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ABSTRACT: Real-time applications need guarantee of
response deadline by the computing system, prompt-
ness of reflex responses, reliability of application code.

The first part of the paper examines the requirements
for real-time operating systems and ends with the
DunejX basic design decisions.

The operating system must be able to provide immedi-
ate tasks for reflex reaction to interrupts and au-
tonomous tasks for reacting with a specified deadline to
periodic or aperiodic events related to the real-time ap-
plication. Thus the behaviour of the computing system
must be thoroughly controiled.

The guarantee of response is provided by a high level
real-time scheduler which supervises the priorities
given to the tasks, and by a priority-driven, reentrant,
preemptive, real-time kernel.

In order to provide fast response results, the real-time
kernel takes advantage of the symmetric multiprocessor
architecture.
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The reliability of the application code is eased by
providing programming tools and allowing code
reusability through full Unix compatibility.

The second part presents the detailed implementation
choices of DunejX which aim at reducing all known
kinds of latencies due to processors, resources or I/Os
contentions. Immediate task association with an inter-
rupt level and with an autonomous application task
context, inter-task shared memory segments, priority
inheritance, deadlock prevention, contiguous files are
some of the relevant features which are provided.

The third part rapidly describes an example of a host
architecture for this operating system and the last part
gives some performance measures on this host architec-
ture.

This paper presents the design requirements and the technical solu-
tions that led to the Dune-iX Realjlime Operating System.

DunejX, released in 1991, corresponds to a recent evolution of
Real:Iime Operating System.

Major aspects of DunejX design are:
. true deterministic real-time behaviour,
. full compatibility with standard Unix interface,
. symmetrical multiprocessor implementation.

I Reallime Requirements

I.l What is Real:Time Computing?

Real-time applications include alarge spectrum of applications, such as

embedded systems, process control, mobile control, nuclear power
plants, laboratory experiments, robotics, and even banking systems.

Application dependent events occur periodically or randomly and

force the computing system to react within a fixed time delay or at a
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given date, and within a small time window, in order to capture exter-
nal data, to initiate or terminate some activities, to send responses or
commands.

A real-time computing system may be designed:

o as a snapshot generator system which triggers tasks fast enough
to periodically catch the external world behaviour through
sampling,

. or as a reactive system including tasks which answer to external
prompts,

. or as a mix of both, scheduling the execution of periodic and
aperiodic tasks.

Application requirements lead to a distinction between soft real-
time and hard real-time. Applications present hard real-time require-
ments when the failure to meet timing constraints (tasks or message
deadlines, sampling dates, timing dispersions within a set of
"simultaneous" measurements . .) will result into economical, human
or ecological disasters.

Real-time is a serious problem for operating systems and is often
misunderstood. Real-time systems, no matter how large they are, are
first characterized by time constraints. The correctness of the reaction
depends not only upon the logical result of a computation, but also
upon the time at which the result is available by the application. "The
right answer late is still wrong." [Bennet 1988, Small 1988, Burns
1990, Burns 1991, Levi 19901

Common Misconceptions

Some authors such as G. Lelann [Lelann 1990] and J. Stankovic
[Stankovic 1988] have listed several common misconceptions. Let us
recall three of them, which we consider the most penalizing.

a) "Real-time is fast computing; thus advances in supercomputer hardware,
in bus or network trffic bandwidth, in computation algorithms, wiII nke
care of real-time requirements".

Fast computing will reduce the average execution time of a given
set of tasks. However the problem is to meet the individual time re-
quirements of each reaction. Fast computing is not enough, the most
important property that has to be guaranteed is response time pre-
dictability.
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b) "Real-time is fast priority handling and fast context switching; thus
preemption latencies will be reduced and the nsks will start qs soon as
possible" .

Rapidity is not the sole issue; a fast but too frequent switching

might be penalizing. Usual scheduling policies are often dumb, in or-
der to take fast scheduling decisions. The problem is to take the right
decisions based upon time constraints; of course once the decision has

been taken, the execution has to be fast and must occur at the right
moment. There is an optimum time window when landing a jet plane:

landing too early would cause the plane to crash, landing too late

would run the plane out of the strip. A strict integer based fixed prior-
ity cannot adequately describe time constraints, model the time laxity
and also cope with random events. Dynamic priorities and preemption
are compulsory and appropriate deterministic scheduling is often nec-

essary. At least, it is required that once the most urgent task has been

determined to run "hic et nunc", no service with lower urgency will
partly or fully preempt the resources needed by this most urgent task.

c) "R.eal-time is assembly coding, priority interrupt programming and
device driver writing; high level languages and complex programming
tools lead to unefficient code; assembly coding allows to use machine
level optirnization techniques" .

Low level optimization produces only low-level benefits; better
efficiency results from global optimization or from carefully chosen

hardware improvements. Real-time applications need to be highly reli-
able; their code has a significant size (several hundred thousand of ma-

chine instructions); they have a long lifetime (several decades) and will
have to accept several hardware changes. Reliance on clever hand-cod-

ing and difficult to trace timing assumptions is a major source of bugs

and clearþ a very poor engineering management technique when one

seeks for quality.

1.2 Real:Time Operating System F'acilities.

A modern real-time operating system should provide facilities to fulfill
the three major requirements of real-time applications. These are:

. guarantee of response from the computing system,

. promptness of a response, once it has been decided,

. reliability of the application code.

428 J. Banino, J. Delcoigne, C. Kaiser, and G. Morisset



I .2.1 Time Driven Scheduling

Operating systems decisions are taken according to scheduling policies.

[Habermann 1976, Lister 1984, Tanenbaum 1987]
It is important to realize that scheduling problems in real-time sys-

tems are different from the scheduling problem usually considered in
classical operating systems.

a-Usual operating system scheduling

In usual operating systems, CPU activity is optimized to provide maxi-
mum throughput with the constraint of favouring some class of tasks.
The primary concern is resource utilization instead of time constraints.
Long term scheduling policies activate tasks according to application
requirements (payroll listing every month, . . .) and to resource
availability (mounted disks for payroll ûles, . . .), while short term
scheduling optimizes resource utilization. In interactive systems
(sometimes called time-sharing systems), complex scheduling policies
enforce fairness among on-line users and favour short jobs.

In usual operating systems, all tasks are considered as aperiodic
with unknown date of arrival and unknown duration. They have no
compulsory execution deadlines.

b-Real- time sy stems constraint s

A real-time operating qystem must be able to take into account
periodic tasks (as a reaction to periodic events) with fixed period and
fixed deadlines, as well as with aperiodic sporadic tasks (events) with
unknown date of occurrence but with fixed deadlines. In both cases

the duration of a task execution is not completely known since it can
depend on the current values of data, on input-ouþut transfer delays,
on shared resource availability, on fault tolerance. Time constraints not
solely apply to individual tasks but often to collections of cooperating
tasks which are activated to react to events. This cooperation may add
precedence relations and resource conflicts which lead to face an end-
to-end timing analysis.

Whilst external events, resource conflicts, task duration and fault
occurrences cannot completly be characterized and remain partly ran-
dom, the system must be controlled such that its timing behaviour is
understandable, bounded and predictable.

Thus, the determinacy requires that the user timing specifications
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of the computing system behaviour are taken into account at a primary

decision level and are used to control the system, whilst all operating

system latencies must be precisely bounded.

These properties can be aimed at by a layered approach based on a

real-time task scheduler and on a real-time kernel.

bl-The real-time task scheduling

Given a priori static acceptance test for schedulability of a set of
periodic tasks with given period, execution time and deadlines, the

real-time task scheduler can use heuristics [Chetto 1989] to dynami-

cally estimate the processor load needed to fulfill the periodic tasks

deadline constraints. The remaining processing activity, called the

system laxity, is usable to cope with random sharing of the resources

and with sporadic arrival of tasks. If additional processing power has

to be preserved for the sporadic events, some periodic tasks may be

suppressed or replaced by simpler ones. Depending on application re-

quirements, penalty functions may be defined according to the number

of important tasks that miss their deadlines; a suppression rank may be

dynamically evaluated to control the abortion of tasks and to save

enough cPU time for facing avalanches of urgent events which are

produced by catastrophic situations.

A hard deadline scheduler can be added, assigning static priorities

to periodic tasks (rate monotonic scheduling) or using dynamic priori-

ties and preemptive scheduling (earliest deadline or least laxity).

The real-time task scheduler is in charge of determinacy in the

large, and cares with the user defined constraints on all the tasks of
the application.

b2-The short time latencies

The operating system kernel must enforce the real-time behaviour

assumed by the real-time task scheduler, i.e. promptness and known

latency. The timing predictions must include the insurance that the

resources are available on time and therefore cope with access

conflicts and fault tolerance.
The real-time kernel is in charge of determinacy in the small and

cares with the constraints of individual tasks'
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1 .2.2 Real-Time Kernel

A real-time system can be viewed as a three-stage pipeline: data acqui-
sition from sensors, data processing and output to activators or dis-
plays.

The real-time kernel must provide an efûcient mechanism for all
these stages (efûciency meaning here no latency, good choice, simplic-
ity,rapidity...).

a-IlO management and control

For data acquisition and for activators, it must provide extensive I/O
capabilities, such as:

. a fast and flexible input and output processing power in order to
rapidly capture the data associated with the priority events, or to
promptly supply the actuators or the displays,

. the absence of I/O latency caused by file granularity and by I/O
buffer management, and therefore the capability of predicting
the transfer delays of prioritised I/O.

b:Task management and control

For data processing, the real-time kernel must provide mechanisms

which really fulfill the timing requirements:

o concurrency between kernel calls, limited only by the mutual
exclusion to sensitive data, i.e. a fully preemptive and reentrant
kernel,

. fast and eff,cient synchronisation primitives which will avoid

unnecessary context switching,
. swift task context switch,
. an accurate granularity of time servers,
. a task scheduling which respects the user defined priority, and

which does not cause unexpected task switching nor priority
inversion [Kaiser 1983].

c-Resource management and control

In a multitasking system there will undoubtedly be contentions:
contention to memory bus, contention for memory ports, contention
for interrupt dispatcher, contention for access to kernel tables pro-
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tected by mutual exclusion. It must be shown how this contention is

avoided or reduced by an appropriate design and how it can be limited
witn predictable timings.

No iow priorrty service shouid increase the latency of a higher pri-
ority service by holding, acquiring or preempting a processor or any

resource in an non essential case nor by causing unnecessary context

switches.
Deadlocks caused by dynamic resource allocation must be pre-

verrred in the kernel.

1 .2.3 Software Engíneering Tools

Large real-time applications require a huge engineering effort, both on

software and hardware. One might say that real-time is an iceberg

with an immerged part of engineering techniques and with a visible

part of challenge for guaranteeing timing constraints.

Real-tirne applications are often very large, require an almost zero

defauit software (some part of it must sometimes be certified), have a

long lifetime during which the users requirements change and cause

the software and har<iware to evolve. For good engineering, all these

considerations require facilities for integrating the standards and for
using high technoiogy in software engineering.

a-Cross engineering

One usual response to this situation is to use a separate powerful set of
design and programming tools and a cross compiler for generating

code for the target machine. This fails for real-time applications since:

. there is no standard real-time operating system and the cross

compiler needs to be associated with ad hoc libraries for the

target operating system,
. program ciebugging must be started with a real-time and

environrnental sirnulator and can be finalized only on the field,
o program maintenance and evolution require the same effort and

the simulator has to be adapted when the environment evolves.

b - Inte grated engineering

A better approach, using modern computing facility expansion, is

to consi<ier the whole engineering of the real-time computing system as
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a unique process including creating, debugging, testing, maintaining
and evolving the code as well as running the application. Thus the
unique artefact which implements this process must be able to support
its own workbench for accepting relevant tools.

For this integrated engineering requirement, a real-time oporating
system should comprise extended capabilities for software engineering.
The to-day solution is to propose full Unix compatibility (and IEEE
POSX 1003.4 standard interface [Posix 1992]).

1.3 Basíc Concepts of Dune-iX

The basic concepts of Dune-iX cope with the real-time problems pre-
sented above and apply to periodic and aperiodic tasks with deadlines
to tulfill.

According to this approach, three basic decisions led to the
Dune-iX real-time environment:

1) a full real-time behaviour provided by:
a) a high level real-time task scheduler controlling the selection

of tasks and the choice of their priority value, according to
the required execution times and deadlines,

b) a short term scheduling policy provided by a priority driven
real-time kernel. This reentrant, preemptive and modular
kernel allows several interrupt routines and several tasks to
share resources, to switch and to communicate. Immediate
task association both with an interrupt level and with an
application task context, inter-task shared memory segments,
priority inheritance, deadlock prevention, contiguous files
are some other relevant features which are provided to reduce
all known kinds of latencies due to processors, resources or
I/Os contentions.

2) multiprocessing capabilities fully and symetrically implemented
in the kernel, allowing to efficiently use a common memory
multiprocessor tightly coupled with real-time I/O controllers.

3) ful1 Unix compatibility, i.e. binary and code compatibility.

Beside the specific aspects of DunejX, the basic frame-work of its
design rely on classical techniques, such as preemption, reentrance,
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APPLICATION PROCESSES

UNIX SYSTEM V

FUNCTIONALITIES

REAL.TIME

FUNCTIONALITIES

REAL.TIME MULTIPROCESSOR KERNEL

Figure 1. The DunejX kernel and its interface

symmetrical multþocessing, mutual exclusion, deadline scheduling,
priority queues, that are being implemented since at least two decades
in operating systems [Bétourné 1970, Organick L972, Wilkes 1970].

These design decisions provide an actual real-time kernel imple-
menting all the Unix functionalities. (Figure 1)

The DunejX kernel was first developed in 1982 by a research
group of CEA, the French Atomic Energy Research Institution, which
decided to implement a new real-time kernel with full Unix interface.
It was a Motorola M 68000 uniprocessor version. The current version
is the multiprocessor symmetrical version of it which has been engi-
neered by Dune Technologies on Motorola MC 68030s (Dune 3000
architecture).

Related work are found in other recent systems such as þnxOs of
Lynx Real:Iime Systems, RIU of Concurrent Computer, HPUX of
Hewlett Packard, Real/IX of Modcomp [Bauer 1990, Gallmeister
1991, Posix 19911.
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2 Real:Time Aspects of the Dune-iX
Kernel

2.1 Tasks

Application programs are described in terms of tasks which are logical
units of concurrent processing. With each task is associated a priority.
The priority value is defined by the user program and this value is
used for controlling task scheduling.

Tasks may be immediate or autonomous.
Immediate tasks are used for reflex reactions to interrupts; their ex-

ecution is one-shot and non-cyclic, and will not use blocking kernel
calls. Once an immediate task has been triggered on a processor, it
executes on this processor until completion.

Autonomous tasks have no such restrictions.
An autonomous task can dynamically change its priority value or

the priority value of another autonomous task; the kernel cannot do it,
unless for coping with priority inheritance.

A priority is given to a task when created. However, the priority
level of any task can be modified by the primitive rlnice(pid,p)
which enables the running task to set priority p to any task known by
its pid.

This allows a particular autonomous task to implement a long
term scheduler, which is specific to a given application for coping with
special constraints such as periodic hard real-time tasks and which
dynamically controls the priority values of these periodic tasks.

The priority value applies to any queueing service in the kernel:
scheduling queues for application code as well as for kernel code,
semaphore queues, I/O queues or any event queue.

All tasks are preemptive in any execution mode, in application
code as well as in kernel code.

2.2 Priority Management

Tasks are ordered according to a fixed hierarchy of priority levels.
(Figure 2)
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Immediate tasks can receive only one of the seven highest levels
labeled 7 to I, and corresponding to hardware interrupt levels.

All autonomous tasks run with interrupt level0 and are totaly or-
dered in a decreasing priority range from +0.127 to +0.000 and from
-0.001 to -0.128. Positive values are used for real-time tasks while
negative values are used for background tasks. Priority value 0.000
(also written 0.0) is used for the whole set of time-sharing tasks which
may receive also a sub-priority level x according to a time-sharing
policy; thus the priority 0.000x may be used for UNIX tasks which
subpriority level only, x, can be modified for the time-sharing moni-
toring.

A task is in one of two logical states: active or blocked. A task is
blocked either by a semaphore when a shared resource is not available
or when it waits for some result or some signal from another task, or
when it has not been activated yet by an external or timing event. An
immediate task is never blocked and is created in the active state when
its associated event is caught by the interrupt mechanism.

As the number of active tasks may be larger than the number of
processors, all active tasks may not run simultaneously; thus an active
task may be in one of two substates: eligible or running.

brocked € actÍve -' 
eligible

__) running

Immediate tasks are scheduled by hardware and never migrate.
The basic scheduling rule for immediate tasks is the following:

when an immediate task becomes eligible, i.e. when it is triggered by
an interrupt, it preempts any task of lower hardware priority running
on any processor.

The basÍc scheduling rule for autonomous tasks is that at any
time, in a Dune multiprocessor architecture with n processors not pre-
empted by immediate tasks, the n active autonomous tasks of higher
priority run.

The scheduler algorithm operates on a single list of active au-
tonomous tasks. This list is organized by decreasing priority. The n
running tasks are the first ones of the active list. (Figure 3)

To fulfill this basic rule, it is necessary that autonomous tasks can
be preempted and be able to migrate.
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Any change of priority or any modification in the set of active
autonomous tasks may cause to preempt running tasks.

Some events may modify the list of active autonomous tasks and
immediately modify the tasks allocation. These events are:

. blocking and reactivating an autonomous task attempting to
access a shared kernel resource (peripheral, system buffer,
message, pipe, semaphore, . . . ),. blocking an autonomous task waiting for an interrupt (end of
system I/O, signal notification by an immediate task),

. changing explicitly the priority of an autonomous task with the
nice or rlníce command,

. end of the time sharing time slice or start or end of a delay
primitive.

These events lead the running autonomous task t to call the
reentrant scheduling kernel routine. At the end of its execution by
processor x, this call can have several results, according to the basic
scheduling rule and to changes in the set of the nth highest priority
tasks:

. return to the calling task t if it is still one of the nth higher
priority tasks,

' if the calling autonomous task t is no longer in the set of the nth
higher priority active tasks, put the calling task in the list of
eligible tasks, allocate processor x to the highest priority eligible
task u, force a local context switch of processor x from t to u,
and return to the newly current task u,

. if the set of then nth highest active tasks has been changed and
nevertheless contains the calling task t, interrupt processor y
which is running the active task w of lowest priority and return
to the calling task t. On processor y, this interrupt will cause
the active task w to call the reentrant scheduling kernel routine
and will end with a processor switch of processor y after putting
task w in the list of eligible tasks and electing the highest
priority eligible task u.

Thus the reentrant scheduling kernel routine is called:
. either explicitly in the code of a kernel primitive, after having

inserted, moved or deleted one or several tasks in the list of
eligible tasks,
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. or indirectly when requesting a shared kernel resource'

. or when returning from an immediate task which has inserted

another task in the list of eligible tasks. In the latter case, the

reentrant scheduling kernel routine execution is forced at the

bottom of the interrupt stack; this causes the immediate task to

end with a switch to a task chosen according to the basic

scheduling rule çnd not necessarily to the previously interrupted

task.

Some examples of tasks allocations to the different processors are

given in Figure 4lon p. 442).

As immediate tasks do not migrate, they may be forced to inherit
the order of their arrival. An illustration of such a situation is given in
Figure 5 lon p. M4l.

2.3 Task Structures

2.3 .l Task Segmented Space

When considered as a data structure or an information management

object, a task is a composite object which is split into six components

of contiguous references. These components are:

. a static data segment,

. an invariant text or code segment,

. a stack segment,

. dynamic data segments, allocated at run time, by rt-alloct
' shared memory segments, used for intertask communication,
. an external segment, used for external objects accessing.

The first three segments are standard Unix segments. The others

are specific to DunejX.
The external segment is managed only at run time with the

"rt-vmeO" primitive which enables or disables access to the entire
external (or VME) space. Enabled external addresses are usable only
in supervisor mode of execution.

2.3.2 Mapping to Physical Memory

The mapping of the task segments to physical memory is hardware

dependent.
When the hardware architecture provides a segmented memory,

the mapping is straightforward.
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However, in most processors, to-day, a paged virtual memory is
managed by a memory management unit (MMU) and a page table.
Each task can be bound to a page table and the running task makes

use of the MMU. The virtual memory is a single and contiguous ad-

dress space in which all the different segments of a task must be

placed either by the compiler or by the linker. The different segments
may be associated with different protection keys. The placement and

the protection of segments are done with a granularity of one page.

Finally, at run time, the MMU mechanism maps the virtual pages of
the running task to the physical page frames which have been allocated
to it. In order to share data among tasks, all the virtual pages which
are supposed to reference the same data have to be mapped to the
same physical frame.

In order to favor response time, the programs are resident and the
virtual pages are never swapped; paging is used for placement only.

Still in order to favor response time of disk transfers, logically con-
tiguous pages, corresponding to a memory zone allocated by rlalloc
or to a memory segment, are mapped into contiguous physical page

frames. Thus an I/O transfer need not use the MMU nor be aware of
page boundaries.

Memory management of the Dune 3000

In Dune 3000, a host architecture presented in chapter 3 below, every
task is bound to a virtual memory which is divided into pages of 4
KBytes. The virtual memory is partitioned in a main subset which is
mapped to physical memory by a MMU mechanism and in a VME
subset which is mapped to the real time I/O boards of the Dune 3000
computer.

The MMU mechanism of each processor board translates the vir-
tual address into a physical one. The physical memory of the Dune
3000 can vary from 8 to 48 MBytes, depending on the configuration,
and is divided into page frames of 4 KBytes.

2.3.3 Autonomous Task Creation

Creation of an autonomous task is the result of the activation of the
"fork0" primitive, leading, as in UNIX, to the duplication of the
static data segment, the stack segment and the dynamic data segment.

The text segment and the shared memory segment are shared.
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At time T1

At lime T2 arrival of lT3 and lT1

At t¡me T2

After arrival

of lT3 and lT1

Al t¡me T3

After ending

of lTl

Al time T4

Aftêr acl¡vation

ofG

At timê T5

Attêr end¡ng

of lT3

B/C mêans that tasks C,D and E ar€ time-sharèd

Figure 4. b) Second example of task allocation
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At time T1

At time T3>T2

lT5 terminated

At T3, lT3 is running again while lT4' remains preemptêd

Figure 5. Consequence of non-migration of immediate tasks

@ffiFF=*,,'E
At t¡me T2

after sequence

of arrivals
tT6, tTs, tT6'
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2.3 .4 Multithreading and rt-fork

A primitive for creating real time multiple threads of control is also
available. The "rLfork0" primitive creates an autonomous task with
the same effect as "fork", except that it duplicates only the stack
segment. The parent and child resulting tasks therefore share their
code, static data and shared memory segment. This latter segment can
then be used also for shared memory data communication schemes.
(Figure 6)

2.3 .5 Immediate Tasks Declnration

When an immediate task is declared, it is associated with an execution
context consisting of an external interrupt vector value, of a private in-
terrupt stack and of a procedure which should be executed when the
interrupt occurs. An immediate task is declared within an host au-
tonomous task the virtual memory of which acts as a shared carrier.
The procedure code of the immediate task is placed in this virtual
memory. When the immediate task is created on a given processor, it
runs bound to its private interrupt stack and to its carrier virtual mem-
ory. Several immediate tasks may be declared within the same carrier
virtual memory. Moreover, in a Dune multiprocessor architecture with
n processors, all n processors must be available to respond to n occur-
rences of the same associated external interrupt; thus n immediate
tasks must be created. This is made feasible by providing reentrant in-
terrupt procedures and by associating n execution contexts with an im-
mediate task declaration, each context providing a private interrupt
stack for each processor. (Figure 7)

The following kernel primitives are available for immediate tasks
(Figure 8):

rlimt(routine-address, inlvector, marstack-size) allows an
autonomous task to create as many immediate task contexts as proces-
sors; each context is associated with the external interrupt vector
inlvector value, the autonomous task pid, a stack of size
marstack-size and the interrupt procedure routine-address. The prior-
ity level is fixed by a bus controller register. An immediate task runs
in supervisor mode and consequently without any system protection.

rldelimt(inlvector) allows to suppress the immediate task con-
texts associated with the external interrupt vector inlvector.

rlfastÍmt(routine-address, inlvector) allows to create express
immediate tasks which will run without context saving; if the interrupt
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main( )

if (fork( )==0) proc-A( );
if (rt_fork( )==o) proc_B( );
if (rt-fork( )==O) proc-D( );
rt_imt(proc_lT_3, );
rt_imt(proc_lT_4, );

proc_C.

Figure 8. A example of programme and its memory management
on a uniprocessor configuration

STATIC DATA A STATIC DATA B,C,D

CODE A,B,C,D,IT3,IT4

SHARED MEMORY A,B,C,D,IT3,IT4

The DUNEiX Real:Iitne Operating System 447



procedure routine-address does use registers it has to be programmed

to explicitly save them; thus an express immediate task has a faster

context switch.
Note that the sole primitives which an immediate task may use are

the non-blocking fiollowing ones: rlnotitQ, rlvalid0, time$,
rltimeQ, kit[, signalQ, msgsndQ, semopQ, and exitQ.

2.4 Task Cooperation

2.4.1 Interrupt and Immediate Task Synchronization

Any external interrupt causes the creation of an associated immediate
task. This immediate task can read or write the external bus devices.

It can also trigger another external bus interrupt and cause the creation
of another immediate task which may run on another processor or on
the same processor after preempting the former immediate task, ac-

cording to the basic scheduling rule for immediate tasks.

Note that an immediate task may trigger an interrupt at the same

level, creating a clone task which may run concurrently on another
processor, if it is available, and provide additional I/O transfer power.

(For example, if an immediate task has to read a large vector of exter-

nal devices, one immediate task may read it upwards aftår creating a
clone to read it downwards, each task ending when all the devices

have been read, which is noticeable with a version number or a read-

ing date.)

2.4.2 Immediate Task Cooperation Inside the

Kernel

Immediate tasks may call reentrant kernel primitives and may use

some shared kernel resources; their cooperation as usual in any sym-
metrical multiprocessor architecture, uses a kernel spin lock, which
sets processors in a busy waiting loop when necessary. This spin lock
is controlled by two procedures mitQ and rit0 which are executed

with interrupts masked. (see Illustration 2)

2.4.3 Immediate Task and Autonomous Task

The interactions between immediate tasks and autonomous tasks are
the following ones (Figure 9):

a-an immediate task has access to the context of its host au-
tonomous task and it may read or write data in the shared communica-
tion segment of its virtual memory.
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b-a direct synchronisation mechanism is available between the two
types of tasks with a kind of kernel counting semaphore, also imple-
mented with spin locks. For this purpose, an integer count is created
for each immediate task. The kernel primitives are the following:

rlnotitQ is used by an immediate task to post a signal; it acts like
a V primitive with semaphores; the associated count is incremented
and, if any, the highest priority queued autonomous task is activated;

rlwaitit(inlvectorn delay-value) is used by an autonomous task
to wait for a signal posted by an immediate task; it acts as a P primi-
tive with semaphores; the count associated with the immediate task
coping with the interrupt inlvector is decremented and if it is negative
the calling autonomous task is blocked and priority queued; the task
is blocked at most a number of milliseconds fixed by the parameter
delay-value.

rlvalit(inlvector) indicates the current value of the count associ-
ated with the immediate task coping with the interrupt inlvector.

c-this direct synchroni zation mechanisms extend straightforwardly.
On the one hand, the rtnotit signal may be provided by any task in
the set of immediate tasks sharing the same interrupt vector value
inlvector. On the other hand, any task in the set of autonomous tasks
sharing a given uid (user identifier) may receive this signal, or wait for
it, when using rlwaitit.

d-an autonomous task can trigger an immediate task by simulating
a external interrupt with rlsimit(inlvector, intJevel).

e-standard Unix System V ipc primitives with messages, signals or
semaphores are also available with the restriction that immediate tasks
can call only msgsndQ and kilt0 primitives or carry out only V opera-
tions on semaphore sets.

2.4.4 Autonomous Tasks Cooperation

All data communication, cooperation and qynchronization among au-
tonomous tasks are performed with kernel primitives which present
the standard Unix semantic and interface and which have a real-time
reentrant and preemptive implementation.

These are the standard unix ipc (messages, semaphores, shared
memory segments), pipe, signal or network (sockets, streams) primi-
tives (Figure 10).
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2.4.5 Synchronizatíon Within the Kernel

Since the kernel is reentrant, several kernel calls, resulting either from
interrupting a processor or from multiprocessing, may compete for the
shared but mutually exclusive resources. This sharing is done in a clas-

sic way by kernel semaphores using the spin locks presented above
(see Illustration 3). Recall that any task queueing and queue service is
priority driven and that all servers are preemptive, except during the
spin lock service (compulsory either for data consistency and for dead-

lock prevention).

2.5 Kernel Resource Management

2.5.1 Critical Sections

A kernel implements seVeral objects such as tasks, virtual memories,

pipes, events, files, and so on, and the descriptors of these objects can

be considered as logical resources; similarþ the descriptors of perþh-
erical devices and of pages of physical memory are considered as re-

sources. The DunejX real time kernel implementation is not mono-

lithic. Careful design can lead to clean separation of the resources

allowing concurrent calls of the kernel as long as these concurrent
calls do not use the same resource. In a concurrent kernel, each re-
source or each class of resources has to be kept consistent and its ac-

cess has to be protected by a critical section. Critical sections of code

are programmed with spin locks (if necessary, a kernel call is forced

in a busy waiting loop) or with kernel semaphores (if necessary a ker-
nel call is blocked and the processor is allocated to another task or to
another kernel call).

2.5 .2 Deadlock Prevention

Suppose that two tasks T1 andT2 need both two resources Rl and

R2, which are each mutually exclusive. For the sake of consistency

suppose that T1 andTZ are not preemptive. This may cause a dead-

lock if Tl requests successively Rl and R2, and if T2 requests succes-

siveþ R2 and Rl. It occurs when Tl is waiting for R2 already allo-
cated to T2, and when T2 is waiting for Rl already allocated to Tl.
This deadlock situation can be generalised to any circular wait.

In the example above, deadlock will never occur if both tasks re-
quest successively Rl and R2. This scheme can be generalised in pro-
gramming all resource requests in the same order; this is the classical
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policy of deadlock prevention by ordering all the resources (it was
originally devised by Havender in 1968 for IBM 05/360 [Havender
1968, Habermann 19761).

In the case of a small size kernel with an a priori known list of
resources, this programming policy is easily manageable; this has been
done for the Dune-iX kernel. This policy is also usable and should
be recommended for any real-time applications with fixed set of
resources.

Recall that the same deadlock situation occurs when an immediate
task running a critical section of code on a processor P is interrupted
for allocating the processor to another immediate task which in turn
needs to run the critical section. This situation is avoided by masking
interrupts during the critical section of code (see the spin lock pro-
gramming above).

2.6 Reducing Kernel Latency or What
Preemption Really Means

2.6.1 Kernel Reentrance Plus Kernel Preemption

The DunejX kernel is not monolithic and therefore its design allows
several kernel calls to concurrently run while using different resources.
This allows a multþocessor system to have a unique kernel code in its
coÍrmon memory and to run this kernel code purely symmetrically. To
be effectively concurrent, the kernel code need to be reentrant and to
use a stack per kernel invocation; the stack used is that of the invoking
task which is used both for user code and for kernel code.

Once reentrant, the kernel can also be preempted without any ad-
ditional cost since spin locks and semaphores have already been imple-
mented for reentrancy and multþocessing. Moreover, a kernel call
can start running on a processor, be preempted, and finish running on
another processor. This allows strong symmetry of processor utiliza-
tion [Habermann 1976, Organick 1972,Wilkes 1970].

2.6.2 Priority for Kernel Invocations

Once the kernel being reentrant and preemptive, there is no difference
between kernel code and user code; therefore the kernel code, which
is running a kernel call invoked by a task T, is just a particular proce-
dure of that task T, and is part of the task (it needs not to be run in
supervisor mode unless it executes privileged instructions or accesses
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protected data); it uses the task stack and it shares all the tasks be-

haviour. Thus it can be ruled by the task priority mechanism. Block-

ing a kernel call with a semaphore is just blocking the calling task;

reactivating a blocked kernel call is just reactivating its calling task.

As a consequence, a low priority task running a kernel call will be

preempted by a high priority task running user code. The scope of the

priority policy contains the kernel.

2.6.3 Priority Inheritance

Critical sections and priority scheduling can lead to a paradoxal phe-

nomenon [Kaiser 1983, Sha 1987] known as priority inversion.

Consider, as an example, a monoprocessor system with four real-

time tasks, TI, T2, T3 and T4 with decreasing priorities. At a given

moment they are all blocked except T4 which is running a critical sec-

tion. Suppose now that Tl, T2 and T3 are activated by an external

event. The basic scheduling rule causes T1 to preempt the processor.

Suppose that T1 needs to run the same critical section as T4. The mu-

tual exclusion semaphore will block T1, and the basic scheduling rule

will elect T2, and after it, T3, for running. They run before T1, that

has a higher priority. IVhen they end, then T4 can run and flnish the

critical section. Only then T1, the most urgent task, can proceed!

One method of limiting this effect is to use priority inheritance

[Kaiser 1983]. With priority inheritance, a task priority is no longer

static; if a task T1 is blocked waiting for task T4 to undertake some

computation in a critical section, then the priority of T4 becomes the

maximum of Tl and T4 priorities, as long as T4 remains in critical
section. In other words, a task within a critical section dynamically

inherits the maximum of the priorities of the tasks queueing for this

critical section if this maximum is higher than its present priority.
When T4 quits the critical section, it receives back the priority it had

when entering the critical section.

Note that priority inheritance is dynamic: when a new task is

queued, it may contribute to increase anew the priority of the task

running the critical section.
Note also that critical sections are often nested; therefore priority

inheritance has to be recursively applied: when a new task is queued, it
may contribute to augment the priority of the task running the critical
section and, if this latter task is queued for a second critical section,
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the priority of the task running this second critical section may also be
augmented. When a task is queued temporarily only or when a signal
causes its abortion, the inheritance has to be cancelled recursively.

Priority inheritance is of paramount importance for real-time sys-

tems and is implemented in Dune-iX. Priority inheritance applies
recursively in Dune-iX.

2.7 Reallime Input-Output

2.7.1 Real:Time Disk and Contiguous Files

The standard disks are partitioned, and each partition can receive a
Unix type "file system", which includes all the types of "{Jnix ûles",
(normal, directory, special, pipe, link) plus the "contiguous file" type.
The disk cache is handled by the IiO controller.

DunejX kernel enables to declare contiguous files. A contiguous
file is a file in which logically consecutive blocks have been mapped
onto physically consecutive blocks on disk. Thus a single disk access
can transfer several contiguous blocks of a file to a user memory
buffer. The benefit of such files is that they require less head move-
ment and have shorter access time. Applications have a better control
of the access time to contiguous files. Those files are created by a par-
ticular primitive rlcreateQ, and are then used with any standard
Unix primitive such as open0, read0, write0, statQ, execQ. . . ,
and of course by utilities using these primitives.

Contiguous files can be used to contain the binary executable im-
ages in order to speed up loading. Of course, Unix utilities are good
candidates for contiguous files.

Each opened file contains one single buffer in the kernel, which
includes the current block being used by the application.

2.7.2 Direct Disk Input-Output

Input and output operations with contiguous files may be directly per-
formed with a task buffer, without passing via a kernel buffer when
using the particular rldreadQ, rldwrite0 primitives. So, when the
current pointer is positioned on a disk sector border, and when the re-
quest is an integer number of sectors, there is only one request trans-
mitted to the I/O controller, which moreover performs seeking and
accessing in one operation.
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2.7 .3 Disk Consistency

When a task requests successive logical write operations on a disk or
when a logical write request is transformed into several physical write
operations on the disk, the latter are always performed in the same or-
der as the logical requests. There is no optimization on transfers on a
given disk. This is done to ensure file system consistency. Therefore,
in case of power supply breakdown, the "file system description" re-
rnains consistent with the stored status of the disk; this allows to re-
cover a consistent disk space after failure. The absence of write opti-
mization at the disk transfer level may slow down the standard Unix
file operations. If these operations are time critical, then contiguous
files should be used.

2.7.4 Real:Time Behaviour of Device Drivers

Dune-iX allows to incorporate new device drivers within the kernel.
Any device, for example a disk driver, is a kernel object which is ac-

cessed by a set of procedures and which is described by a device de-
scriptor. Device procedure are reentrant code. As any kernel object,
the device descriptor, and the device procedures, may be shared by
several tasks and its access is therefore protected by a specific

semaphore. As the semaphore queue is ordered by priority, the I/O
operations are also priority driven.

The I/O operation use the maximum available parallelism since

each device is a separate resource; if several disks are physically acces-

sible in parallel, the kernel may contain as many resources, i.e. as

many disk descriptors, as there are distinct paths to disks.

2.8 Time Management

The standard Unix timers have a time granularity of one millisecond
and are used in alarm0 and rltimeQ primitives. Additional timers
are present and are programmable by applications. They are based on

five 16 bits physical timers which can count with binary or decimal
digits, upwards or downwards. Two of them can generate interrupts.

2.9 Integrated Engineering

Dune-ix is a kernel which provides a fully Unix compatible interface.

All system calls of Unix System V Release 3 are basic Dune-iX calls
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and they are executed by the Dune-iX Real-time kernel with real-time
behaviour. Other kernel calls have been added for speciûc real-time
functionalities.

The whole set of kernel calls is illustrated in Figure 11.

For the Dune 3000, the Unix compatibility has been extended to
binary compatibility with the Motorola Unix qystem, SYSV68K. This
allows to directþ use all binary versions of utilities deveþed for the
latter system, such as networking facilities, X-window graphics or de-

UNIX SYSTEM V FUNCTIONALITIES

accept* fork msgget semget stime uname
access getdents msgop semop sync unlink
alarm getmsg nice send* qysfs ustat

bind* getpid open setpgrp time utime
brk getsockname* pause setuid times wait
chdir getsockopt* pipe shmctl uadmin write
chmod getuid plock shmget ulimit rmdir stat
chown ioctl poll shmop umask select*statf
chroot kill ptrace shutdown* umount semctl statfs

close link putmsg signal
connectx listen* read sigset

creat lseek recvx socketx
dup mkdir
exec mknod
exit mount
fcntl msgctl

*Primitives from UNIX SD

DUNEJX REAL-TIME EXTENSIONS

rlalloc rlfastimt rlnotit rLvalid rLvme
rlcreat rldelimt rt-waitit rlstat rlread
rLfork rt-mod rLsimit rLtime rlwrite

rt-imt rL nice

Figure 11. List of DunejX kernel primitives
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velopment tools. This also allows to embed new and powerful software

tools in real-time applications.

3 Example of a Host Architecture

for Dune -iX

3.1 Logical Architecture

This section describes the requirements for an architecture which can

enhance the real-time behaviour of DuneiX.
Such an architecture must rely on two strongly coupled basic units

(Figure 12):

. a computing block providing symmetric multiprocessing and

common memory,
. an input-ouþut block composed of a set of I/O controllers.

The efficiency of the coupling of elements of each block is pro-

vided by two interconnection buses and by a dynamic interrupt router.

a) The computing block

The computing block should comprise a set of processors, possibly

with their own cache and local memory, a set of shared autonomous

memory boards, an I/O processor transfering I/O data and interrupts,

a set of timers and one or several interconnection buses.

The processors should have a test and set like operation, and a

MMU device providing memory relocation and protection.

The incoming interrupts should be dynamically forwarded to an

available processor.
The computing block should be designed in order to reduce all

possible contentions such as contention to memory ports or buses, to

the I/O processor, to the interrupt dispatcher, etc.

b) The input-outPut block

The input-output block should contain a set of I/O controllers provid-

ing standard access to real-time devices as well as to working station

devices.
These controllers should allow transfers with disks, networks,

printers, serial lines, terminals, bit-map graphics.
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3.2 Example of the Dune 3000

The Dune 3000 (Figure 13) is an example of a host architecture which
has been designed by Dune Technologies.

The computing block operates on a fast memory bus working at

37,5 Mbytes/s. Processors access memories via this internal memory

bus. The memories are shared by all processors and include at any

time, Dune-iX operating system as well as applications data and code.

This is consistent with the design decision to provide a symmetric mul-

tiprocessor architecture.
The input/output boards are connected to a VME bus, (system I/O

board, and user's real time I/O boards) and they provide the different

connections to the usual peripherals as well as to the real time devices.

a) Processors

The processor boards are equipped with Motorola MC 68030 proces-

sors operating at 25 MHz, coupled with the floating point coprocessor

MC 63882. The Dune 3000 can operate with I to 4 processor boards.

None of the processors is specialized.

Each processor accesses the common memory through a private

cache of 32 Kbytes. Each processor also has a local memory of 32

Kbytes used by the kernel.
The caches are automatically updated by hardware. Cache consis-

tency is ensured by a "bus snooper" based on the "write through"

technique, of a "replace on match" type. Therefore each cache includes

a mechanism which detects a write operation made by another proces-

sor on the memory bus and which invalidates the corresponding input,

if any in the cache.

This way of using the cache memory avoids unnecessary loading

of the memory bus. Caching and consistency management are per-

formed by hardware, therefore the cache operations are hidden to the

programs.

b) Memories

The memory boards are of an autonomous type, allow fast access

and provide a double port on the memory bus and on the VME bus.

Each memory board has 8 Megabytes. The Dune 3000 can operate

with 1 to 6 memory boards allowing up to 48 Megabytes for the com-

mon memory.
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Each memory board is optimized to provide the minimum traffic
on the memory bus and to speed up the exchanges between memory

and processors. These boards include a simple feature to detect single

errors (1 parity error per byte).
The local memory and the cache are static memories without inter-

leaving. Their access is made on32 bits with zero wait state. Access

time is 2 processors cycles (80 nanoseconds).

Single access to the local memory is 320 nanoseconds. In case of
cache line loading, the duration is 720 nanoseconds for a quadruple ac-

CESS.

The VME BUS has a I gigabyte address space.

c) The "VME" interface board

The interface between the "computing block'l and VME peripherals is

performed in several ways which all are consistent with the design de-

cision to provide a symmetric multiprocessor architecture.

The processors can directly read and write on the VME bus in
order to perform input or output operations with the peripherals

and the real time controllers.

The VME peripherals can directly access any part of the
common memory via the VME bus. Write operations are routed

to the memory bus in order to activate the cache consistency

mechanism. This routing is performed by the VME interface

board. Read operations are directly made through the VME port
of the memory boards.

The VME interrupts are dynamically dispatched by a hardware
mechanism located on the "VME interface" board. For each

interrupt occurrence, this mechanism selects a processor which
has to respond. The selection is based on priorities; thus the
chosen processor is the one running the task of lowest priority.

In addition, and again to favour real-time applications, the VME
interface board includes two types of timers:

a FRC type timer (Free Running Counter), of 48 bits, set up

with the system and incremented each microsecond,

two 16 bits programmable timers that rise interrupts when the

prograrnmed delays have been achieved.

a)

b)

c)
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A processor is able to interrupt another one by writing at a given
address in a dedicated register (SI register) on the board. This triggers
a sofware interrupt.

Any interrupt risen by a timer or by program has a level and a
vector attached to it. These interrupts as well as the hardware inter-
rupts are taken into account by the automatic dispatching mechanism.

The level and the vector of the timers interrupt are fixed when
programming the timers. The level and the vector of the software in-
terrupts are determined by the data included in the SI register. One
part of this data indicates also whether the interrupt has to be routed to
a particular processor, or taken into account by the automatic alloca-
tion mechanism.

d) The Dune 3000 input-output block

The Dune 3000 accepts any VME double Europe format (6U) board.
The system input-output transfers with disk, printers or network,

are handled by a dedicated controller.

4. Real-Time Capabilities

The appraisal of a real-time operating system relies mainly on real-
time capabilities such as:

. promptness of response by the computer system,

. predictability of kernel calls execution times,

. tuning of scheduling policies,

. assistance provided for program debugging in the real-time
context when the application is running on the ûeld,

. performance recorded in case studies.

All the following values were measured on the Dune 3000 archi-
tecture.

4.1 Promptness of Response

The promptness of the response of a real-time kernel may be evaluated
by two numbers, interrupt latency and clerical latency.

a) Interrupt latency is the delay which occur between the advent
of an event in the application and the instant this event is recorded in
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the computer memory. This interrupt latency is caused by:

' the propagation of the interrupt through the hardware com-
ponents: external bus, interrupt dispatcher, interrupt board

of the processor, interrupt sðlection,
. the latency in the kernel software resulting from non-pre-

emptible resource utilization: masking interrupts, spin lock

action,
. the delay for context switching to an immediate task.

In Dune-iX, this interrupt latency is reduced by a qystematic use of
the hardware priorities of the external bus, by kernel preemptivity and

context switch to immediate tasks.

Thus the interrupt latency is of 5 microseconds with rLfastimt
and of 15 microseconds with rlimt, with the Dune 3000 implementa-

tion of Dune-iX.

b) Clerical latency is the delay which occurs between the advent

of an event in the application and the instant this event is

processed by its target application task. This clerical latency is

caused by:

. the interrupt latency,

. the transfer of data from the interrupt subroutine to the

application Programs context,

' the notification that the target application task is already

eligible,
. the return to the current application task, which may be

using some non-preemptive resource and, in that situation,

must be protected against the election of another applica-

tion task,

' the delay the target application task waits before being

elected for running,
. the installation of the context of the target application task.

In DunejX, this clerical latency is reduced by systematic use of

soffiþare priorities, by priority inheritance, by the sharing of memory

between immediate tasks and application tasks, and by two kernel

calls, rt-notit and rlwaitit which allow a producer-consumer relation-

ship between immediate and application tasks. Thus the clerical la-



tency is within the range of 200 and 300 microseconds for the Dune
3000 implementation of Dune-iX.

A detailed analysis of the response time to interrupts is given in
Figures 14 and 15.

K-SC-ENTER is a routine of the kernel which is called when en-
tering the kernel by a system call instruction. When the call is
rlwaitit, the calling context is saved and the interrupt value is noted
before calling the task commutation module K-SW.

K-SC-EXIT is a routine of the kernel which is called before leav-

ing the kernel: an asynchronous task context is restored.

The time for executing ICSC-ENTER and K-SC-EXIT had been

measured with a void system call and it took 130 microseconds. The
part of K-SC-EXIT is 65 microseconds.

K-SR is a routine of the kernel which is forced by an interrupt: it
saves the registers of the kernel in the kernel stack, f,nds out the asso-

ciated immediate task and prepares its context.
K-RR is a routine of the kernel which is called when leaving the

immediate task: it restores the kernel context and returns from the ex-

ception.
The time for executing K-SR and K-RR has been measured with a

void immediate task and costs less than 25 microseconds. Such a void
immediate task has been triggered at a rate of 40000 interrupts per

second on a uniprocessor and at a rate of 120000 interrupts per second

on a three processor configuration.
K-SW is the kernel routine which performs the task election ac-

cording to the Dune-iX priority rule. Its execution costs less than 90
microseconds.

K-SC is any kernel routine under execution when an interrupt oc-
curs.

KJT-MASK is a section of code within K-SC which is embedded

between maslcinterrupts and unmask-interrupts and which therefore
runs with disabled interrupts. Its maximum value is 20 microseconds.

K-PR-DISABLE is a section of code within K-SC which is embed-
ded between invcom and valcom and which therefore runs with dis-
abled task commutation module. For system calls non-concerned with
the filing system, its maximum value was 100 microseconds. When
files are accessed during the qystem call, the maximum duration is 500
microseconds.

The DUNEJX ReaI:Tíme Operating System 465



èo\o\

-
tË
Êt

o

U
tD
ô
Õ

oa
(l

F
ñÞ
Ø(Dã
Þ
ê.

F)

o
Øao

::iiiiä:---------.--': a uto nomo us
:ljilili--:':':'.-.- task B

autonomous
task A

before rt-waitit

immediate
task lA

interrupt latency
clerical latency

INTERRUPT

Figure 14. Interrupting a user autonomous task



t------, K_IT_MASK(MAX)
K-SCmm

K_PR_DTSABLE(MA

K-SW

\t
(\

q
?
i.,
x
ã(\
FN

ß

sß

Oa

.?

èo\\)

autonomous
task A

before rt_waitit

interrupt latency

immediate
task lA

clerical latency

----<(

INTERRUPT

Figure 15. Interrupting the kernel



4.2 Kernel Calls Execution Times

The DunejX kernel includes a complete set of methods for reducing

time latency which are reentrance, preemption, priority scheduling

and priority inheritance.
Therefore the execution time of each kernel calls can be exactly

evaluated when it is executed for the highest priority task. This time is

that of the call itself plus the delay of the longest critical section in the

kernel.
Each kernel call contains:

' K-SC-ENTER and K-SC-EXIT which costs 130 Á¿s on the Dune

3000,
. K-SW which needs 90 ps on the Dune 3000,
. possibly K-PR-DISABLE,

' and the kernel code for its specific action.

A systematic study of all kernel calls is thus feasible for a given

host architecture.

4.3 Analysis of Scheduling Policies

for Periodic Tasks

A very simple and powerful tool, the periodic simulator, has been im-

plemented for allowing users to simulate on line the load and the real-

time behaviour of periodic tasks. Its role is to schedule the execution

of several tasks and to verify that they have terminated before a given

deadline.
The periodic simulator implements on line a scenario which is pe-

riodically and endlessly repeated. The simulator counts the deadline

overpasses, and can eventually suggest decisions, such as change of
priority of a task which overpasses too often its deadline.

The use of the scheduler is very simple. The user describes the

scenario to be executed, in the form of commands and options. This

description contains the activation times, the duration and the dead-

line, of every periodic task to be checked for scheduling. This scenario

is written into a file which is to be executed by the command inter-

preter. The simulator is activated by giving the name of this file, the

duration between two clock ticks in microseconds, the number of ticks

per period of the scenario, and the maximum number of tasks that the

simulator will handle.

468 J. Banino, J. Delcoigne, C. Kaiser, and G. Morisset



4.4 Program Debugging ín Real:Time
Application Context

This assistance is provided by the full Unix interface compatibility of
DunejX. This has been demonstrated by a musical performance, the
objective of which was to show a real-time application working con-
currently with other applications. (Figure 16)

The demonstration includes:

. A musical synthesizer which is driven by a Maclntosh SE and
which produces a musical sound output simultaneously to an

audio amplifier and to a Dune 3000 real time board.
. A workstation, which records the activity of the 3 CPLIs and

displays the ratio of each CPU being either idle or busy with
asynchronous (TD) or real time tasks (TI).

. A workstation used to display the musical score which is
composed in real-time by the Dune 3000 computer.

. A Dune 3000 computer with 3 CPU, 8 MBytes of common
memory, one system IiO board, and one real-time board. The
calculation of the musical score, the graphical application en-
abling display and ordinary Unix file operations are performed
on the Dune 3000.

Although the frequency of the musical signal issued from the syn-
thesizer has been multiplied by 4 in order to increase the workload of
the CPUs, the musical score is built as the musical sound is heard and
is not delayed when file accesses are executed concurrently.

4.5 Multþrocessing Immediate Tasks

Perþrmances

A Dune 3000 configuration with 4 processors has been interrupted at a
frequency of 1000 interrupts/second, through the VME bus. Each in-
terrupt triggers an immediate task of known duration. The measured
load of each processor is shown in the table below.

Duration of Input load
immediate tasks of each CPU

Measured load of
each CPU

Interrupt
latency overhead

50 ¡r.s
100 ps
lms

7.257o

2.5Vo

257o

I.5Vo
2.6Va

25.7Vo

2O7o

4Vo

2.87o
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6. Dune Who's Who

The DunejX Real+ime Operating System was a joint development ef-
fort of LETI, a research group of CEA, the French Atomic Energy Re-
search Institution, and of Dune Tþchnologies from October 1989 to
June 1991.

The members of the LETI/CEA team were Michel Bastien, Daniel
Bras and Jean Delcoigne.

The members of the Dune Tþchnologies team were Jean-Marc Bar-
reteau, Alain Jaouen, Marc Lombard, Albin Pouilles and Gérard
Morisset.

The Dune 3000 architecture has been designed and developed by a
team of Dune Tþchnologies whose members were Jean Barbier, Olivier
Lepape and Frédéric Réblewski.

The DunejX project was led by Jean-Serge Banino.
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Illustration I . Unix and Reallime
Kernels

Adopting Unix means facilities to easily equip a board level system
with standard de facto interfaces such as network interfaces or graphi-
cal users interface like X-windows, program compatibility and there-
fore access to Unix packages and tools.

However Unix presents a mix of corporate requirements and tech-
nical solutions which reflect the state of the art of the early 70s when
it was designed and which don't fit for real-time.

The challenge for real-time standards is between standard non
real-time Unixes modiûed for real-time enhancements and real-time
kernels which are standardized by adopting the Unix standard inter-
face.

Standard Unix

Unix developers at Bell Labs of ATT cheerfully admit that they set

up Unix for program deveþment to help build research software. The
goal was to let programmers be able to work simultaneously on big
programming projects. In such an environment, the computing load

was not particularly heavy, the response time was at human rate
(1/30th of a second) and the Unix tasks requires little intercommuni-
cation more than piping an output of a task to the input of another.

Unix designers were uninterested in some prime concern of real-

time systems such as deterministic response to interrupt, prioritized
and preemptive multitasking scheduler, fast interprocess communica-

tion, operating system calls that execute quickly and can be shared

among tasks, a secure and fast file system, the ability to recover
quickly and safely from outages.

When Unix was first developed, interactive full screen editors

were not yet available; programmers used electromechanical teletype

machines which were slow and they were motivated to fill a line with
as many commands as possible; this gifted Unix with a succinct, cryp-
tic user interface that is both hard to learn and easy to make mistakes

with.
The shell program interprets the commands typed by the user and

usually creates another task to provide the service requested. The shell
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then hangs up, waiting for the end of its child task before continuing
with the shell script.

Because of small main memories, standard Unix assumes that the

operating system must swap tasks in and out of memory frequently.
The Unix kernel schedules tasks on a modified time-sliced round-

robin basis; the priority is ruled by the scheduler and is not defined by
the user.

The standard Unix kernel is not particularþ interested in interrupts
which come usually from a terminal and from memory devices. Data

coming into the system does not drive the system as it does in real-

time systems. The kernel is, by design, not pre-emptible. Once an

application program makes an operating system call, that call runs to
completion. As an example of this, when a task is created, by a fork,
the data segment of the created task is initialized by copying the data

segment of the creator task; this is done within the system call and

may last as much as some hundred milliseconds.

Thus all standard Unix I/O is synchronous or blocked and a task

cannot issue an I/O request and then continue with other processsing.

Instead, the requesting task waits until the I/O call is completed.

A task does not communicate with I/O devices directly and turns

the job over to the kernel which may decide to simply store the data in
a buffer. Earþ Unix designers optimized the standard f,le system for
flexibility, not speed, nor security, and consequently highly variable

amounts of time may be spent finding a given block of data depending

on its position in the file.
Standard Unix does not include much interprocess communication

and control. The "pipe" mechanism allows to couple the output of a
task to the input of another task of the same family.

The other standard interprocess communication facility is the
"signal." The signal works like a software interrupt.

Standard Unix does allow programmers to set up shared memory
areas and disk files. Later versions have a slow semaphore mechanism

for protecting shared resources.

Standard Unix allows designers to implement their own device

drivers and to make them.read or write data directly into the memory
of a dedicated task. However this is kernel code and the kernel has

then to be relinked.
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Toward real time Unix

As conventional Unix does not provide adequate response time and
data throughput required for supporting real-time applications, many
attempts have been made to adapt the Unix kernel to provide a real-
time environment.

The real-time enhancements have been sought after in associating
a companion real-time kernel and/or improving the standard kernel.

A companion real-time kernel is inserted, along with its associated
real-time tasks. It may use a specific processor. It functions apart of
the Unix kernel. It is in charge of the reactions to interrupts and
schedules as many real-time tasks as necessary for these reactions.
To allow this, the Unix kernel is preempted by its companion kernel.
However when some real-time data have to be forwarded to the Unix
programs, this communication between the companion kernel and
Unix is always done in a loosely coupled mode and the transfer has to
be finalized in the Unix program; the non-deterministic Unix scheduler
wakes up the application program and therefore there is no real-time
behaviour.

Some Unix kernels have been reworked to improve their real-time
performances. As the basic kernel is not preemptive, it can only be
split into processing steps that must run to completion without being
interrupted. In between these processing steps, preemption points are
identified where the kernel can safely interrupt its processing and
schedule a new task.

Besides these limited response time ameliorations, additional fea-
tures need to be provided for lower kernel latency, such as kernel-
level, preemptable tasks called daemons, locking a task and its seg-
ments in main memory, locking pages in memory or reserving access
to a bus for a specific processs, additional priority levels, modified
schedulers, autonomous system traps, direct communication between
I/O device and a task, contiguous files, faster file indexing schemes,
named plpes, event mechanismso gang scheduling . . .

Extending Unix to real-time requires also to extend the Unix inter-
face. These efforts should result in the definition of the POSIX IEEE
1003.4 standards.



Real Time Kernels Opening to the Unix World

A customized real-time kernel replaces completeþ the Unix kernel
by another kernel which provides a real-time interface and a standard
interface. The basic idea is that real-time applications don't need the
Unix system or kernel but require Unix interfaces.

These kernels have native real-time nucleus, which present usual
real-time capabilities. Their basic interface has been augmented with
a full Unix interface providing source or binary compatibility for exist-
ing Unix programs. Thus their interface is a superset of the Unix
interface.

Real-time Perþrmances of Unix- like
Approaches

An appraisal of these systems which attempt to provide a standard-
ized real-time kernel may rely on their capability to manage interrupts,
to limit the clerical latency caused by the transfer of real-time data
from the interrupting device to the application Unix tasks, to insert
interrupt routines for application needs.

The standard Unix kernel:
. preempts the current task to notice only that an interrupt

requires to process an answer when possible,
. calls the task scheduler at the end of time slices only, awaking

the required task according to a time-sharing scheduling policy,
. inserts interrupt routines only in the kernel space. The clerical

latency may be up to several 100 milliseconds.

A companion real-time kernel:
. allows to handle interrupts and to acquire data in real-time,
. however data transfer remains under the Unix kernel control.

Therefore the clerical latency remains up to some 10 milliseconds.
A reworked Unix kernel can improve the clerical latency down to

about a few milliseconds.
Only preemptive and fully reentrant kernels can switch their con-

text at any time and instantaneously react to interrupts. For example,
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the VRIX real-time kernel has an interrupt latency of about l0 mi-
croseconds.

This leads to a clerical latency of 500 microseconds.
'When, in addition, interrupt routines can be written in the user

space, data transfer is suppressed and additional context switches are
avoided, which reduces the clerical latency to 300 microseconds.

The above figures on latencies assume a processor such as a Mo-
torola 68030 (at 25 Mhz).

Illustration 2. Multiprocessor Optimized Spin Lock

procedure mit O is
begin

nask_interrupts;
Bo :: test_and set(n); --m and go are boolean
while not go loop --global busy waiting

unmask_interrupts;
while not m loop nuII; endloop; --local busy waiting
-- no bus access contention, only loca1 cache accesses
mask_interrupts;
go : = test_and_set (n) ;

endloop;
end mit O ;

procedure rit O is
begin

m : = true; --Ieaving critical section
unmask_interrupts;

end rit O ;

begin
mit O ; --entering kernel critical section
shared_kerne l_data_mutual 1 y_exc lus ive_ut i 1 i s at i on ;

--note that interrupts are masked
ritO;

end of example;

Notice that the masking of interrupts is necessary for avoiding
deadlock.
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Illustratíon 3. Multiprocessor Optimízed
Semaphores

generie
fNITfAL:NATURAL :: 1; --default value is 1

package SEMAPHORE is
procedure P;
procedure V;

end SEII{APHORE;

package body SEMAPHORE is
SEMA_LOCK: BOOLEAN :: TRUE;

-- a test_and_set will set it to FALSE
COUI{I: NATURAL: : fNITIAL;
QLJELIE: TASK_QUEUE;

procedure P is
C'o, TO_BE_SWITCFIED: BOOIÆAN;
begin

TO_BE_SWITCHED : : FALSE;
INVCOM; --this proeedure invalidates_task_switching
GO : : test_and-set (SEMA_LOCK) ;

while not GO loop --global busy waiting
VALCOM; --val idates_task_switching;
while not SEMA_LOCK loop null; endloop;
-- local busy waiting
-- lto bus access contention, only local eache accesses
INVCOM; --invalidates_task_switching;
GO :: test_and set(SEMA_LOCK);

endloop;
COUNT :: COUNT - 1;
ifCOUNT<0then

QIJET]E. ENTER (CI.JRRENT_TASK) ;

TO_BEr_SWITCTüD : : TRUE;
endif;

SEMA_LOCK :: TRUE;
VALCOM; - -val i date_task_swi tching ;

if TO-BI¡I_SWITCHED then SCTIEDTJI,E_AND_SWITCH; endif ;

end P;
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procedure v is
GO, TO-pn-5YITCHED: BOOLEAN;

begin
TO_BF:_SWITCIIED : : FALSE;
INVCOM; - -inval idates_task_switching;
GO : : test_and-set (SEMA_LOCK) ;

while not Go loop --global busy waiting
VALCOM; --val idates_task_switching; -
while not SEMA_LOCK loop null; endloop;

--local busy waiting
--no bus aceess contention, only local cache accesses

INVCOM; - -inval idates_task_switching
GO :: test_and set( SEMA_LOCK );

endloop;
COUNT := COUNT * 1;
if COUNT <: 0 then QUEIJE.EXIB,ACT(A_TASK);

TO_BF:_SWITCTTED : : IRUE;
endif;
SEMA_LOCK :: TRUE;
VALCOM ; - -val idates_task_switching
if TO-BN_SWITCHED then SCTIEDUI,E AND SI{ITCH; endif ;

end V;
end package body SEMAPHORE;
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