Efficient Demultiplexing
of Incoming TCP Packets

Paul E. McKenney and Ken F. Dove

Sequent Computer Systems, Inc.

ABSTRACT: Many recent protocol optimizations put
forth for the TCP/IP protocol suite assume that a
large component of the traffic is bulk-data transfers,
which result in packet trains.' These packet trains
favor simple caching algorithms such as those found
in the BSD implementation of TCP.

Although BSD’s algorithms have been very
successful in many situations, applications that do
not form packet trains can cause these algorithms to
perform very poorly. Examples of such applications
are quite common in the area of heads-down data
entry into on-line transaction-processing (OLTP)
systems. OLTP systems make heavy use of computer
communications networks; this use is typically
characterized by large numbers of connections,” low
per-connection packet rate, large aggregate packet
rate, and small packets. This combination of
characteristics results in an extremely low incidence
of packet trains.

. A packet train is a contiguous group of packets with the same destination; a packet is a
block of data that is transmitted through a computer communications network as a unit.

. For the purposes of this paper, a computer network connection can be thought of as a
pathway that carries data between a specific user and his application.

© Computing Systems, Vol. 5 * No. 2 ¢ Spring 1992

141

142

This paper demonstrates that this causes BSD’s
caching optimizations to be ineffective. It will
analyze some alternative optimizations, one of which
performs more than an order of magnitude better
than BSD’s for OLTP applications, with almost no
performance penalty for other applications.

1. Introduction

A Transmission Control Protocol (TCP) [Pos81] protocol control
block (PCB) contains state information for one endpoint of a given
connection. A TCP demultiplexing (a.k.a. PCB-lookup) algorithm
must find the PCB corresponding to the connection for each newly-
arrived TCP packet. It does so by mapping the packet’s source and
destination Internet Protocol (IP) addresses and ports® to the proper
PCB. Since the IP addresses and ports are 96 bits long, simple index-
ing schemes are not feasible; more complex schemes must instead be
used.

BSD originally used a simple linear linked list of PCBs. Sequent’s
initial implementation of TCP followed BSD closely, retaining the
simple list. During 1988, Sequent began designing a parallel imple-
mentation of TCP for its second-generation PTX operating system
[Gar90]. An explicit goal of this effort was to support thousands of
concurrent users connected via local-area networks. This resulted in,
among other things, the algorithm described in Section 3.3.

At the same time, the first-generation TCP was causing perfor-
mance problems in sales benchmarks. Substituting the new algorithm
resulted in throughput increases of up to a factor of three.

Also about this time, Van Jacobson was conducting research aimed
at increasing TCP’s single stream performance. As a result of this re-

3. An IP address identifies the network interface through which the packet is to be sent
or received; a port identifies the application that caused the packet to be sent or is to
receive the packet. Taken together, the IP addresses and ports uniquely identify a
TCP connection.

Paul E. McKenney and Ken F. Dove

search, the BSD 4.3-Reno release augmented the linked list with a
single-line cache referencing the last PCB found. This simple opti-
mization has proven very effective in many environments; it was
quickly incorporated into Sequent’s algorithm because of its greatly-
improved handling of bulk-data transfers.

Later, the Transaction Processing Council published the TPC/A
online-transaction-processing benchmark [Gra91], which quickly came
into common use by database software and platform vendors. This is a
very important development, as it provides a precise and realistic
definition of an important application that requires large numbers of
connections. In particular, the TPC/A benchmark allows objective an-
alytic comparisons of the effects of different protocols and algorithms.

This article shows that the TPC/A benchmark is almost free of
packet trains, thereby causing the BSD algorithm to perform very
poorly. It also presents analysis predicting that an alternative algo-
rithm suggested by Jon Crowcroft [Cro91] should achieve signif-
icantly higher performance, and finally presents an alternative
algorithm that achieves an additional order of magnitude improve-
ment for the TPC/A benchmark while maintaining good performance
in other situations. This increase in performance has protocol-design
implications, as it greatly reduces the need to add protocol mecha-
nisms (such as connection IDs) that eliminate the need to search for
PCBs.

Section 2 gives an overview of the communications behavior of the
TPC/A benchmark; Section 3 analyzes the behavior of the BSD algo-
rithm, John Crowcroft’s algorithm, and Sequent’s algorithm; Section
4 presents experimental results; and Section 5 presents conclusions.

2. TPC/A Benchmark

The TPC/A benchmark simulates a banking system in which simulated
customers make randomly-generated deposits to and withdrawals from
a simulated bank with several branches. The benchmark contains scal-
ing rules that protect against “trivial” benchmark results being issued;
these rules require (for example) that the size of the various elements
of the database increase with increasing transaction rate.

The most important rule from a communications standpoint is that
the number of users represented in the benchmark be at least ten times

Efficient Demultiplexing of Incoming TCP Packets 143

the transaction rate. Specifically, a 200 TPC/A TPS benchmark run
must have at least 2,000 simulated users. The TPC/A rules are quite
strict about how users must be simulated; in particular, the network
load must faithfully represent that of real users.

Each simulated user does the following repeatedly:

1. Enters a transaction.

2. Waits for the response. The time between steps 1 and 2 is called
the “response time”. The response time for at least 90% of the
transactions must be no greater than two seconds in order for
the benchmark to be valid.

3. Waits for a randomly-selected period of time before returning
to step 1. This time is called “think time”. The think time is
selected from a truncated negative exponential distribution
whose mean must be at least 10 seconds and whose maximum
value must be at least 10 times the mean value. The purpose of
think time is to simulate real-life delay from human data-entry
personnel.

The average time required for a user to enter a transaction will thus be
at least 10 seconds, consistent with the rule that a given transaction
rate must have at least ten times that many users.

3. Analysis

The preceding description of TPC/A allows us to calculate the hit
rates and miss penalties for PCB-lookup algorithms. In each of the fol-
lowing sections, we assume optimal use of the communications media.
Each transaction requires four packets: (1) the query, (2) the transport-
level acknowledgement for the query, (3) the response, and (4) the
transport-level acknowledgement for the response.*

We will model the think time as if it were a true (rather than trun-
cated) negative exponential distribution. Since the truncation occurs
only for values at least ten times the mean, this will have negligible
effects on the results. In particular, only 0.004% of the values are

4. Although delayed acknowledgements can eliminate the need for the second packet, this
will have no effect on the results at the database server since this packet will be received
only by a client.

144 Paul E. McKenney and Ken F. Dove

neglected on average, and they sum to less than 0.4% of the total
think time.

We also assume that a user can issue transactions that are spaced
arbitrarily closely. In reality, a user may not issue a new transaction
until he has received the response from his previous transaction. Typi-
cal TPC/A runs have fewer than 10% of the users waiting for a re-
sponse at any one time, and as we shall see, the differences between
the algorithms far exceeds this amount.

Since the negative exponential distribution is memoryless, each of
the 2,000 users is equally likely to enter the next transaction. The
memoryless property is discussed at length in any text on stochastic
modelling (for example, Introduction to Operations Research by Hillier
and Lieberman [HL86]); it means that the result of any trial is inde-
pendent of past history. An example of a physical process that results
in a distribution with the memoryless property is rolling a fair die and
counting the number of rolls until a six appears.’

The following sections analyze the average cost of the BSD al-
gorithm, the “move to front” algorithm proposed by Jon Crowcroft,
the algorithm in use in Sequent’s TCP/IP product, and combinations
of these algorithms.

3.1 BSD

BSD searches a simple linear list of PCBs, with a single-entry cache
containing the PCB last found. Figure 1 shows a schematic of this list
just after the arrival of a packet for the connections corresponding to
PCB “B”.

The hit rate for the PCB cache is 1/N, which is 0.05% for a 200
TPC/A TPS benchmark. The average cost of a miss is a linear search
scanning 1,000 PCBs. The average number of PCBs that must be ex-
amined is just one if we hit the cache and an additional (N + 1)/2 if
we miss. The probability of a hit is just 1/N, so the probability of a
miss is (N — 1)/N. Thus:

N2 — 1

=1+
Cesp(N) = 1 ON

(D

5. This would result in a geometric distribution. The time required to see a single particular
face of a fair die with an infinite number of sides that was rolled infinitely quickly would
be exponentially distributed.

Efficient Demultiplexing of Incoming TCP Packets

145

Head A B — ® ® ® — Z

Cache

Figure 1: BSD PCB List After Arrival of Packet on Connection B

approaching N /2 for large N. This yields an average cost of a linear
scan of 1,001 PCBs for a 200 TPC/A TPS benchmark—since this is
exactly the cost of a miss to three places, the cache is clearly providing
little help. Since the data contained in all 2,000 PCBs will not fit into
on-chip data caches for any currently-available microprocessor that we
are aware of, this scan will involve traffic at least to an off-chip cache.
In many systems, the scan will require accesses to real memory. This
overhead motivates use of a different algorithm.

One might expect that there would be some small chance that the
packets representing a transaction entry and the transport-level ac-
knowledgement for the response might form a packet train, so that the
proper PCB would be cached when the acknowledgement arrived. One
would be right. There is a very small chance of this; the probability is
about 1.9 X 107 for a relatively fast 200-millisecond response time
in a 200 TPC/A TPS benchmark.® Keep in mind that the response
time includes full database lookup, processing, commit, and logging
for the transaction as well as the relatively small communications
overhead, which itself includes a round trip time to the client machine.
Thus, the average cost for the transaction-level acknowledgement will
be about 1001 PCBs.

Although the BSD algorithm has served admirably in many com-
mon situations [Mog91], it appears safe to say that it was not designed
with high-end online transaction processing needs in mind.

6. Although there is a 96% probability that any given user will not offer a transaction or
deliver a transport-level acknowledgement to a response during a given 200-millisecond
interval, the probability that none of the 1,999 other users will not do so is indeed
remote.

146 Paul E. McKenney and Ken F. Dove

3.2 “Move to front” List

Jon Crowcroft proposed maintaining a linear list with a “move to
front” heuristic; when a PCB is found, it is moved to the front of the
linear list. Figure 2 gives a schematic of the list just before arrival of a
packet on connection “B” and Figure 3 gives a schematic of the list
just after the arrival. Note that PCB “B” has been pulled to the front
of the list.

This heuristic results in a slight increase in the number of PCBs
searched for the TCP packet representing the entry of a new transac-
tion but a substantial decrease in the number of PCBs searched for the
transport-level acknowledgement to the TCP packet representing the
response. This results in a significant overall reduction in overhead
compared to the BSD algorithm.

Typically, many of the other users will have entered a transaction
during a given user’s (call him Jon) think-time interval. Thus, these
other users’ PCBs will precede Jon’s in the list. Analytically, the
probability of any given user having entered at least one transaction
during an interval of time T is

FTy=1—¢", 2)

where a is the per-user average transaction rate of 0.1 transactions per
second. This is just the cumulative distribution function for the expo-
nential distribution. The expected number of users from a total of

Head A B — ® & ® — Z

Figure 2: Jon’s PCB List Before Arrival of Packet on Connection B

Head B A — & ® & — Z

Figure 3: Jon’s PCB List After Arrival of Packet on Connection B

Efficient Demultiplexing of Incoming TCP Packets 147

(N — 1) users (all of them but Jon) to enter at least one transaction
during this time will be

N—1
N(T) = 2, i(N R 1)(1 — e Ty TN 1), 3)
i=0

The i factor gives the number of users preceding Jon, the binomial fac-
tor gives number of different groups of i users that can be formed out
of the N — 1 users other than Jon, (1 — e~*)" is the probability that
those i users will precede Jon, and e “T™ =19 is the probability that
the rest of the users will follow Jon. Multiplying all of these together
and summing over i results in a weighted average (the “i” are being
averaged, the rest of the factors comprise the weight) that gives the ex-
pected number of users that will precede Jon. Figure 4 shows a plot of
Equation 3 for 2,000 users.

Now, the probability that Jon’s think time will be within an inter-
val of width dT centered around a time 7 is approximately

f(T) = ae "dT. 4)

The approximation gets better as dT gets smaller. This is just the dis-

2000 T T T T T T T T

‘f
| I

1800
1600 r .
1400 | g
1200 | .
1000 F .
800 - .
600 |- 4
400 - .

200 1

Number of Other Users Entering Transactions

0 Il 1 ! 1 — Il 1 1 1

0 5 10 15 20 25 30 35 40 45 50
Time Between Transactions for Given User (seconds)

Figure 4: N(T') for 2,000 TPC/A Users

148 Paul E. McKenney and Ken F. Dove

Jon’s Last Response Ack

l Jon’s Current Txn
k| T |

Figure 5: Think Time Greater Than Response Time

tribution function for the exponential distribution (if you ignore the dT
for now).

If the think time 7 between the transport-level acknowledgement
to the response to Jon’s last transaction and Jon’s current transaction is
greater than the response time R, we have the situation shown in Fig-
ure 5. Any transaction arriving during either interval R or T will result
in a transaction or acknowledgement packet, respectively, arriving in
interval 7. Therefore the corresponding PCB will precede Jon’s when
his current transaction arrives. The expected number of PCBs in line
ahead of Jon’s will be given by N (T + R). Since the probability that
the think time will be within an interval of width dT surrounding T is
f(T), the corresponding weight (for use in a weighted average yielding
the expected number of PCBs preceding Jon’s) is just f(T)N(T + R).

On the other hand, if the think time between the transport-level
acknowledgement to the response to Jon’s last transaction and Jon’s
current transaction is less than the response time, we have the situa-
tion shown in Figure 6. Here, any transaction that arrives during the
interval labelled 7T will have a transport-level acknowledgement that
arrives during the interval labelled 7. Any transaction arriving during
either the Tk or T intervals will result in a transaction or acknowledge-
ment packet, respectively, arriving during interval 7. The correspond-
ing PCB will precede Jon’s when his current transaction arrives. The

Jon’s Last Response Ack

l Jon’s Current Txn
R LT]

Figure 6: Think Time Less Than Response Time

Efficient Demultiplexing of Incoming TCP Packets

149

expected number of users in line ahead of Jon will be given by N (2T),
resulting in a weight of f(T)N (2T).

Integrating this combined expression from zero to infinity in 7'
gives us the expected number of PCBs preceding Jon’s when his trans-
action entry arrives, given his exponentially-distributed think time:

R NS N
[Farr SN M - epesaciar 4 ®)
o i=0

N & (N -1
J ae~ T 2 i(. >(1 _ e—a(T+R))ie—a(T+R)(N—l—i)dT.
' i=0 l

The result for a 200 TPS benchmark is 1,019, 1,045, 1,086, and
1,150 PCBs, corresponding to response times of 0.2, 0.5, 1.0, and
2.0 seconds, respectively (note that 2 seconds is the maximum allow-
able average response time for the TPC/A benchmark). This is some-
what worse performance than the BSD algorithm’s 1,001 PCBs. Note
that a TPC/A is not the worst case; if the think times were determin-
istic (exactly 10 seconds always), Jon’s algorithm would look through
all 2,000 PCBs on each transaction entry. One example of a system
with this behavior is a central server polling its clients, as seen in
many point-of-sale terminal applications.

Jon’s algorithm does much better during the response-time inter-
val, shown schematically in Figure 7. Any transactions arriving in in-
terval R" will have acknowledgments during interval R, so the number
of PCBs preceding Jon’s when his acknowledgment arrives will be
given by N (2R). The length of the PCB search is 78, 190, 362, and
659 PCBs, for response times of 0.2, 0.5, 1.0, and 2.0 seconds, re-
spectively.

The overall performance of Jon’s algorithm will be the average of
the performance for the initial transaction entry and the transport-level
acknowledgement for the response. This is given by:

CJon(Na R) =
N-1 o
% > i(N i 1>(1 _ efzaR)ie—ZaR(N—lﬁ) +
R N-1
J’ - E i<N i 1)(1 — Ty 2T N=1=0 T 4 (6)
o i=0

1
2
e N-1
1] ae~T 2 i(N - 1)(1 — g Al tRY)ip=aT RN =1=0 g
2 R i=0 l

150 Paul E. McKenney and Ken F. Dove

Jon’s Txn
l Jon’s Response Ack
L r | r |

Figure 7: Response Time

Solving this numerically for 2,000 users gives average search lengths of
549, 618, 724, and 904 PCBs for response times of 0.2, 0.5, 1.0, and 2.0
seconds, respectively. This is a significant improvement over the search
length of 1,001 resulting from the BSD algorithm.

3.3 Sequent

Sequent’s algorithm, designed and implemented by Ken Dove [Dov90],
maintains a simple linear list for each of several hash chains, each con-
taining a single-entry cache containing the PCB last found on that
hash chain.” Figure 8 shows a schematic of this data structure just
after the arrival of packets on connections “A0” and “Bn”. Note that
hash chain 1 is empty, and thus its cache points nowhere.

The hit rate for the PCB cache is H/N where H is the number of
hash chains. This comes to just over 0.95% given the installation de-
fault of 19 hash chains running a 200 TPC/A TPS benchmark. The av-
erage cost of a miss is a linear search scanning N/H PCBs, 106 for the
installation default number of hash chains. The average number of
PCBs that must be examined is just one if we hit the cache and an
additional (N/H + 1)/2 if we miss. The probability of a hit is just
H/N, and the probability of a miss is (N — H)/N. Thus it is tempting

to assume:
N 2
=] -1
()
N
2H

- c(g) @®)

Csont(N, H) = 1 + @)

approaching N/2H for large N.

7. A similar approach was suggested on the tcp-ip mailing list by Lance Vissner [Vis91].

Efficient Demultiplexing of Incoming TCP Packets

151

Head 0 A0

Cache 0

Head 1

Cache 1

Head n An Bn

Cache n

Figure 8: Sequent PCB List

However, the decreased number of PCBs serviced by each cache
greatly increases the probability that there will be no packets arriving
at the server during a given transaction’s response-time interval. The
probability that no packets will arrive during the response-time inter-
val is given by:

p= e—2aR(%—1) (9)

where a is 0.1 seconds per transaction for the TPC/A benchmark, R is
the response-time interval, N is the number of TPC/A users, and H is
the number of hash chains. This probability is about 1.5% for a 2000-
user benchmark with a 200-millisecond response time and 19 hash
chains. Decreasing the number of users or the response time or in-
creasing the number of hash chains will greatly increase this probabil-
ity. For example, if the number of hash chains is increased to 51, the
probability increases to almost 21%. These compare quite favorably to
the 1.9 X 10~ probability for the single-chain BSD algorithm.

152 Paul E. McKenney and Ken F. Dove

If no packets arrive during the response-time interval, only the
single cached PCB need be examined. Otherwise, (N/H + 1)/2 PCBs
will be examined on the average. The transport-level acknowledgement
packet must thus search

N
=41
H

_ N_ - N_
e 2aR(G—1) + (1 — e 2aR(3; 1)) >

(10)

PCBs on the average. Assuming negligible loss rates, half of the pack-
ets will be acknowledgements, so the overall expected number of
PCBs to search is given by the mean of Equations 8 and 10:
N N? N
-2 2= +3= -1
N H H H
—2aR(3-1)
e > + 2E (11)
H

Csont(N, H, R) =

B | —

This yields an average cost of a linear scan of 53.0 PCBs for a 200
TPC/A TPS benchmark with 19 hash chains and a 200-millisecond
response time. In contrast, Equation 8 predicts 53.6 for a little more
than 1% error. The error gets larger with smaller numbers of users,
smaller response times and larger numbers of hash chains, exceeding
10% if 51 hash chains are substituted into the previous example.

Either case is an order of magnitude improvement over the BSD
algorithm or Jon’s proposed algorithm, and is more amenable to the
sizes of current on-chip data caches. Of course, the system administra-
tor may increase the value of H in order to get even better perfor-
mance, at the expense of a small increase in the memory used for the
hash chain headers.

Although hit ratios of a few percent are typical for a TPC/A run,
ratios as high as 30% have been observed. However, these runs were
done using old versions of database software that sent three times as
many packets for each transaction as necessary. In fact, if all these
extra packets arrived simultaneously, the hit rate would be as high as
67%. Nonetheless, the number of PCBs searched per transaction is at
least as large as that for software that exhibits “poor” hit ratios due to
more efficient use of network resources. Focusing strictly on hit ratio
is a common pitfall. The hit ratio is only part of the story; this is just
one example where the miss penalty dominates the hit ratio.

Efficient Demultiplexing of Incoming TCP Packets

153

3.4 Comparison

Figure 9 plots the cost of the PCB search against the number of
TPC/A users. Jon’s “move to front” algorithm is significantly better
than the stock BSD algorithm, and improves as the response time
decreases. The Sequent algorithm is roughly an order of magnitude
better than either of the other algorithms.

The only added cost of the Sequent algorithm over BSD is the
memory required for the hash-chain headers and the computation of
the hash function itself. Memory is still decreasing rapidly in price,
and efficient hash functions for Internet addresses are well known
[Jai89, McK91].

One could imagine combining move-to-front with hash chains.
However, better results can be obtained simply by increasing the num-
ber of hash chains. For example, if the number of hash chains in the
above example is increased from 19 to 100, the average number of
PCBs searched drops from 53 to less than 9. This factor-of-five
improvement compares favorably with the best-case factor-of-two
improvement that would be obtained by adding move-to-front.

6000 T T T T T T T T T

5000 BSD

4000 - b

3000 -

2000

Expected Length of TCP PCB Search

1000

1 [L 1 L 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of TPC/A TCP Connections

Figure 9: Comparison of TCP Demultiplexing Algorithms

0

154 Paul E. McKenney and Ken F. Dove

In addition, this reduction in PCB-searching reduces the need to
add connection IDs to TCP, such as those found in TP4, X.25, and
XTP. These protocols allow the two communicating hosts to negotiate
the value of a pair of small integers, called connection IDs, in each
data packet header. These connection IDs are typically used to directly
index an array of PCBs, thus completely eliminating the need to
search. The much cheaper search provided by hashing eliminates the
motivation for connection IDs on hosts that must do significant per-
packet processing such as that required by TPC/A.

4 Measurements

Section 1 described how a particular application benefitted dra-
matically, though subjectively, from the introduction of Sequent’s
algorithm.

Although TPC/A forms a good basis for an analytic comparison of
protocol algorithms, a real TPC/A run requires additional heavy-
weight components such as databases and transaction monitors. These
components bring with them a large number of tuning parameters,
some of whose settings are fairly sensitive to available CPU power,
which, as we have seen, is significantly affected by the choice of TCP
demultiplexing algorithm. This makes it impossible to perform a sim-
ple experiment to fairly compare these algorithms—the optimal TPS
for one algorithm would be obtained using quite different tuning val-
ues than those that yielded optimal TPS for another algorithm.

We therefore used a simple TCP connection-setup experiment to
demonstrate the difference between the BSD and Sequent algorithms.®
This experiment uses a client machine “C” and a server machine “S”
connected via Ethernet. Both machines used old, relatively slow
hardware.

In the first run, both “C” and “S” use the BSD algorithm. “C”
initiates 3,600 TCP connections to “S” as nearly simultaneously as
possible, then transmits five 100-byte datagrams on each connection
as rapidly as possible. A total of 46,800 packets are transmitted
counting data packets and protocol-overhead packets but neglecting

8. The analysis presented earlier in the paper convinced us not to implement Jon’s
algorithm.

Efficient Demultiplexing of Incoming TCP Packets

155

retransmissions. Each connection transmits as soon as it is fully set up,
so that data transmissions from those lucky connections that get set up
quickly interfere with the connection setup of the not-so-lucky connec-
tions that get set up later. The figure of merit is the time from the
transmission of the first connection setup (TCP SYN packet) from the
client to the reception of the last connection completion (TCP SYN-
ACK packet) at the client.

The second run is identical, except that both “C” and “S” use the
Sequent algorithm with 19 hash lines and that “C” initiates 5,040 TCP
connections, about 40% more than in the first run. A total of 65,520
packets will be transmitted, again counting data and protocol packets
but neglecting acknowledgements.

The first run requires 906 seconds to set up 3600 connections,
while second run requires only 193 seconds to set up 5040 connec-
tions. This is due to the fact that the first run had to examine at least
84 million PCBs, while the second run only had to examine about 8.7
million PCBs.

The overhead of TCP demultiplexing can have a dramatic effect on
overall system performance.

S5 Conclusions

Heads-down data-entry applications (and benchmarks based on them)
result in very poor performance from the BSD TCP demultiplexing
algorithm. Significant improvement can be obtained through use of
Jon Crowcroft’s move-to-front modification to this algorithm, but
order-of-magnitude improvements result from application of hashing
techniques such as those used in the Sequent TCP product.

These improvements also greatly reduce the need to add new fea-
tures to the protocol itself (such as connection IDs) that would elimi-
nate the need to search for PCBs. In fact, it is far from clear that such
an improvement would win widespread acceptance unless combined
with significant new capabilities. One example might be features al-
lowing applications to specify their bandwidth and delay requirements,
which may be necessary for multimedia applications.

156 Paul E. McKenney and Ken F. Dove

References

Jon Crowcroft. Re: Inefficient demultiplexing by 4.3 tcp/ip. Message-1D
2142@ucl-cs.uucp to tcp-ip list, December 1991.

Ken F. Dove. A high capacity TCp/IP in parallel STREAMS. In UKUUG
Conference Proceedings, London, June 1990.

Arun Garg. Parallel STREAMS. In USENIX Conference Proceedings,
Berkeley, CA, February 1990.

Jim Gray. The Benchmark Handbook for Database and Transaction Process-
ing Systems. Morgan Kaufmann, 1991.

Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations
Research. Holden-Day, 1986.

Van Jacobson. Congestion avoidance and control. In SIGCOMM ’88, pages
314-329, August 1988.

Raj Jain. A comparison of hashing schemes for address lookup in computer
networks. Technical Report DEC-TR-593, Digital Equipment Corpora-
tion, February 1989.

Paul E. McKenney. Stochastic fairness queuing. Internetworking: Theory and
Experience, 2:113-131, 1991.

Jeffrey C. Mogul. Network locality at the scale of processes. In Proceeding
of SIGCOMM 91, Zurich, September 1991.

J. B. Postel. Transmission Control Protocol. Technical Report RFC793, Net-
work Information Center, SRI International, September 1981.

Lance Vissner. Re: Inefficient demultiplexing by 4.3 TCP/IP. Message-ID
vissner.691884939@convex.convex.com to tcp-ip list, December
1991.

[submitted Jan. 17, 1992; revised Apr. 3, 1992; accepted Apr. 10, 1992]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

Efficient Demultiplexing of Incoming TCP Packets

157

