialized or its contents need to be extracted.
CLOUDS does not (yet) provide any consistent method of doing these
operations. The programmer can provide initialize and list entry points
for such operations. Also if the directory gets corrupted, the object be-
comes unusable. At present there is no facility for correcting such situ-
ations.
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Both the above problems can be corrected by editing the data seg-
ments directly using another program or interactive data editor. An-
other alternative is to program a class that is inherited from the direc-
tory class with appropriate methods. An instance of this class can be
merged with the data segments of the directory instance that needs
fixing. In a persistent programming system repair and interactive
modification tools are necessary, and our research in this area is still
open.

In addition, note that after an instance of the dictionary is created,
modifying the parent class does not modify the type of the instance.
The instance inherits the properties of the class as it existed at the
point of instantiation. Thus, in a sense, CLOUDS classes are im-
mutable.

5. Distributed Programming
in the Clouds System

While CLOUDS programming environments provide a means to
specify application programs, the structure of these application can
vary widely. As noted earlier, in CLOUDS, objects can be written to
run on a centralized computing environment without regard to concur-
rency, replication, etc. In contrast, consider a message-based dis-
tributed system. One of the popular means of structuring a distributed
program is as a set of processes consisting of a master and a number
of slaves. The master allocates work to the slaves, which perform the
necessary computation and send back the result. All communication is
done through messages. In CLOUDS, the same effect can be achieved
in a different manner that is easy to understand and program. This sec-
tion discusses how programmers can organize such an application.

An application program, consisting of a set of classes and objects,
can be structured in three different ways:

* Treat the CLOUDS system as one integrated, centralized system.
Each application is programmed as one or more CLOUDS
classes, each with one or more instances. Existing classes can be
reused. Each instance is an object that can contain a complete
C-++ object oriented environment. This is centralized program-
ming.

258 Pp. Dasgupta, R. Ananthanarayanan, S. Menon, A. Mohindra, and R. Chen



* The programmer can also decide to use the CLOUDS system as
a distributed system in which each object is a pseudo-node.
Computations are executed in as many nodes as there are ob-
jects. This is explicit distributed programming.

* The third alternative is to structure the application as one (or
more) object(s) as in the centralized scheme, but execute the
computation in a distributed manner by starting the computation
at several nodes, regardless of where the objects are located.
This is called implicit distributed programming.

In addition to the above, the programmer can exploit the persistent
nature of the objects as well as utilize the concurrency within each ob-
ject. Centralized programming is the same as traditional sequential ob-
ject oriented programming and will not be dealt with here. We also do
not present persistent and concurrent programming paradigms in this
paper. In the rest of this section, we discuss how explicit and implicit
distributed programming can be achieved.

5.1 Virtual Nodes

The CLOUDS virtual node facility is designed to let users target com-
putations to particular virtual nodes. The system is treated as a set of
virtual nodes, each having a node number within a sequential range of
integers. The programmer, while coding CLOUDS objects, is unaware
of the actual physical configuration of the system. Programs request
the desired number of nodes from the run-time system associated with
the virtual nodes facility. If the system can satisfy this request, it re-
turns the actual number of virtual nodes available to the programmer.
The program then partitions its computation based on the number of
nodes granted. The number of virtual nodes in the system need not
correspond to the number of physical nodes.

To run an invocation on a particular node, the user provides the
invocation request with a virtual node number. For example, to syn-
chronously invoke the operation op on object 0 on a virtual node
identified by node_num (exact syntax not shown for brevity):

0.0op (params) at node num,

Similarly, an asynchronous invocation to op on object O:

O'op (params) at node num;
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5.2 Explicit Distributed Programming

The CLOUDS system can be used as a traditional distributed program-
ming system. The unit of distribution is the object. The programmer
decides on the number of objects by analyzing the characteristics of
the application. For example, consider distributed sorting. One possi-
ble algorithm creates n “sorter” objects, one on each virtual node.
Then, the data is partitioned into n parts and sent to each of the sorter
objects, which sort the data and return the results to the main compu-
tation. The main computation then merges the n sorted pieces. This is
what we call explicit distributed programming.

Programming an arbitrary algorithm in this fashion is similar to
programming clients and servers in a distributed message system. It
involves explicit programming of the distribution and protocol
definition to be used for client-server communications and intricate al-
gorithm development. The degree of distribution is also statically
defined by the program, since the number of objects is fixed.

5.3 Implicit Distributed Programming

In CLOUDS, using DSM and the different types of invocations? it is
possible to program distributed applications without using the client

server model. This technique allows distribution to be expressed im-
plicitly, and provides the ability to make decisions on the degree of
distribution at runtime.

In implicit programming, the application is structured as one cen-
tralized application, typically using one CLOUDS object. The unit of
distribution is the thread. Implicit distributed programming structures
the program as a concurrent program and not a distributed one. Each
thread in the concurrent execution runs on a different virtual node, but
uses the same object(s). Since DSM provides one-copy coherent mem-
ory across machines, the computation will actually work like a concur-
rent program. However, if the concurrent threads do not heavily share
the same pages of memory, the performance will be similar to an ex-
plicitly distributed program.

We present a distributed sorting algorithm based on the above
idea. The following program implements one object called sorter,

2. Synchronous and Asynchronous combined with Local and Remote.
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which contains an integer array, that is to be sorted. The object has an
operation to sort the array (the entry point sort) which is invoked
when the data needs to be sorted. The code implementing the sort
operation partitions the computation using virtual nodes.

The operation subsort is another entry point in sorter that sorts
part of the array based on parameters that specify starting and ending
points in the array. subsort is executed at different virtual nodes de-
pending on the number of virtual nodes available at runtime. When all
the subsorts terminate, the array is merged.

clouds class sorter
entry sort(); // sort the entire array
private :
int array[MAX];
entry subsort (int i, int j);
end_class
sorter: : subsort (int i, int j) {
sort_in place (i, J); // sort array[i]
to array[j], in place.

sorter: :sort ()

numnodes = getvirnodes ();

// get free nodes
segsize = MAX/num_nodes;

// size of partitioned data
for (node = 0; node num_nodes; node++) {

this! subsort (node * seg size,
// self invocation
(((node + 1) * segsize) — 1)) at node;

// Wait for invocations to terminate;
merge sorted segments

wait_for asynch_invocations ();

merge_data();

The sub-sorts are concurrently executed using asynchronous invo-
cations. Thus, the sort is executed by multiple threads that execute at a
different (logical) compute servers, and perform computation on dif-
ferent parts of the data in parallel. Note that the data itself is encap-
sulated in a single object. The data actually required by each thread
migrates to that node automatically, via DSM, as discussed in Sec-
tion 6.2.
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Therefore, programming of this sorter object is achieved without
explicit distribution of data, or any knowledge of the actual distribu-
tion of the algorithm. Decisions concerning the degree of distribution
of the algorithm are made at runtime.

6. The Implementation of the System
Environment

CLOUDS is implemented as a native operating system on Sun-3 com-
puters. The compute servers run CLOUDS. The data servers and the
user workstations are implemented by server processes on UNIX
workstations.

CLOUDS is hosted by a minimal kernel called Ra. Ra provides the
basic memory management and scheduling mechanisms. CLOUDS is
built on top of Ra by using pluggable system service modules called
system objects. In this section we discuss the system objects that
provide support for distributed programming: the invocation system,
the synchronization system and the DSM system. In addition, we dis-
cuss user-level utilities that provide compilation support for user ob-
jects. A more comprehensive description of the implementation of
CLOUDS is available in [DCM*90] [DJAR91].

6.1 The Invocation System

Objects in CLOUDS are implemented as shared virtual address
spaces. Each object has an object header that defines the layout of the
object address space. Threads are implemented using local processes.
If a thread executes on only one node, then it will be associated with
only one process. However, if the thread performs remote object invo-
cations then the thread will have multiple processes executing on be-
half of the thread; one on each machine touched by the distributed
thread.

A thread executing in one object invokes another object through a
system call. The Invocation System then determines, from the system
call parameters, whether the invocation is to be asynchronous or syn-
chronous, and whether it is a local or remote invocation.
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In the case of a synchronous local invocation, the state of the cur-
rent object invocation is saved. Next, using information in the header
of the invoked object the new object is installed into the address space
of the executing thread. When the thread resumes execution, it will be
executing in the address space of the new object. Asynchronous local
invocations are implemented by creating a new thread to perform the
object invocation.

The invocation bears some overhead due to the fact that the thread
actually changes its data address space from one persistent space to an-
other. For this reason, objects are considered to be large-grained and
invocation is to be used sparingly.

Synchronous remote object invocations are implemented using
slave processes on the remote site and is similar to conventional RPC
implementations [BN83]. In the case of an asynchronous remote invo-
cation, the invoking thread does not block.

6.2 Paging and Sharing of Object Code
and Data

The DSM system is responsible for making all objects available to all
compute servers. It is the software layer between the demand paging
system of the RA kernel and the storage daemons running on data
servers. The DSM system has two subsystems, namely: DSM Server
and DSM Client. Each compute server includes a DSM client and a
DSM server. The data servers each run a DSM server as a Unix pro-
cess. The communication transport protocol used to communicate be-
tween the corresponding system components in different machines is
called RalP (Ra Transport Protocol) [WIL89].

Suppose a compute server A running a computation faults on page
p of data. This fault activates the DSM Client by generating a call to a
method in the system object. The DSM Client locates the DSM server
containing page p. The server, called the owner for any particular
page is fixed, systemwide.

Let site D be the owner of page p. The DSM Client on site A
sends a request to the DSM server on D. If p is currently not being
used by any other compute server, D sends p to A and the computa-
tion progresses. Site A now becomes the keeper of p.
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At this point, suppose another computation on another site B page
faults on the same page p. B sends a request to the owner, D. D for-
wards the request to the DSM server on A, since A is the keeper of p.
In response to the forwarded request, the DSM server at A unmaps p
from the address space of the thread using the page and sends it di-
rectly to B. This is called yanking the page. If both A and B use a
page concurrently, this page will shuttle between A and B guarantee-
ing one-copy semantics [LH86] [RAKS89].

In the above scheme, each page has one owner (the data server)
and at most one keeper (the compute server using it). For read-only
pages the constraints are relaxed, and a page can have multiple keep-
ers. Read-write pages can be acquired in read-only mode (via read-
mode page faults) allowing better performance when pages are read-
shared by several compute servers.

6.3 Support for Synchronization

The data space of an object is shared by all computations that execute
in the object. Since different computations can run in the same object
concurrently, there is need for mechanisms that provide mutual exclu-
sion and thread synchronization. Since the data in an object is accessi-
ble only by threads executing within the object, synchronization is a
local property. That is, the support and programming of thread syn-
chronization is local to each object.

However, the same object may be used by concurrent threads run-
ning on different compute servers. Thus, the synchronization, though
local to each object, is non-local to the machine using the object. This
section discusses the implementation of semaphores and locks that
provide intra-object, yet, distributed synchronization.

Synchronization support can be provided at the language level us-
ing constructs such as semaphores, locks and monitors. The imple-
mentation of such constructs, however, needs operating system level
support. CLOUDS provides support for synchronization in the form of
semaphores and read-write locks [Ana]. Each semaphore or lock is
identified by the CLOUDS operating system by a name that is com-
posed of two parts: a system name and a local-id. The system name is
the same as the system name of the object where the semaphore/lock
is defined, and each semaphore/lock within the object has a local-id.
This scheme eases management of these lock names by imposing a
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logical hierarchy, based on their intended use. All state information
associated with semaphores and read-write locks is maintained by the
operating system.

Semaphores support create, P and V operations. Read-write locks
support locking in read mode or write mode, and unlocking. In addi-
tion, a get operation is provided with both semaphores and read-write
locks. The get operation is a directive to cache the state information
corresponding to a particular synchronization primitive at the node ex-
ecuting the operation. This operation can be used to improve perfor-
mance by making use of locality of access to the semaphore or the
read-write lock.

6.4 From Programs to Objects

In this section, we briefly describe how objects are created from a pro-
gram specification. In particular, we discuss the implementation of
DC++.

DC++ programs are developed on user workstations and are
stored as UNIX text files. A DC++ program module consists of a
class definition file and an implementation file. These programs are
converted to C++, using a preprocessor. The converted programs
define a CLOUDS class. In addition, the preprocessor generates inter-
face stubs to access this class. These stubs include the CLOUDS object
reference class (see Section 3.2) and the information needed to support
inheritance of CLOUDS classes. All this information completely
defines a CLOUDS class and is stored as part of the environment of
the programmer. This environment serves as a library when that
CLOUDS class is used or inherited by other CLOUDS classes. C++
programs are compiled with a standard compiler along with the library
that defines, among other things, the CLOUDS system call stubs.

After the compilation of the program(s) to UNIX.o files, the pro-
grams are linked with the library using the UNIX link editor (1d). The
link editing phase creates a UNIX executable with the a. out format.
The a.out file is then post-processed into segments that adhere to the
object format®. The program is stored as two files containing the data
segment and the code segment.

3. An object may contain multiple data segments. The layout and number of segments are
under the control of the programmer.
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The segment files are then loaded on the data server. The loading
accomplished by adding the segments and the object descriptor (an-
other segment) to the list of segments managed by the data server. At
this point, the segments are accessible on the system. Objects repre-
sented by these segments can then be invoked or instantiated.

7. More Programming Support

In addition to the programming support mentioned in earlier sections,
the CLOUDS system supports various types of persistent memory and
provides consistency support for persistent objects. These mechanisms
allow CLOUDS programs to use advanced memory structures and
define consistency requirements of applications.

7.1 Memory Semantics

Persistent memory needs a structured way of specifying attributes such
as longevity and accessibility for the language-level objects contained
in CLOUDS objects. To this end we provide several types of memory
in objects. The sharable, persistent memory is called per-object mem-
ory. We also provide per-invocation memory that is not-shared, but is
global to the routines in the object and lasts for the length of each in-
vocation. Similarly, per-thread memory is global to the routines in the
object but specific to a particular thread and lasts until the thread ter-
minates. This variety of memory structures provides a powerful pro-
gramming support in the CLOUDS system [DC90].

7.2 Consistency Support

The CLOUDS consistency-preservation mechanisms present a uniform
object-thread abstraction that allows programmers to specify a wide
range of atomicity semantics. This scheme performs automatic locking
and recovery of persistent data. Locking and recovery are performed
at the segment-level and not at the object level. Since segments are
user defined, the segment-level locking allows the user to control the
granularity of locking. Custom recovery and synchronization are still
possible, but will not be necessary in many cases.
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Threads are categorized into two kinds, namely s-threads (or stan-
dard threads) and cp-threads (or consistency-preserving threads). The
s-threads are not provided with any system-level locking or recovery.
The system supports well defined automatic locking and recovery fea-
tures for cp-threads. When a cp-thread executes, all segments it reads
are read-locked and the segments it updates are write-locked. On
completion, the segments are committed and locks released. Further,
cp-threads are classified to support global consistency across objects
and local consistency within an object. Since s-threads do not auto-
matically acquire locks, nor are they blocked by any system acquired
locks, they can freely interleave with other s-threads and cp-threads.

The complete discussion of the semantics, behavior and implemen-
tation of this scheme is beyond the scope of this paper, and the reader
is referred to [CD89].

8. Performance

This section presents performance measurements for the invocation
subsystem and other related subsystems in CLOUDS. In our environ-
ment, compute servers run on diskless Sun-3/60 machines; data serv-
ers and user workstations are Sun SPARCstation 1 machines running
UNIX.

Kernel Operation Time
Page Fault Service (Local) without Zero Fill 629 us
Page Fault Service (Local) with Zero Fill 1.5 ms
Page Fault service from data server (Remote) 16.1 ms

Table 1: Basic Timings

Obiject invocation involves the paging in of the object header from
the data server and the installation of an address space that contains
the object text and data, from the information contained in the object
header. When a thread starts executing in the newly installed address
space, the text and data are fetched on demand by the page-fault han-
dler, in co-operation with DSM. The basing timings for page-fault
handling, when the page is resident on the same node costs 1.5 ms for
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a zero-filled 8K page and costs 629 us for a non zero-filled page. Such
faults do not require network messages.

The time taken to service a page fault (that requires the page to be
fetched from a remote data server) costs 16.3 ms. The page fetch over
the network uses the RaTP reliable transport protocol.

Table 2 summarizes the costs for local object invocation. Invoking
an object for the first time involves at least two page-fault operations
for bringing the object header (an 8K page) and one page of code, to
the local compute server. Such an invocation takes 93 ms, while an in-
vocation that also accesses a data page takes 119 ms. Roughly, half of
these invocation times is spent in remote page fault servicing. The rest
of the time is spent on installing object and thread contexts, protecting
invocation stack etc.

Invocation Operations Time

Synchronous Local Object Invocation

- 1 time 93 ms
- 1% time, 1 data page 119 ms
- 2™ time 8.9 ms
Asynchronous Local Object Invocation 17.8 ms
- 1* time, return from call 66 ms
- 2" time 17.8 ms

Table 2: Invocation Performance

The next time the same object is invoked, its pages are cached in
memory and invocation time (8.9 ms) drops sharply. The reduction in
time is due to the fact that no page fault occurs and no network net-
work access is needed. Overhead in this case involves switching the
address spaces of processes. In general, object invocation costs should
be amortized over the lifetime of the object at a particular compute
site.

A local asynchronous invocation is measured from the time the in-
voking thread issues the invocation request to the point the request re-
turns. Such an invocation involves setting up the object header (paging
in one page, on the first invocation) and creating a new thread. The
total time of 66 ms does not involve bringing in code or data pages or
waiting for the newly created thread to run. The new thread waits for
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its time slice before it executes and may wait a long time before it ac-
tually executes. Costs for subsequent invocations is less since the ob-
ject header mapping does not involve network access. However, its
cost is larger than a synchronous invocation due to the thread creation
overhead.

Remote invocations are almost identical to the local invocations,
except that an invocation request is sent to another compute server.

The performance measurements for the CLOUDS distributed oper-
ating system show that it is quite competitive with any system that
works over a network without local disks. While initial operations are
slower, subsequent operations are considerably faster. Thus, the
speedup of subsequent operations due to caching provides fast overall
execution characteristics when network costs are properly amortized.

9. Related Work

Distributed programming has been around ever since networking was
made possible. Some of the first major distributed applications such as
uucp and USENET used handshaking over communication lines with-
out operating systems support. Bal, et. al. [BST89] presents a compre-
hensive survey of programming languages and systems developed for
distributed systems, classifying them by functionality and intent. A
complete discussion of all the environments is beyond the scope of this
paper, and we shall compare CLOUDS to some of the closely related
systems. Other related systems can be found in references [CJR87] and
[ST89].

Orca is a programming language and runtime system to program
distributed applications [BKT90]. It extends the abstract data type
model to distributed systems through shared data objects. The runtime
system of Orca provides support for sharing and location of objects.
The programming support is heavily dependent on the Orca runtime
mechanisms and not the underlying operating system. In contrast,
CLOUDS provides most of the support necessary for DC+ +. This
support allows multiple language implementations, without re-
implementing the runtime support for each language. As mentioned
before, Distributed Eiffel and CLiDE are two other environments that
run on top of CLOUDS.
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Distributed Eiffel provides a more structured programming envi-
ronment and is intended for casual programmers while DC++ is in-
tended for systems programmers. CLiDE is an environment imple-
mented using DC++, and caters to symbolic programming needs such
as those of AI applications. Multiplicity of languages and program-
ming environments allows the user to choose an appropriate vehicle of
expression depending on the application. Using the Clouds approach,
effort is not duplicated in implementation of multiple runtime systems
that perform similar tasks. Further, object sharing in Orca is restricted
to processes that are related. Such a restriction does not arise in
CLOUDS as a direct result of persistence of objects and orthogonality
of computation and objects.

While Orca hides the location of objects from the programmer,
Emerald [JLHB88] and Amber [CALL89], a descendent of Emerald,
provide mechanisms to move objects when necessary. This feature is
similar to CLOUDS, where objects move to a node on invocation and
remain there if no other nodes invoke the object. However, automatic
replication due to immutable invocations are handled differently.
Replication is controlled in Emerald by the programmer by claiming
the object to be immutable: the system does not check the validity of
the claim. While this property is potentially dangerous due to possible
programming errors, it is also a static property. Amber allows the mu-
tability of an object to be dynamically specified. In CLOUDS, on the
other hand, replication is controlled dynamically based on actual usage
as illustrated in the dictionary example.

Some operating systems implement their own versions of objects at
the kernel level. These include Argus [Lis84], Cronus [STB86] and
Eden [ABLNS8S5]. The objects in these systems are modules that run as
UNIX processes and respond to invocations or messages. The objects
can be checkpointed to files on demand. Lightweight threads are used
to provide intra-object concurrency and the threads are handled by
built in libraries. Unlike CLOUDS these systems do not provide the
orthogonality of computations. We feel this orthogonality is not only
natural, but contributes to the elegance of the paradigm used by
CLOUDS.

The Commandos operating system [MG89] provides support for all
types of objects (fine and large grained, persistent and volatile) in a
uniform fashion. The operating system provides management of object
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types, location, and sharing. Among other things, since object typing
is directly supported by the operating system, Commandos is closely
tied to the programming environment and thus is a special-purpose,
single-paradigm system.

In Mach [A*86], multiple threads share a task, which is the unit of
sharing and protection. All resources of a thread are accessible to
other threads associated with the task. At a programmer’s level, con-
currency is explicitly programmed by creating threads using a library
package. Sharing is also possible through memory objects, which have
to be explicitly mapped in into a task’s address space. In CLOUDS,
this is automatically done on invoking the desired object.

The memory in most of the above systems is private to the process
or application using the objects. The objects exist in the global address
space of the process executing the application and are copied in or out
of the space, as and when necessary. When the process terminates, the
memory is lost and the persistent objects have to be saved on second-
ary storage. Thus the objects, when shared, exist in the memory space
of multiple processes. Our approach is the opposite. The object does
not appear in multiple address spaces. The threads visit the objects ad-
dress space. We feel that this approach is cleaner, easier to program,
comprehend and also easier to implement.

10. Conclusions

The support for programming distributed objects in a variety of pro-
gramming languages and environments is one of the strong points of
the CLOUDS distributed operating system. The system provides persis-
tent objects that can be used for programming applications. Since the
objects are persistent, there is no need for explicitly saving state. In
fact, the operating system does not provide for file systems or disk [/O
routines available from the user environments. In addition, CLOUDS
distribution mechanisms allow the programmer to implement applica-
tions using implicit distribution techniques. Coupled with the orthogo-
nality of compute and data servers, the system design is elegant, easy
to use and intuitive. This design enhances its usability and represents
the novel aspect of the CLOUDS system environment.
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The performance of the system is more than adequate. The com-
pute performance is dependent on the machines used to run the appli-
cations; the only bottleneck being the paging of the objects from the
data servers. This latency can be improved with high-speed networks
or by placing the data servers on the same machines as the compute
servers. However, keeping the data servers physically separate has
some distinct advantages: orthogonality, uniform access costs and
symmetry. Thus it is tradeoff between structure and cost.

Merging some of the data servers with some of the compute serv-
ers does not necessarily improve global system performance pre-
dictably. To prevent network traffic the objects must be executed at the
machine they are located (using RPC). This pinning would not only
cause increased RPC traffic but would cause higher loads at the com-
pute servers that have high traffic objects. Instead, a solution involving
a high-speed network appears more favorable. Thus, in most cases (ex-
cept if the host is a high-power multiprocessor) the data servers should
be kept separate and linked via a high-speed network.
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