
Through an error on my part, the semi-final version of Sakkinen's ar-
ticle in 5.1 (pp. 69-110) was printed, instead of the final version. My
personal apologies. - P.H. Salus

Corrigendum to 'A Critique of
the Inheritance Principles of
c+ +"
Markku Sakkinen University of Jyväskylä, Finland

I nuu"noted some errors in Sakkinen llggzlafter publica-

tion. One of them is so significant that submitting a corrigendum
seemed necessary; I am grateful to the editors for agreeing to publish

it. At the same time it is convenient to point out and correct the
smaller mistakes. Most of these corrections had already been sent in,
but by accident did not get into the published version. John Skaller
and other participants of the Usenet group 'comp.std.c#' must be

acknowledged for pointing out one of the minor errors recently (see

below); this lead me indirectly to discover the major one.
The significant change is that Restriction 2 in $5.5 (p. 101)-

which I had felt as an unwelcome necessity-should be removed. In-
deed, the argument about Example 12 that precedes the restriction is
invalid, and the restriction would completely forbid inaccessible fork-
join inheritance!

Think about a case in which the restriction is violated: a non-
immediate ancestor A of class C is accessible to two intermediate
classes D and E in the inheritance graph, but there is no class in the
inheritance graph to which both D and E are accessible. The paths

from C to A through D and E cannot then both be accessible, thus by

Corrigendum 361

the main Rule in $5.+ 1p. 98) itself, they correspond to two disjoint A
subobjects. Therefore it is fully feasible to have different redefinitions
of A's virtual functions in D and E: the restriction is not needed.

The reference given for the BETA language at the end of $:.S 1p.
84), [Madsen 1987], is not the most appropriate one. Another article
from the same book should have been referred to: [Kristensen et al.
19871.

There is a slight misunderstanding about the accessibility of con-
structors of virtual base classes in $3.6 (p. 86). I supposed that the
constructors of a virtual base class would be automatically visible to
all descendants, ignoring access specifiers. This is not true, but in-
stead, non-immediate descendants may need to declare that class also
as a direct base class only in order to be able to invoke its construc-
tor(s). A class may therefore be non-instantiable (abstract) also be-
cause it has no access to necessary base class constructors, and not
only because of pure virtual functions [Skaller 1992].

It is an open question whether such an additional direct base decla-
ration is always needed in current C** in order to use explicit ini-
tialisers, even if the constructors of the indirect virtual base classes

are accessible to the most derived class. On the one hand, as stated in
Ellis & Stroustrup [1990 ç12.6.2, p. 290]:

Initializers for immediate base classes [. . .] may be specified in the
definition of a constructor.

Also in the example on p. 294 there is no other reason for such a

redundant-looking declaration. On the other hand, the rationale given
for the above rule is that multiple initialisations of the same base class
subobject are prevented; but for virtual base classes this is already
guaranteed by their special rules. Also, the HP compiler (Release 2.1)
available to me did allow the constructor of a non-immediate virtual
base class to be invoked.

There is a small but irritating clerical error in Example 7 (*4.2, p.
91). Class CowboylVindow should be derived from lVWindow and
CCowboy instead of Window and Cowboy. Readers may have
guessed that, because the example makes no sense otherwise.

The availability of the new book by Bertrand Meyer ll992l causes
modifications to a couple of comparisons between C+ + and Eiffel.
Current Eiffel seems to allow, by renaming, the possibility that is de-
sired in $4.2, in the last paragraph beginning on p. 92. It is called

362 Corrigendum

'joining' in Meyer Í1992 $101. The types of the inherited routines

(functions) that are joined in a subclass do not even need to be identi.

cal.
In $4.3, the second last line of p. 93 contains an incorrect com-

parison: inheriting a class without exporting any features in Eiffel cor-

responds to protected rather than private derivation in C**. The

disadvantage of Eiffel described in the last paragraph (p. 94) has been

corrected in the newest version of Eiffel. The following paragraph

should be added to the end of $4.3.
So-called qystem-level validity checking in current Eiffel

[Meyer 1992 522] will detect this kind of attempted misuse of a
Fr>GD-srAcr object: not the assignment, but any invocation of an

ARRAY routine. Thus Eiffel can now better than C** enforce the pro-

tection of non-public features toward outside clients. However, Eiffel

does not offer any protection toward descendant classes: there is noth-

ing corresponding to private derivation (nor private members). The

designer of class FI)GD_STACK cannot therefore easily cancel the orig-

inal decision to use ARRAY in the implementation, because some de-

scendant classes may already depend on it. Also, Eiffel's system-level

checking is pessimistic: it can reject even progfams that would actually

be type safe.

References

B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen and K' Nygaard, The

BETA Programming Language, Research Directíons in Obiect-

Oriented Programming (8. Shriver and P. Wegner, Eds'), pages 7-48,
Cambridge, MA: MIT Press, 1987'

B. Meyer, Effil: the Language, Hemel Hempstead, England: Prentice Hall,

t992.

M. Sakkinen, A critique of the Inheritance Principles of cl+, computing

Systems, 5(1): 69-1 10, Winter 1992.

J. Skaller, postings on Usenet (comp.std.c#), 1992.

Corrigendum 363

