
Controversy: The Case Against
Multiple Inheritance in C#

T.A. Cargill Consultant

ABSTRACT: Multiple inheritance (MI) is now part of
C#. MI greatly complicates the language, burdening
those who learno write and read C#. The costs would
be justified if MI enriched the language, making it
easier to express programs. But the literature contains
no convincing examples of MI solving programming
problems. Still, the ANSI X3J16 standards committee
for C# has embraced MI by adopting Ellis &
Stroustrup U9901 as a base document. Before imposing
a standard that includes MI, the committee should
justify the costs by publishing realistic sample
programs that demonstrate a compelling need for MI.

I. Introduction

Originally C# had single inheritance (SI): a derived class could have

only a single base class, and a class inheritance hierarchy was a tree.
Since the release of ATikI's C+ 2.0 (and compatible implementa-

@ Computing Systems, Vol. 4 . No. 1 ' Winter 1991 69

70

tions) C# has included multiple inheritance (MI): the number of base
classes is unlimited, and in general, a class inheritance hierarchy is a
directed acyclic graph (DAG).

Under MI, derived classes inherit all the members of all their base
classes. The potential ambiguity arising from an identifier's use in
more than one base class is resolved at compile time, usually by giv-
ing fully qualified names. A more subtle problem arises when an an-
cestor base class can be reached by more than one path through the
DAG: should there be a unique shared instance of the base class or a
distinct copy along each path? This issue is addressed by an additional
inheritance mechanism: the virtual base class. Virtual ancestor base
classes are shared; non-virtual bases are distinct. The semantics of MI
in C# and its possible implementations are discussed in depth in
Stroustrup [1989b] and Ellis & Stroustrup U9901.

2. Programming Language Design

The primary purpose of programming languages is the writing of
computer programs. Improvements in programming languages over the
years have enabled us to program more effectively. Progress is made
by identifying shortcomings in existing languages and experimenting
with new languages or new language features. In this process, the per-
ceived benefits of language features range from ease of learning for
novice programmers to support for veterans maintaining aging code.
Every feature added to a language incurs costs for prograÍìmers and
implementors. The costs of each feature are weighed against its
benefits, such as increased expressive power, safety or efficiency. Of
course, the design process must consider not only each feature in isola-
tion, but also the interactions between features.

In selecting language features, one simple criterion can be applied
universally: it should be possible to use each feature to write practical
programs that are improvements in some respect over the correspond-
ing programs expressed without the feature. Programming language
features should be useful for writing computer programs. I wish to
apply this criterion to multiple inheritance in C#.

T.A. Cargill

3. The Popular Perception

The popular perception is that MI is a valuable addition to C#. In
books, magazines, and advertising copy, MI in C# is described fa-

vorably, with phrases like

learn how to create powerful hybrid
classes using multiple inheritance

a significant enhancement to the
support of object-oriented programming

one of the most important
and fundamental changes to C#

[Weston 1990; Lþman 1990; Eckel 1989] Unfortunately, those offer-
ing such opinions on the virtues of MI have not offered convincing ev-

idence of those virtues.

4. The Costs of Multiple Inheritance

Multiple inheritance in C# is complicated. It is complicated to
learn, write and read. Each of these contributes to the cost of using
c+.

With only one inheritance mechanism C# would be a complex
language. But a newcomer today is faced with six variants of inheri-
tance: a choice of three access levels for each inheritance relationship
(public, protected or private), and another choice of whether or not
each base class is virtual. The real expressive power of inheritance is

delivered by just one of the six variants: public inheritance from a

non-virtual base. Yet we must learn the complexity of all six variants'
interactions with other language features, such as initialization, virtual
functions, overloading and conversions.

The evidence that MI is difficult to program is found in most of
the published attempts to demonstrate its merits. Wiener and Pinson
set out to exhibit a practical use of MI, but create an incorrect pro-
gram that happens to produce the intended output on some hardware

[Wiener & Pinson 1989]. Most textbook examples of MI are correct

Controversy: The Case Against Multþle Inheritance in C# 7l

programs, but merely disguise aggregation as inheritance, for example

[Dewhurst & Stark 1989; Pohl 1989; Stevens 1990]. It is unrealistic to
believe that programmers at large will be more successful in using MI
than the authors of text books.

Programs that use MI are hard to understand. For example,
Shopiro describes the use of MI in the Iostream library [Shopiro
19891. Shopiro's code, about one hundred source lines, has essentially
the same architecture as lostream, simplified to reveal its use of MI. I
have encountered several programmers who attempted to read the
paper. Their talents are probably above average in that they take the
trouble to read SIGPLAN Notices. None managed to understand the
code. In my own case perseverance paid off on the third reading. This
measure may be unfair; more evidence, and of a more objective na-
ture, would be welcome. However, I doubt that anyone would argue
that MI is easy to read and comprehend. Skeptical readers should
examine Shopiro [1989] for themselves.

To illustrate the language complexity of MI in general, and virtual
base classes in particular, consider the following small program,
adapted from Stroustrup [1989b].

class rop {
publ ic:
virtual void f O { printf ("Top::f O"); }
Ì;

class Left : public virtual fop {
publ ic:

void gO { fO; }
t.J,

class Right : public virtual Top {
publ ic:

void f O { printf ("Right::f O"); }
'ì

J,

class Bottom : public Left, public Right {
ì
Jt

main o
{

72 T.A. Cargill

Botton

x.go;
return

Ì

Class lBottom I inherits from both llef t I and lRieht | , which

have a common virtual base class, ltop I , as shown in Figure 1.

The virtual function ltop: : f O I is redefined by In:-grrt | . In

lrnaing I the function lleft: : eg I is invoked on lxl, an

instance of leottorn | . When lf f l I is called from within

llert::eO l, should ltop::f g I or Inight::f O I beinvoked?

Left { t{f}

Figure i: Inheritance hierarchY

The answer is lnigtrt: : f g l! ! ! (Triple exclamation marks appear in

an earlier treatment of this phenomenon [Stroustrup 1989a], though

not in its successor [Stroustrup 1989b].) If virtual base classes are

used, determining which virtual function is called is much more com-

plicated than under SI, where one need examine only classes that are

reached by traversing up-paths and down-paths in the inheritance tree

from the calling context. To understand the behavior of lLert' : g O I

we must examine the entire DAG reachable by traversing from any

class derived from I lert I to any virtual base class of lr,ert | .

This example illustrates the complexity of part of the MI language

mechanism in isolation. The complexity compounds when interactions

x;

0;

(f)

\
Righ

/
tom

Top

/
e)

\
Bot

Controversy: The Case Against Multþle Inheritance in C# 73

with other language features, such as initialization and conversion, are
considered. we must weigh the complexity and costs of MI in c#
against its benefits in terms of its assistance in writing programs. The
benefits should be manifest in examples of C# programs that
use MI.

5. Examples of MI in the Literature

Most of the published examples of MI in c# are just aggregation
disguised as inheritance. Aggregation can be expressed more directly
and naturally using the language mechanism intended for that purpose.
It is better to express simple aggregation by embedding member ob-
jects than by pretending it is the richer relationship of inheritance.

Pohl [1989] contains a typical example.

class tools
public:

int

i;

class labor
public:

int
ì.
1t

class parts
public:

int
ì.
J¡

{

cost O ;

{

cost O ;

{

cost O ;

class plans : public tools, public parts, public
labor {

public:
int tot_cost O { return (parts: : cost o+ Iabor::costO); Ì

Ì;

without detriment, class lptans I can be re-expressed without MI-
indeed without any inheritance-as follows.

T.A. Cargill74

class plans {
public:

tools t;
Iabor l;
parts p;
int tot-cost O { return (P. cost o
*l.costO); Ì

//
Ì;

This example is representative of most attempts to demonstrate MI for
the benefit of novice C# programmers. Some similar examples are

rewritten in Cargill [1990a].
Gorlen et al. [1990] use MI twice. Their first example (p.295)

uses inheritance to open the scope of classes serving as modules (that

is, all members are static). The code has the following form.

class A {
// sLatic daLa
public:
static void f O;
static void gO;
//
);

class B {
/ / sLatíc data
public:
static void f O;
// ...
);

class M : public A, Public B {
public:

void hO;
);

void M::ho
{
//

B: : f O ; / / just' f O would be anbiguous
8O; // uprtatr:öíguouslY A::go

//
Ì

Controversy: The Case Against Muttiple Inherinnce in C# 75

Because class lvt I inherits from both lA I and le | , member func-
tions of le I and le I can be called from lM | 's scope without name
qualification, provided there is no ambiguity. Here MI is used to open
other scopes and let the programmer write lg f l I rather than

lA: : g O | . However, in general there is no saving. As Gorlen et al.
themselves point out, when ambiguity arises scope resolution must be
used to specify the function explicitly, e.g. lB: : f O l . The call to
lS tl I is unambiguous only until a le tl I is added to le | . It would
be safer to write I e: : g () | in the first place, making the inheritance
redundant.

Gorlen et al. also use MI to construct a class whose objects can be
placed on two linked lists (p. 297), in the fashion described in Ellis &
Stroustrup |990, p. 1991. In the member functions of the derived
class casts are used to select one of two auxiliary linked-list base
classes. Ignoring the risks of using casts unnecessarily, such casts are
equivalent to selection within an aggregate. A simpler equivalent class
may be created using SI and aggregation, as shown in Cargill U990bl.

Weston uses MI to add an lostream | (for debugging) to a text
edit window [Weston 1990, p. 270). The lostrearn I could equally
well be incorporated by aggregation as a member object. Indeed, using
aggregation simplifies the cumbersome initialization code in the MI
version.

As mentioned above, Shopiro describes the use of MI in Iostream
[Shopiro 1989]. This is the most convincing example of MI published
to date. An input-output (I/O) stream inherits from both an input and
an output stream, each of which in turn inherits from a buffer manage-
ment virtual base class. The weakness is that the I/O duality vanishes
as soon as an operation is applied to an I/O stream. Any operation has
the effect of selecting the input or the output half of the I/O stream.
An alternative architecture that uses single inheritance and explicit ag-
gregation is described in Cargill [1990a]. Moreover, the version of
Iostream in the (December 1990) draft X3J16 library does not use MI
[Schwarz 1990].

In summary, every published example of MI in C# can be writ-
ten just as easily without MI.

76 T.A. Cargill

6. General Transformations

That all published MI programs can be transformed into equally simple

SI programs might tempt one to look for a general procedure for elim-
inating MI. Strictly, such a procedure is trivial, but provides no in-
sight. Since Cfront converts C# to C, it could easily translate any

C# program into C# without inheritance. But, as with the general

algorithm for replacing goto by while, this approach would make no

attempt to conserve structure. It therefore has no bearing on the ques-

tion of writing real programs with or without MI.
In all but one of the examples above MI is eliminated by replacing

inheritance with aggregation. But a general Ml-eliminating transforma-

tion would have to do more than merely replace inheritance with ag-

gregation. The MI in the following program schema cannot be con-

verted to aggregation without serious distortion.

class 81 {
public:
virtual void f1 O ;
ì
J,

class e2 {
public:
virtual void f2 O ;

);

class M : public 81, public 82 {
public:

void f1 O ;

void f2 O;
);

void M: : f1 o
{

iàìr,

Ì

Controversy: The Case Against Multiple Inheritance in C# 77

:f2o

f1 0;

Ì

In this schema the virtual functions lM: : f1 O I and lM: : f2 O I are
redefined such that they mutually depend on each other. This schema
cannot easily be expressed using only aggregation and single inheri-
tance. The schema demonstrates the expressive power of MI, but only
in a hypothetical setting. If MI were widely used in this manner in
real programs, my thesis would collapse. However, this style of MI is
not found in any of the published examples.

7. MI in Other Languages

A popular thesis is that MI has proven its worth in other languages
and therefore C# was incomplete without it. Such feature-by-feature
reasoning between languages is spurious. The effectiveness of features
depends on how they interact with other features as much as on their
intrinsic properties.

Examples of MI in Eiffel [Meyer 1988] do not map directly into
C# because of other features in Eiffel. The scope system of Eiffel
means that inheritance is needed for access to the equivalent of a pub-
lic static member in C#. But, as discussed above, C#'s regular
scope resolution is a simpler solution than inheritance. MI is also used
in Eiffel in combination with generic classes. A proposal for adding
generic classes to C# ("parameterized types") has been adopted by
the ANSI committee. At present, the interaction between MI and the
forthcoming generics in C# is no more than the subject of specula-
tion. (Of course, I question the wisdom of standardizing extensions be-
fore better understanding the basis.)

MI is used in CLOS [Bobrow et al. 1988] for creating "mix-in"
classes. However, the type system and binding mechanisms of CLOS
are radically different from those of C++. The run-time method selec-
tion algorithm of CLOS is comparable with the compile-time over-
loading resolution algorithm of C#. Ellis and Stroustrup observe that
mix-ins do not work in C# [Ellis & Stroustrup 1990, p. 202).

T.A. Cargill

void M:

{

78

Curry and Ayers [1984] discuss the use MI in the Tlaits language
for the Xerox Star workstation. Their conclusions about MI are mixed.
MI was used many times, but not to much advantage:

Although [. . .] many of the classes used multiple subclassing, very few
used multiple subclassing in an intrinsic or unavoidable way; minor rear-
rangements of the traits graph, not costly either in program logic or in
class data space, could eliminate the multiple inheritance.

A comprehensive study of the use of MI in other languages, with
attempts to map programs into Cl-f , might yield further insight into
the interaction between MI and the type and scope mechanisms

of C#.

B. Virtual Base Classes

Inheritance from multiple independent class libraries is often cited as

the case for MI in C#. C+ can be significantly simplified by the

elimination of virtual base classes and still be sufficient for indepen-

dent multiple inheritance. Virtual base classes are only meaningful
when the different paths through an inheritance DAG are designed as a

whole. Virtual bases cannot be exploited when multiply inheriting
from independently developed libraries.

There is therefore perhaps a technical middle ground to explore.

We may disccver that MI is indeed useful, but that virtual base classes

are unnecessary. For example, MI is used in the C# Booch Compo-
nents [Booch & Vilot 1990]. Few details have been published, but it
appears to make no use of virtual base classes. Most of the complexity
of MI in C# is due to virtual bases. Determining that the benefits of
virtual bases do not justify their costs would be progress, even if the

larger question of MI in general were left unresolved.

9. Programming Language Research

Critics may observe that I was among the first to call for MI in C#
[Cargill 1986]. In that paper I was calling for an opportunity to con-

duct research on the question of MI in C#. I believe that research in
programming languages must involve programming experiments. Aes-
thetically elegant ideas do not always work well in practice. For exam-

Controversy: The Case Against Multiple Inheritance in C# 79

ple, Algol 60's call-by-name was mathematically sound, but impracti-
cal, and is not found in modern programming languages. When I
called for investigation of MI in C# my concluding remark on the
subject was:

Of course, the success of multiple inheritance cannot be guaranteed
without practical experience, but it is certainly worth pursuing.

At that time I hoped that MI would appear in an experimental imple-
mentation, where programmers could explore and evaluate the idea,
but that did not happen. The first working implementations were
closely followed by compiler products and the ANSI committee's
adoption of MI in a base document. We must question the diligence of
the C# technical community in conducting our research.

10. Conclusion

The evidence to date is that multiple inheritance is not useful in writ-
ing C# programs. It should not become part of the ANSI C# stan-

dard before convincing examples of its use are published. If multiple
inheritance is a mistake, programmers will pay the price of using an

unnecessarily complicated language for years to come.

Acknowledgements

My thanks to Carol Meier and Rob Pike for their suggestions about

this paper.

80 T.A. Cargill

References

D. G. Bobrow et al., The Common Lisp Object System, Technical Report
88P002R, X3Jl3 Committee, ANSI, 1988.

G. Booch, M. Vilot, The Design of the Booch Components, Proceedings
OOPSLA/ECOOP 90, Sigplan Notices,25(10), October 1990.

T. A. Cargill, Pi: A Case Study in Object-Oriented Programming, Proceed-
ings OOPSLA 86, Sigplan Notices, 2I(Il), November 1986.

T. A. Cargill, Does C# Really Need Multiple Inheritance?, Proceedings of
the USENIX C# Conference, San Francísco, April 1990a.

T. A. Cargill, We Must Debate Multiple Inheritance, C# Journal, l(2), Fall
1990b.

G. A. Curry, R.A. Ayers, Experience with Tiaits in the Xerox Star V/orksta-
tion, IEEE Transactions on Software Engineering, SE-10(5), Septem-
ber 1984.

S. C. Dewhurst, K. T. Stark, Programming in C#, Prentice Hall, 1989.

B. Eckel, Using C#, Osborne McGraw-Hill 1989.

M. A. Ellis, B. Stroustrup, The Annotated C# Reþrence Manual, Addison-
Wesley, 1990.

K. E. Gorlen, S. M. Orlow, P. S. Plexico, Data Abstraction and Object-
Oriented Programming in C#, Wiley, 1990.

S. B. Lippman, C#: How Release 2.0 Differs from Release 1.2, The C#
Journal, 1(1), Summer 1990.

B. Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988.

I. Pohl, C# for C Programmers, Benjamin Cummings, 1989.

J. S. Schwarz, Personal Communication, December 1990.

J. E. Shopiro, An Example of Multiple Inheritance in C#: A Model of the
Iostream Library, Sigplan Notices, 24(12), December 1989.

A. Stevens, Teach Yourself C#, MIS Press, 1990.

B. Stroustrup, The Evolution of C#: 1985 to 1989, Computing Systems,
2(3), Summer 1989a.

B. Stroustrup, Multiple Inheritance for C*+, Computing Systems,2(4),Fall
1989b.

Controversy: The Case Against Muttiple Inheritance in C# 81

D. Westoa, Ele¡rcnts of C++ Møcintosh Programming, Addison-Wesley,
1990.

R. S. W'iener,L.I. Pinson, A Practical Example of Multiple Inheritance in
C#, Sígpløt. Notices, A$r, September 1989.

[Submítted Jan. 8, 1 99 1 ; revised Feb. 1, 1 99 1 ; accepted, Feb. 4, 1 99 1 J

82 T.À. Cargill

