
System

Fine-Grained Access Conftol in
a Transactional Obi e ct- Oriented

Luis-Felipe Cabrera, Allen W. Luniewski

and James'W. Stamos

IBM Almaden Research Center

ABSTRACT tüe believe that access controls for object-

oriented systems should be fine-grained and thus apply

to individual methods of individual objects. The

efficient support of fine-grained access control is chal-

lenging because a check is done on every method invo-
cation. rüe present a design that uses access control
lists (ACLs) and exploits virtual memory facilities to
make these checks run fast. The costs include an extra

level of indirection for method invocation and per-user

storage for preprocessed access control information.
Given a choice between immediacy of revocation and

serializability of transactions, we selected a compro-
mise that uses a nested top-level transaction for each

invocation of an ACL method.

@ Computing Systerns, Vol. 5 . No. 3' Summer 1992 199



I. Introduction

In theMelampus vision [2], a single object-oriented system
would efficiently store, retrieve, and process a diversity of on-line in-
formation for a large enterprise. Such a system would provide naviga-
tional access as well as nonprocedural, associative access. Navigational
access selects objects by following pointers, while associative access
selects objects that match a descriptive predicate. In general, such a
system would be large, continually evolving, and geographically dis-
tributed. Atomic transactions would be an important foundation for
applications.

We believe that access control should be based on logical opera-
tions on abstract objects (i.e., methods) rather than physical operations
on files or segments that contain objects. For example, read-write per-
missions cannot distinguish between the enqueue and dequeue meth-
ods of a request queue, because a user must either be authorized for
both or for neither. Permissions based on individual methods, in con-
trast, allow more possibilities, since a user may be authorized for any
subset of methods.

We also believe that access control should be based on individual
objects rather than on all objects of a class. Different users will instan-
tiate the same class for different reasons and thus will have different
access control needs. A single user may also have a variety of access
control needs for objects of a given class.

Fine-grained access control based on individual methods of indi-
vidual objects has enough expressive power to emulate other designs,
like Hydra [13], in which rights and methods are not in a one-to-one
correspondence. Our one-to-one correspondence means that the

200 Luis-Felþ Cabrera, Allen W. Luniewski, and James W. Stamos



designer of a type need not anticipate all the relevant rights for a type
that may be used by diverse applications.

Existing access control mechanisms for object-oriented systems

cannot be used for Melampus. For example, access control mecha-

nisms for persistent object systems [8] do not support associative ac-

cess. Access control mechanisms for object-oriented databases, such as

Rabitti et al. [7J, support associative access, but have not addressed

fine-grained access control. This paper presents a design that supports

efficient access control at the level of individual methods on individual
objects.

Our design for access control has several goals. First, it should
prevent unauthorized method calls on objects. Second, revocation of
access rights should take effect immediately. Third, the cost of access

control should not be excessive. Fourth, the system should support

mutual suspicion so that a user can execute untrusted methods in a
safe fashion.

We make the following assumptions:

o programs are written in a safe subset of a strongly-typed,
high-level language;

. all executable code is produced by a trusted compiler;

. at each point in time, each thread in Melampus runs on behalf
of some atomic transaction; and

. each distributed transaction uses an atomic commit protocol to
ensure that all participants agree on the outcome.

The presence of serializable transactions conflicts with our goal of
immediate revocation. Serializability makes a concurrent system easier

to understand, prove correct, and use, but it may block a transaction
for an arbitrarily long period of time. Revocation immediacy, how-

ever, cannot tolerate blocking. For Melampus, we advocate that imme-
diacy take precedence over serializability.

The remainder of the paper is structured as follows. In Section 2

we discuss access control in Melampus. Section 3 defines the seman-

tics of ACLs. In Section 4 we present our support for efficient access

controls. Section 5 examines the support for immediate revocation.

Section 6 discusses related work, and Section 7 presents our conclu-
sions.

Fine-Grained Access Control in a Transactional Obiect-Oriented System 201



2. Access Control in Melampus

A principal is an entity to which authorizations are granted [10]. In
Melampus, each method invocation is done on behalf of some princi-
pal called the current principal (CP). If the CP is not authoÅzed, the
method is not invoked and an exception is raised. Every CP is always

authorized to apply methods to instances of the builçin types such as

integer, array, and record.
In multi-user systems, suspicion may exist between any pair of

principals. In Melampus, suspicion may exist between the CP and the
owner of an object on which the CP wishes to invoke a method. If
method execution takes place with the method caller as the CP, then
the caller is vulnerable to the misdeeds of unknown code. If execution
takes place with the object's owner as CP, the object's owner must
ensure that his privileges are not used by the caller in unanticipated
ways.

This mutual suspicion is exacerbated in Melampus by queries, be-
cause a single query may manþlate many objects. Consider the query
"Show me all objects that have a method M that returns a string equal
to 'felipe' when M is applied to the object." The invoker of such a
query often has no knowledge of the objects the query manþlates or
their owners and implementers. The power of such queries also in-
creases the severity of a security breach when a principal's privileges
are abused.

Melampus addresses these problems by automatically determining
how and when the CP changes. Upon entry to a method, the CP is
changed to the owner of the object whose method is being invoked.
Upon exit, normal or abnormal, the CP is returned to its previous
value. Thus, the CP follows a strict LIFO stack discipline which we
call the principal stack. The program has no explicit control over the
principal stack or the CP. In this approach, a method cannot use the
privileges of its callers, nor can a caller abuse the privileges of object
owners. The caller must ensure that the callee is authorized to manipu-
late the method arguments. Note that the owner of an object must trust
the implementation of the object, because its methods execute with the
full privileges of the owner.

An access control list (ACL) [9] is a set of authorized principals.
V/e decompose the access-control matrix [5] into access control lists

202 Luis-Felipe Cabrera, Allen W. Luniewski, and James W. Stamos



rather than capabilities because an ACL localizes access control infor-

mation and thus facilitates revocation. In addition, ACLs seem prefer-

able to capabilities in the presence of associative access to objects.

Our granularity of authorization protects each method of every ob-

ject with an ACL. Each site has a trusted protection manager (PM)

that performs access control checks and administers cached ACL in-

formation. ACLs may be shared, because several methods from the

same or different objects may be protected by the same ACL. Based

on data gathered from our AFS [11] installation at the IBM Almaden

Research Center, we expect a high degree of sharing of ACLs. For ex-

ample, in Section 4.4 we use extrapolation to show that in a system

like Melampus the number of ACLs could be four orders of magnitude

smaller than the number of objects.

3. ACL Semantics

In addition to traditional set operations such as insert, delete, and

lookup, each ACL supports two methods dealing with revocation:

. setRevocationPolicy(A,P) sets the revocation policy of ACL A
to P. P is either passive or aggressive.

. getRevocationPolicy(A) returns the revocation policy of
ACL A.

The semantics of delete depend on the revocation policy in effect

at the time of deletion. Suppose principal Alice is inserted into ACL A
and later deleted from A. If A has a passive revocation policy when

Alice is deleted, the delete method simply removes Alice from A. If
A has an aggressive revocation policy, the delete method removes Al-
ice from A and then aborts all ongoing transactions that noticed that

Alice was a member of A while A had an aggressive revocation pol-

icy. Tlansactions that used A during this time but did not notice that

Alice was in A are not aborted. This is implemented by having the

ACL implementation inform the local transaction manager whenever a

transaction refers to an ACL that has an aggressive revocation policy.

When Alice is removed from A, the ACL implementation sends an

abort message to the local transaction manager. The local transaction

manager adds all transactions that noticed that Alice was in A while A
had an aggressive revocation policy to a volatile list of ongoing trans-

Fine-Grained Access Control in a Trqnsqctional Obiect-Oriented System 203



actions that should be aborted. The transaction manager consults this
list during the voting phase of the commit protocol and votes to abort
a transaction if it appears on the list.

The serializable nature of transactions requires that a transaction
that deletes a principal from an ACL logically execute after every
transaction that previously inserted the principal in the ACL or that
noticed its presence in the ACL. This conflicts with immediacy of ac-
cess control revocation, which requires that a delete method execute
immediately.

Our solution to this dilemma involves nested top-level transactions
[6]. Nested top-level transactions let one transaction (T1) syn-
chronously invoke a separate transaction (T2) in such a manner that
the commit/abort decisions of the two transactions remain indepen-
dent. The application programmer (or end user) is responsible for any
compensation; i.e., undoing some or all of the effects of T2 if Tl
ultimately aborts.

Each public method on an ACL executes as a nested topJevel
transaction. Thus, when an ACL method completes, any locks it set
on the ACL may be released. This allows for the possibility of fast
lookups and immediate revocation without unduly complicating the se-
mantics or implementation of ACLs. Because nested topJevel transac-
tions may require explicit compensation, each method that modiûes an
ACL returns sufûcient information for the user or application to do
any later compensation. 1

4. Support for Efficient Access Control

Since an access control check is made for every method invocation, a
naive implementation of access controls (e.g., compiler generated
checks) could severely degrade performance. The dynamic nature of
this protection scheme precludes the compiler from optimizing out the
run-time protection checks. To counter these problems we cache ACL
information (Section 4.1), we exploit special cases (Section 4.2), and

l. Note that when at least two users can modify the same ACL, ACL updates that involve
the same princþl require additional coordination in order for compensation to be cor-
rect.

204 Luis-Felipe Cabrera, Allen rù/. Luniewski, and James W Stamos



we use paging hardware (Section 4.3). For simplicity, in this paper we

consider only a single site implementation. Extensions needed to han-

dle distribution are discussed in Stamos et al. ll2l.

4.1 Caching

The PM caches the results of ACL lookups as triples of the form
<ACL, principal, boolean), where the boolean indicates whether the

principal is in the ACL. The protection manager consults an ACL only

after a cache miss. ACL updates (i.e., insertions and deletions) are

propagated to the cache. This provides immediate revocation as well

as immediate authorization.

4.2 System-Defined ACLs

A system-defined ACL is an authorization "common case" that is rep-

resented by a distinguished, reserved, object identifier. These object

identifiers are known to the system and cannot be used for any other

purpose. When a system-defined ACL is encountered, the protection

manager performs a trivial, ACl-dependent computation rather than

consulting its cache or the ACL. For example, the owner-only ACL
lets only the owner of an object perform a method, whereas the world

ACL lets every principal in the system perform a method, and the sys-

tem-administrator ACL lets the local administrator of the system per-

form tasks such as backup. The object identifiers of these system-

defined ACLs distinguish them from ACLs whose contents are

determined by users.

4.3 VM-based Support for Access Control

Because of the extremely high frequency of access control checks,

caching and special cases together will still not make the approach

practical. In this section we outline an approach that uses a computer's

virtual memory facilities to provide an efficient implementation of
ACl-based protection.

The generated code for method invocation in conventional object-

oriented systems first finds a method dispatch vector for the object

whose method is being invoked. Then, the lth entry from that vector is

Fine-Grained Access Control in a Transactional Obiect-Oriented System 2O5



used to invoke the tth method. An efficient ACL implementation is ob-
tained through two techniques:

l. the method dispatch vector is made dependent upon the CP; and
2. an extra level of indirection is introduced between the method

dispatch vector and the actual methods.

The first technique allows principal-dependent changes to be made to
the state of memory. The extra level of indirection isolates the effects
of revocation to a single principal.

Figure I illustrates the data structures involved in this approach.
When an object is mapped into the address space of a process, a sur-
rogate for that object, the local object, is created in that address space.
The local object has three components: a pointer to the real object, a
local owner field, and a pointer to a local implementation. The pointer
to the real object allows the method code to find the instance variables
for that object. The local implementation is a principal-dependent
method dispatch vector for this object. All data structures in Figure 1

other than the local object and the local implementation are shared by
all principals.

All local implementations for a given principal are gathered into a
single segment, called the local object segment, which is mapped at a
well-known place in the address space of the process. The local imple-
mentation for a given object is at the same offset within the object
segment for all principals. When the CP changes, the local object seg-
ment for the new CP is mapped into the address space. Observe that
the local implementation pointer in any local object is always valid
since the object segment is always mapped to the same location and
the local implementations for the object are at the same location.2

Each entry in a local implementation is either null or it indirects
through another segment, the ACL segment. A null pointer implies
that either access to this method is not permitted or that the protection
manager has not yet determined if access is permitted.

2. An alternative implementation for local object segments is to partition a portion of the
address space into nonoverlapping ranges called partitions, assign each partition to a dif-
ferent principal, and use the contents of an index register to select the appropriate parti-
tion. In this scheme, local implementations for the same object are at the same offset in
each partition, and changing the CP is as simple as updating the index register.

206 Luis-Felipe Cabrera, Allen W. Luniewski, and James W. Stamos



Another Implementation

Method vector object segment

Figure 1 Data structures to implement efficiently ACLs.

There is one ACL segment for each pair of ACL and principal.3
Each entry in an ACL segment is either null or a pointer to the appro-
priate method code. If null, then either access is denied to that
method or access to the method needs to be validated. Note that an

entry in an ACL segment may be referred to by many pointers in lo-
cal implementations (implying that multiple objects of the same type
are protected by the same ACL).

If a null pointer is encountered in a local implementation, the pro-
tection manager fields the fault and must determine, and interrogate,
the ACL associated with that method. If access is denied, an exception

3. This implies many segments. Alternatively, the set of ACL segments for a given princi-
pal could be gathered into a single segment whose mapping is changed upon change of
cP.

Fine-Grained Access Control in a Trarusactional Object-Oriented System 207



is raised. If access is permitted, an ACL segment must be founda for
that ACL and the CP, and an entry made for this method in that seg-

ment. The process is then resumed and the method invocation pro-
ceeds.

If a null pointer is encountered in an ACL segment, the protection
manager fields the fault and determines if access is permitted to that
method by the current CP. If access is not permitted, an exception is
raised. If access is permitted, the entry in the ACL segment is altered
to refer to the correct method code and the invocation is resumed.

Revocation occurs when a principal is removed from an ACL.
When this happens, the system unmaps the ACL segment associated

with that ACL and principal. Observe that this is a constant time oper-
ation. The next time that the process attempts to indirect through that
ACL segment, a fault to the protection manager will occur. The pro-
tection manager will then determine if the CP is allowed access to that
method. If access is denied, an exception is raised. If access is permit-
ted, a new ACL segment is mapped with all null pointers in it. The
entry for the method currently being invoked is then set to refer to the
appropriate method code, and the process is resumed.

Revocation may also occur when one ACL is replaced by a second

ACL as the ACL for an object's method. All principals that are in the
original ACL but not in the new ACL must have their access to the
object's method revoked. This is achieved by updating the local im-
plementation of the object for each affected principal: a null pointer is
written in the entry that corresponds to the method. The next time one

of the affected principals tries to invoke the object's method, a null
pointer is encountered in the local implementation. The protection
manager fields the fault and handles it as explained above.

Access rights are granted when a principal is added to an ACL;
this authorization takes effect immediately. If we kept the mapping
from each ACL to the set of objects that use the ACL for access con-
trol, the affected local implementations and ACL segments could be

updated immediately. However, to reduce space consumption, we do
not keep the mapping from ACLs to objects. We instead defer the up-

4. An ACL segment is created if necessary.

208 Luis-Felipe Cabrera, Allen W. Luniewski, and James W. Stamos



dates until the protection manager fields a null-pointer fault and estab-
lishes that the current principal is indeed authorized to invoke the cur-
rent method.

Access rights may be granted when one ACL is substituted for an-
other ACL. Again, authorization takes effect immediately. Because

we know the specific object and the specific ACLs, the affected local
implementations and ACL segments can easily be found and updated.
Alternatively, these updates could be deferred until the protection
manager fields a null-pointer fault.

Our approach permits method invocation to proceed with low time
overhead in the normal case-one extra level of indirection. There is
additional CPU overhead when a valid invocation involves a trip
through the protection manager (the abnormal case). Our approach
imposes two other costs: there is a space cost for the local object
segments and the ACL segments, and changing the CP involves
remapping the object segment.

4.4 ACL Statistics

The space and time efficiency of this implementation depends on the
number and size of ACLs. Since Melampus envisions a world with a
very large number of objects and principals, the Melampus protection
implementation depends on moderate growth in the number and size

of ACLs as the number of objects and principals grows.
To understand these issues, we examined the ACLs in our local

AFS [11] fileservers to help us predict the size, nature, and shareabil-
ity of ACLs that might be found in a system like Melampus. Although
AFS protection is not as fine-grained as it would be in Melampus,
AFS is a real system, and statistics on its ACLs could be obtained.

Each directory in AFS has its own ACL, and all files in the direc-
tory share the ACL. Each entry in the ACL lists the set of rights
granted to a principal for that directory.

We considered 18,874 AFS directories and hence 18,874 ACLs.
There were 243 distinct principals listed in the ACLs; most principals
were individuals. The remaining principals were roles individuals
would assume or groups of individuals such as projects or depart-
ments. Each ACL contained 2 to 12 entries. The average ACL size

Fine-Grained Access Control in a Tiansactional Object-Oriented System 209



was 3.1 entries, and only 2.5Vo of ACLs contained more than 4

entries. There were 367 ACLs with different contents. If ACLs could

be shared, the number of ACLs would be between 367 (maximum

sharing) and 18,874 (no sharing).

Because there are 7 AFS rights (rliwdka), one can view each di-

rectory as having 7 fine-grained ACLs. Each fine-grained ACL would

be a set of principals, since the single right would be understood from

the context. We considered all 18,874 * 7 : l32,ll8 fine-grained

ACLs. There were 636 distinct, fine-grained ACLs, and their average

size was 1.9 principals. Note that the number of ACLs increased by a

factor of 7, but the number of distinct ACLs increased by only 1.7.

These results suggest that the number of distinct ACLs scales well

with the average number of methods per object. For example, if the

growth is linear and each object has 20 methods, the number of fine-

grained ACLs would grow by another factor of 20/7 : 2.9 for a total

increase factor of 4.9.
To test the sensitivity of our results to the number of ACLs, we se-

lected every Nt¿ directory (1 (: N <: 20) and repeated the above

analysis. The number of distinct (fine-grained) ACLs grew sublinearly

with the number of directories. Let A be the number of distinct ACLs,

and let D be the number of directories. Using a least-squares fit on a

log-log plot, we determined that A: 30 x p0'25 . For fine-grained

ACLs, we determined that A : 77 * D0'2r. These results suggest that

the number of distinct ACLs scales well with the number of objects.

To test the sensitivity of our results to the number of principals,

we selected every Mtå principal (1 4: M <- 40) as well as 3 fre-
quently-used system principals of the form system:*. 'We completeþ

ignored the other principals and directories administered only by ig-

nored principals. 'We learned that the number of distinct ACLs per

principal varied between 1.2 and 3.0, while the number of distinct,

fine-grained ACLs per principal varied between 1.9 and 3.4. The re-

sults suggest that the number of distinct ACLs varies linearly with the

number of principals. The average size of ACLs varied between 1.9

and 3.1, while the average size of f,ne-grained ACLs varied between

1.3 and 1.9. The average size tended to increase slightly with the

number of principals.
Our analysis of AFS ACLs lets us estimate the number of distinct

ACLs in Melampus. Consider a Melampus system in which every prin-

2lO Luis-Felipe Cabrera, Allen W. Luniewski, and James W. Stamos



cipal owns I million objects and the average number of methods per
object is 20. The least-squares fit predicts less than 22,000 distinct,
fine-grained ACLs for a Melampus system with 243 principals. If we
scale the system so that there are 10,000 principals and 10 billion ob-
jects, we would expect to have less than 1 million distinct, fine-
grained ACLs. Note that the number of ACLs is more than four orders
of magnitude smaller than the number of objects.

In summary, AFS ACLs were small, and a high degree of ACL
sharing was possible at various granularity levels. We believe that sim-
ilar results would be obtained if AFS directories and files were re-
placed by Melampus objects in our research environment. Our sensi-
tivity analysis suggests that scalability in terms of the number of
objects, methods, and principals would not be a problem.

Our analysis raises some concerns, since it implies a large degree
of sharing of ACLs. This means that changes to an ACL with an ag-
gressive revocation policy may abort many transactions. There are
four reasons why this should not be a serious problem in practice.
First, we believe that ACL changes are likely to be infrequent. An av-
erage ACL size of 3.1 suggests that many ACLs are "owner*world"
and thus rarely change. Second, at any point in time most objects, like
most files in ûle systems, will not be accessed. Revocation affecting
only idle objects will not abort any ongoing transactions. Third,
adding a principal to an ACL does not abort ongoing transactions.
Fourth, in many cases removing a principal from an ACL will not
abort ongoing transactions. For example, in a fairly friendly environ-
ment delete operations generally reflect organizational changes and re-
move a principal from group-related ACLs. In this case it is likely that
the affected user has no ongoing transactions that would be aborted.

5. Support for Immediate Revocation

The operational semantics we provided for the delete method suggests

a strategy for implementing passive revocation and aggressive revoca-
tion. To implement aggressive revocation, protection managers track
dependent transactions in volatile storage. For cached results (Section
4.1), for example, each protection manager associates each of its cache
entries with the ongoing transactions that depend on the cache entry.

Fine-Grained Access Control in a Tiansactional Object-Oriented System 2Il



An indirect way of revoking access is by substituting one ACL for
a second ACL as the ACL for an object's method. ACL substitution is
a nested top-level transaction. All ACL methods that execute after
ACL substitution are governed by the revocation policy of the new
ACL. Tiansactions that depend on principals being in the old ACL are
dealt with according to the revocation policy of the old ACL. Nothing
needs to be done if the old ACL has a passive revocation policy. If the
old ACL has an aggressive revocation policy, the system considers

each principal that has transactions depending on it for the object and
method in question. If such a principal is not present in the new ACL,
the system votes to abort the corresponding transactions. Otherwise,
the relevant transaction dependence information is reestablished if the
new ACL has an aggressive revocation policy.

6. Related Work

A great deal of research has been done in the area of computer secu-

rity. V/e discuss the design principles that we did not adopt as well as

access control mechanisms in object-based systems.

Saltzer and Schroeder [10] proposed eight design principles for se-

cure systems; we adopted all but two. Separation of privilege, which
requires multiple keys to unlock a security mechanism, is not immedi-
ately applicable to our design, but may be applicable to enhancements
implemented by users.

Least privilege requires that users and programs operate using the
least set of privileges necessary to complete the job. This principle
conflicts with the database policy of maximized sharing [3], which
permits a user to make maximum use of the information in a data-
base. In our design, which maximizes sharing, the privileges of a
principal depend only on the mapping from object methods to ACLs
and the contents of ACLs. We support mutual suspicion by changing
the protection domain when the current principal (CP) is changed.

The BirliX Operating System [4] implements a least privilege pol-
icy for untrusted principals by using subject restriction lists (SRLs) in
addition to ACLs. In BirliX, a trusted principal can access an object if
the object's ACL permits the access. An untrusted principal can access

an object only if both the object's ACL and the principal's SRL per-

212 Luis-Felipe Cabrera, Allen W. Luniewski, and James W. Stamos



mit the access. We did not pursue this approach because it conflicted
with our policy of maximized sharing.

Our design uses existing techniques such as ACLs [9], a run-time
stack of principals, nested top-level transactions [5], and caching. Pro-
tected subsystems [10], for example, are constructed using the princi-
pal stack and access control checks at the level of methods.

The Melampus protection model changes the current principal on
every method invocation. This has some similarity to the Unix setuid
mechanism which has some known security flaws [1]. Melampus
avoids these flaws through three techniques. First, in Melampus the
privileges available to a principal during method execution are pre-
cisely the privileges granted to that principal. In contrast, with setuid
the setuid principal gains the privileges of its caller. Second, in con-
trast to the setuid facility, there is no programmatic way to explicitly
change the current principal. Third, for the purpose of keeping a secu-

rity audit trail, the CP stack provides the complete current CP history
of the process, thus allowing a faithful audit.

7. Conclusion

This paper presents a design for efficient fine-grained access control
that supports immediate revocation even in the presence of transac-
tions. We have developed these ideas in the context of Melampus, but
we believe they apply to any object-oriented system.

Our key contribution is the identification of discretionary access

control problems in a multi-user, distributed, transactional, object-
oriented system that permits associative access. Our design addresses

these problems by supporting mutual suspicion and by combining seri-
alizable transactions with immediate (and thus nonserializable) revoca-
tion.

Our design contains a fine-grained access control mechanism that
lets the owner of an object specify the set of users that may invoke
each of the object's methods. We provide a protection mechanism
based on access control lists for granting access rights and a stack
model for switching between protection domains. For reasons of au-
tonomy and efficiency, the system caches results of lookup operations
on access control lists. These caches are outside the transaction mecha-

Fine-Grqined Access Control in a Tiansactional Object-Oriented System 213



nism and are subject to immediate revocation. Owners of access con-

trol lists determine the trade-off between the semantics of revocation

and the overhead of execution.
We plan to exploit virtual memory hardware to realize an efficient

implementation of our design. The high frequency of (successful) ac-

cess control checks and the low frequency of access right changes will
let us skew the implementation appropriately.

Acknowledgements

We thank Joel Richardson and Peter Schwarz for their help in the de-
sign of the Melampus protection system. Their comments, together
with those of Laura Haas, have also helped us improve the presen-

tation.

214 Luis-Felþ Cabrera, Allen V/. Luniewski, and James W. Stamos



ttl

tzl

t3l

l4l

t5l

t6l

171

t8l

tel

tl0l

t11l

References

S. Bunch. The SETUID feature in Unix and security. ln Proceedings
of the 10th National Computer Security Conference, pages 245-253,
September 1987.

L.-F. Cabrera, L. Haas, J. Richardson, P. Schwarz, and J. Stamos.
The Melampus project: Toward an omniscient computing system.
Technical Report RJ 7515, IBM Almaden Research Center, San Jose,
California, June 1990.

E. B. Fernandez, R. C. Summers, and C. Wood. Database Security
and Inte grity. Addison-Wesley, Reading, Massachusetts, 198 1.

O. C. Kowalski and H. Härtig. Protection in the BirliX operating sys-
tem. In Proceedings of the l0th International Conference on Dis-
tributed Computing Systems, pages 160-166, May 1990.

B. W. Lampson. Protection. In Proceedings of the Fifth Princeton
Symposium on Information Sciences and Systems, pages 437-443.
Princeton University, March 1971. Reprinted in Operating Systems
Review, 8, 1, January 1974, pp. 18-24.

B. Liskov and R. Scheifler. Guardians and actions: Linguistic support
for robust, distributed programs. ACM Trans. Prog. Lang. Syst.,
5(3):381-404, July 1983.

F. Rabitti, D. V/oelk, and W. Kim. A model of authorization for ob-
ject-oriented and semantic databases. ln Proceedings of the Interna-
tional Conference on Extending Database Technology, pages 23I-250,
March 1988.

J. Rosenberg and J. L. Keedy, editors. Security and Persistence.
Springer-Verlag, May 1990.

J. H. Saltzer. Protection and the control of information sharing in
Multics. Commun. ACM, L7(7):388-402, July 1974.

J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278-1308, Sep-
tember 1975.

M. Satyanarayanan, J. Howard, D. A. Nichols, R. N. Sidebotham,
A. Z. Spector, and M. J. West. The ITC distributed file system: Prin-
ciples and design. In Proceedings of the 10th ACM Symposium on Op-
erating Systems Principles, pages 35-50. ACM Special Interest Group
on Operating Systems, December 1985.

Fine-Grained Access Control in a Transactional Object-Oriented Systern 215



Uzl J. W. Stamos, L.-F. Cabrera, and A. W. Luniewski. Mutual suspicion,
immediate revocation, and serializability in Melampus. Research Re-
port RI 8161, IBM Almaden Research Center, San Jose, CA, June
1991.

t13l W. lVulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: The kernel of a multiprocessor operating system.
Commun. ACM, 17(6):337-345, úllne 1974.

[received April 3, 1992; revised June 17, L992; accepted Jaly 2,1992]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the Computíng Systems copyright
notice and iæ date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherrvise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

216 Luis-Felþ Cabrera, Allen W. Luniewski, and James W. Stamos


