
Relational Schema Inte gration :
Dealing with Inter-relation
Corre spondence s and Querying
Over Component Relations*

Whan-I(yu Whang ETRI, KOREA,

Sharma Chakravarthy University of Florida, and

Shamkant B. Navathe Georgia Institute of Technology

ABSTRACT: The need for accessing independently
developed database management systems using a
unified conceptual view has been well recognized.
View or schema integration is an important component
of this problem of designing heterogeneous or federated
database management systems. In the proposed
approach, we assume that relations that are known to
be inter-related are grouped into a cluster for further
processing.

In this paper, we address the problems of: i)
identification of relationships among relations grouped
into a cluster, ii) checking the consistency of specified
relationships, and iii) exhaustively deriving new rela-
tionships from the ones specified. These activities lead
to a proper merging of relations from component data-
bases into global view relations. Specitcally, seven
types of relationships (equal, contains, contained-in,
overlap, disjoint, properly contains, and properly con-
tained in) are considered. Merging of component sche-
mas in a federated database environment can benefit

* This work was supported by a grant from U.S. West Corporation.

@ Computing Systems, Vol. 6 . No. 3 . Summer 1993 319

substantially from the knowledge of the relationship
between relations in a cluster. We present an algorithm
to check the consistency of asserted relationships and to
derive all possible relationships from the given set of
known relationships. We extend the relational query
language SQL to support set operations on constituent
relations so that queries can be expressed on an
"integrated schema" per our approach. The set opera-
tions in ESQL (extended SQL proposed in rhis paper)
are expressed nonprocedurally in a single statement,
unlike conventional SQL which requires blocks of code
and set operations separating the blocks.

Index Terms: Heterogeneous database management
systems, Extended SQL, Relationship between entities,
Inferring new relationships, Schema integration.

I. Introduction

schema integration, which is referred to as merging of schemas that
have been developed independently, arises in two different contexts
[BaLN86, ShLa9O, Jac85]:

l) View integration/reconciliation (in logical database design):
During the design phase, several views of a database are merged
to form a conceptual schema for the entire database. Note that
the view here refers to an application's view (also termed an
external view) of the database. Reconciliation is generally
required before a feasible conceptual schema that can support
several external views can be arrived at. The view reconciliation
problem is formally treated using database logic in Uac85l.
Inconsistencies that arise in this view reconciliation process can
be resolved systematically and a sufficient condition for avoiding
inconsistencies is also given in [Jac85].

2) Schema integration (in federated databases): Schemas of
pre-existing databases are merged to form a global schema that
provides a unified or integrated conceptual view of the

320 W. Whang, S. Chakravarthy, and S. Navathe

underþing databases. The integration process needs to preserve
the semantics of individual databases as well. The global
schema can then be used as an external interface to access and
modify data in one or more constituents of the federation.

The methodology used for the above two variations of schema integra-
tion are quite similar although the metrics used are different. For
example, in view integration, the choice of the underlying conceptual
schema may favor the most frequent user (by incurring the least over-
head in the translations between the external and conceptual levels).
On the other hand, the choice of the global schema for database
integration is likely to be based on preservation of the semantics of
individual databases. Another major difference between the two lies in
the way user queries and transactions are processed after integration.
In view integration, user queries and transactions specified against each
external view are mapped to the requests on the conceptual schema. In
schema integration, user queries against the global schema are trans-
formed into requests on the underþing constituent database schemas.

The results of these requests are then assembled to produce the result
of the original query on the global/unified schema.

Our approach for schema integration consists of four steps: 1) data
model conversion, 2) clustering of related entities as in [NaGa82],
3) identification of relationships among relations in a cluster, and
4) merging of relations into a unified/global schema. First, schemas
from existing (possibly different) data models are transformed into a
common data model to facilitate the integration process. Second, iden-
tical or similar real world entities represented in different schemas are
grouped together to be generalized into a generic concept. Third, the
relationships among relations in the same group are identiûed for
defining a global schema. Finally, relations in each cluster are merged
into a global schema using the semantics of attributes and relationships
obtained from Step 3. The block diagram of the schema integration
process is shown in Figure 1.1 which is self-explanatory.

In this paper, we propose solutions to steps 3) and 4) of the schema
integration process. We assume that steps 1) and 2)have already been
applied. 'We

also propose a query language (an extension of SQL
termed ESQL) that includes constructs for querying the federated data-
base elegantly. Simplicity and expressiveness of ESQL are demon-
strated and contrasted with SQL.

Relational Schema Integratíon 321

Local Schema 2

Data model conversion

Component Schema I Conrponent Schema 2

Clustering of rela.ted Entities

Identifying relationships a.mong relations in a Cluster

(Collect relation relationships from designer, and Apply
algorithm to check consisteucy of assertcd relationships and

to Derive new relationships frorn pa.rtially known relationships)

Merging of relations in each cluster
(Use Semantic relationships among attributes or relations

to define Globa.l Schema frorn the set of relationships)

Query is e.xpressed in I1SQL

Figure 1: Steps for Creating a Federated Database Schema and

Querying it

The remainder of this paper is structured as follows. Section 2
summarizes the schema integration process. Section 3 deals with the
seven types of relationships, presents an algorithm to check consis-
tency of the asserted relationships, and to derive new relationships
from partially known ones. In Section 4 we introduce an extended
relational model to represent a global schema associated with compo-
nent schemas in a cluster. We also extend SQL by allowing set opera-
tions on component relations to query instances of relations related
to one another. Section 5 shows an implementation of the algorithm
presented in Section 2 using PROLOG. Section 6 presents our
conclusions and future work.

2. The Schema Integratíon Process

The schema integration problem is as follows. Given a collection
of schemas (possibly heterogeneous, developed using different data
models), how can one construct a global or unified schema that will

322 Vy'. Vy'hang, S. Chakravarthy, and S. Navathe

support all of the underlying schemas? The choice (or the construction)

of the global schema should not result in a loss of information and

should provide the ability to query and/or update underlying databases

either individually or collectively. A generalization of this problem,

which is not addressed in this paper, is that of dealing with a number

of underlying systems not all of which are necessarily databases.

2.1 Data Model Conversion

In many enterprises that require uniform access to independently de-

veþed, pre-existing databases, it is the case that constituent database

management systems that are being integrated have been developed

using different data models. Furthermore, many "legacy systems" in
existence today have a variety of files (such as sequential, ISAM,
VSAM) which can be incorporated by first specifying them in terms

of a relational schema.
Prior to integration, all constituent database schemas need to be

converted to a common data modell. In this paper, we use the rela-

tional model as the common data modelt. We call the resulting

database a relatíonal federated database. We use the term component

schema to refer to a schema that is converted to the relational model

from the model used for the local schema. This step is not necessary

for a local schema that is already specified using the relational model.

In some situations, it may even be necessary to develop the schema of
a database-in-use before performing the model conversion. This pro-

cess is referred to as reverse engineering.In fact, there are many

instances of databases that have been deveþed and currently being

used for which the schema has not been developed in the first place.

Reverse engineering is an important first step that needs to be

addressed for realizing a federation or even migration from the

current system to a different one.

2.2 Clustering of Relations

In order to integrate component schemas into a unif,ed schema, we

need to group the relations from each component schema which
represent the same or overlapping real world entity. These individual

L This is not a general requirement. In [V/ha92], Horn clauses have been used as a canon-

ical representaiion into which relational, hierarchical, and network models are converted.

Relational Schema Integration 323

entities from different component schemas are then merged into a
generalized relation. For example, the two relations MArN_FAcuLTy
and eRANcH-FAcuLTy in the main campus and branch campus data-
bases, respectively, can be merged into a general concept by the
relation, FACULTy. Each such group of relations is called a cluster
and is integrated independently of other groups. This process simplifies
the integration problem.

In this process, determination of relations that belong to a cluster
which is based on the semantics of the entities and the requirements of
the federated database, is ultimately made by the designer. As compo-
nent databases are developed at different times by different group, ãf
designers, no assumptions can be made about the choice of names
given to entities/relations. Also, if one component schema has a rela-
tion spcnrcteny and another component schema has a relation ENcr-
NEER, it may be useful to integrate them as an EMpLoyEn relation even
though the sets of real world entities represented by them are known
to be disjoint. However, this process of grouping cannot be automated
completely as it involves interpretation and use of entities in compo-
nent databases. In general, the semantics implied by the relations are
not simply captured by the s)¿ntax, but some heuristics can be used to
help the designer decide clustering or even automate the process par-
tially. First, relations with the same name are examined to determine
whether they indicate the same real world entities. when they have
similar names, the data dictionaries including thesaurus can be used to
find similarity of concepts. second, the common key attributes of
relations can be used to broadly group the relations. For example,
two relations EMpLoyEE and pno.lrct having their primary key as
soc-Sec-No and proi-Narne, respectively, cannot be clustered
because they do not have a common key. Third, the number of com-
mon attributes can also be used as an aid to find the same real world
entities. This grouping process, although ad hoc, helps in reducing the
complexity of the relationship determination problem. In the final
analysis, a user assisted tool seems to be a good way of addressing
this problem.

2.3 ldentification of Relationships

once the relations from component databases are clustered by the
designer, relationships among the relations in a cluster need to be

324 W. Vy'hang, S. Chakravarthy, and S. Navathe

identified. Possible relationships between any two relations are:

EQUAL, CONTAINS, CONTAINED-IN, OVERLAP, DISJOINT,
PROPERLY-CONTAINS and PROPERLY-CONTAINED- IN. DEtETMiNAtiON

of the type of relationship that exists between relations in a cluster is

essential for the merging of component schemas. Whether the merging
process leads to a minimal set of relations depends upon the knowl-
edge of relationships between every pair of relations in the cluster
and the heuristics used for merging.

2.4 Merging

After identifying the relationships, the designer needs to indicate the
semantic relationships of attributes of the relations in the same cluster

in order to merge similar attributes in the global schema [LaNE89,
MaEf84, MoBu81l. Consider, for example, attributes cneon and

sconr taken from two different student databases. cRADE is defined as

a character type denoting a letter grade, while sconn is defined as an

integer type representing a value between 1 and 100. Although the

names and data types of the two attributes are different, they are se-

mantically equivalent (i.e., they represent the same concept and there

exists functions for converting one attribute to the other and vice
versa). This equivalence between attributes coming from component
databases cannot be determined entirely using the syntax. The designer
must ultimately determine the semantic relationships among attributes
as rules based on syntax cannot derive such relationships and deter-
mine the existence of functions for conversion. Note that there is a
difference between merging of attributes and relations. Typically,
attribute merging leads to the def,nition of a function for conversion
of values between the domains of the attributes whereas merging of
relations requires the use of the appropriate set operators (such as

join, union, intersection) to map global queries into queries on com-
ponent databases. Attribute merging is also discussed as the crucial
part of schema integration in models based on classification such as

CANDIDE [BeGN89], and is discussed in [ShGN93].
After the semantic relationships are specified for attributes, rela-

tions in each cluster are merged obtaining a single federated database

schema. We use an extended relational model to define the schema for
the federated database in Section 4.1. We use the term global schema

to refer to a schema that is obtained by integrating component schemas

Relational Schema Integration 325

using the extended relational model. The component schemas them-
selves are assumed to be in the relational model.

Among the four steps of integration proposed in the introduction,
clustering of relations with detection and resolution of conflicts in
naming, structure, and domain (steps I and 2) are not addressed in
this paper. They have been addressed in [BaLe84, LaNE89, MoBu8l],
and as pointed out in Navathe et al. [NaEL86] this process requires de-
signer intervention as it is subjective and depends on naming conven-
tions used by the designers. In this paper we present an algorithm and
techniques for automating part of the merging process (steps 3 and 4).
For this purpose, we examine the relationship among relations in a
cluster in terms of key attributes in the following section.

3. Relationships Among the Relations
in a Cluster

The relationship between two relations is determined by the values of
key attributes from participating relations. We assume that a common
key exists or can be defined between relations Rr and R2. In the
absence of this (or some other reasonable assumption), there is no easy
way to match real world entities represented by the two relations.
Depending upon the values of key attributes, we define seven types of
relationships (shown below) on their domains. The domain of a rela-
tion is the set of tuples in that relation. Recall that some of the known
relationships are asserted by the designer. The process of identifying
all of the relationships cannot be completely automated for the follow-
ing reasons: 1) current data models cannot capture real world state
information completely, and 2) the semantics or "interpretation" of the
schema may differ even when the same data model is used for design-
ing the database depending on the intended use. Observe the similarity
of the following definitions with those in [ElNa84] where rhe Extended
ER model was used to def,ne entities and relationships as objects and
the domain of an object is the "set of real world entities."

case 1: Identical domains (EQUAL)
R1 EQUAL Rz (Rr : Rz) dgr

Oom (R') : Don (R2)

case 2: Containing domains (CONTAINS)
R1 CONTAINS Rz (Rr c Rz) 9r pom (Rr) f Don (Rr)

326 W. Whang, S. Chakravarthy, and S. Navathe

case 3:

case 4:

Contained domains (CONTAINED IN)
R1 CONTAINED IN R, (Rl ci Rr) Er oom (Rr) C Dom (R2)

Overlapping domains (OVEFLAP)

Rl OVERLAP R2 (Rr o Rz) E' Oom (Rr) fl Don (Rz) + ø

^ Dom (Rr) (Dom (Rz)

^ Dom (Rr) I Dom (Rz)

case 5: Disjoint donains (DrSJorNT)
R1 DISJOINT Rz (R1 d R2) 9r oom(Rr) n Dorn(Rr) : ø

case 6: properly containing domains (PROPFIRLY-CONTAINS)

R1 PROPERLY-CONTAINS R2 1R1 pc Rz) E' Dom (Rr) I Dom (Rz)

case 7: properly contained domains (PROPERLY-CONTAINED-IN)

R1 PROPERLY-CONTAINED-IN R2 (Rr pci Rz) Er Oom(Rr) C Dom(Rz)

For each pair of relations that belong to the same cluster, a

relationship between the two is asserted. Without this relationship
information, schema integration cannot be done because the attributes

of relations have different semantics depending on the relationships.

In general, there are nCz : nx(n - I)12 relationships for n relations.

Even if the number of relations belonging to the same cluster is not
very large, the number of relationships to consider will still be large
(for example, for ten relations, the number of relationships to consider

wiil be 45). Hence, if the number of relations to be integrated are

large and only some of the assertions are specified by a designer, an

algorithm is required to aid the designer to derive new assertions from
partially known ones; also there is a need for checking the consistency

of assertions that are provided by the designer.

The algorithm presented in this paper is similar to the algorithm
developed by Elmasri et al. [EILN86]. However, the algorithm devel-

oped in [EILNS6] is not complete in the sense that only four of the

seven types of relationships were considered. The OVERLAP relation-
ship, which is perhaps one of the most commonly occurring relation-
ships, was not considered at all. Furthermore, the algorithm in

[EILN86] stipulates that the application of a transitive rule yields a
deflnite value and not a set of values. The algorithm presented in this

paper, in contrast, is complete in the sense that we consider all the

seven types of relationships and the final result is more specifically
given even in the case when the transitive rule does not produce a

Relatíonal Schema Integration 321

definite value. Our algorithm uses two inputs, namely, a Relationship
Assertion (RA) matrix and a Tiansitive Rule (TR) table. In the RA
matrix, the relationship assertions among relations are placed in an n
by n matrix, where n is the number of relations belonging to the same
cluster. The goal of the algorithm is to f,ll out the RA matrix with
entries for each RA(i,j) indicating possible relationships between rela-
tions i and j. Each value RA(i,j) is a subset of possible relationships
from the following set:

{:, c, ci, d, o, pc, pci }

The entries in the above set correspond to the relationship "equal",
"contains", "contained in", "disjoint", "overlap", "properþ contains",
and "properþ contained in" respectively. If the relationship between
two relations is not known, then it is represented by the symbol u (for
unknown).

Note that "contains" and "contained in" (as well as "properþ con-
tained" and "properly contained in") are inverse set relationships; both
are included as a convenience to the user who may think of the rela-
tionship in one direction only.

Suppose we have three databases containing faculty information of
a university. Database 1 (main campus) and database 2 (branchl cam-
pus) both contain the relation FACULTv, while database 3 (branch2
campus) contains three relations, FACULTv, ENGTNEERTNG_FACULTv
and nlncrn,r cAL_ENcrNEERrNc_FAcuLTy. Their relationships are
assumed to be given as follows:

(MAIN_FACULTY OVERLAP BRANCH]" FACULTY)
(MAIN_FACULTY DI SJOINT BRANCHZ_TECUIIV)
(BRANCH2_FACULTY COIITATNS pRANCH2 ENG_FACULTY)
(BRA,NCHz ENG_FACULTY COTITAINS BRANCHz ELEC_ENG_FACULTY)
(BRANCHI_FACULTY DISJOINT BRANCHz ELEC_ENG_FACT'LTY)

These assertions capture inter- as well as intra-schema semantics. The
graph representation of these assertions is shown in Figure 3.1.
The tabular representation of asserted relationships in the form of an
RA matrix is shown in Figure 3.2.In the graph representation, a
cluster is a connected graph with relations as nodes and relationship
assertions as edges. The label on the thick lines in Figure 3.1 repre-
sents an explicitly stated assertion, while the thin lines represents

328 W. Whang, S. Chakravarthy, and S. Navathe

Legend

I : branch2-elec-engJaculty

2: branchl-faculty

3: mainJaculty
4: branch2Jaculty

5: branch2-engJaculty

=: equal

ci: contained in
c: contains
d: disjoint
o: overlap

u: unknown

Figure 3.1: Graph Representation of Relationship among Relations

unspecified assertions to be derived. Observe that in Figure 3.1,

directionality of the relationship is required only for ci.

The RA matrix is always symmetric; ci and c (as well as pc and

pci) represent the same relationship but in different directions.

Tlansitive Rule (TR) tablez in Figure 3.3 is used to check consis-

tency of the RA matrix as well as to derive correct relationships from

the RA matrix.

Figure 3.2: Relationship Assertion (RA) Matrix of Figure 3'1

The relationship unknown denoted by u is purposely.omitted from the table as it pro-

duces only u as ã result of the application of the transitive rule'

Node I 2 3 4 5

I d u u ct

2 d o u u

3 u o d u

4 u u d c

5 c u u cl

Relational Schema Integration 329

E2

Er
cl c d o pcl pc

ct c d o pct Pc
cl ct ct ALL d {d,o,pci} pct A[t
c c =rcircro I c {d,o.pc} {o,pc} t=rci,c,o pc
d d {d.o.pci} d AtI { d.o.pci } {d.o.oci d
o o {o,pci} {d,o,pc} {d,o,Pc} Att {o.oci } Id,o,pcI

pcl pc! pct ALT d {d,o,pci} pct Att
pc pc =rcircro) pc {d,o,Pc} {o,pc { =,circro} pc

Figure 3.3: Tiansitive Rule (TR) Table

Let E1, E'2, and E3 be relationship assertion symbols between rela-
tions Rr and R2, R2, ând R3, and Rr and R3, respectively. E1 and E2
are used to index rows and columns, respectively on the table shown
in Figure 3.3. If E: is the symbol for TR(E1, Ez) in the table, then
for any three relations R1, R2, ând Rg the following transitive relation-
ship holds:

(Rr Er Rz) and (Rz Ez Rg) --) (R1 Es RB)

Each of Er, E, can be one of the elements from the set
{:,ci,c,d,o,pci,pc} and E3 is either a single relationship or a subset
of relationships from the same set. When an entry in the TR table
contains more than one element, it indicates all possible relationships
under the corresponding transitive rule. For example, when the rela-
tionship Er between R¡ and R2 is ci and the relationship Ez between Rz
and R3 is c, then the relationship E3 between R1 and R3 can be either
:,ci,c,d,o,pci, or pc; i.e., the set {:,ci,c,d,o,pci,pc} indicated by the
entry ALL in TR(ci,c). The algorithm uses this rule table3 to derive an
unspecified assertion (thin edges in Figure 3.1). A derivation for an
edge consists of two transitive edges that have only one intermediate
node. Thus, the set of derivations for an edge includes all paths of
length two. In general, there are n - 2 derivations for any edge,
where n is the number of nodes (relations) in a cluster. For example, if
there are 10 relations (nodes), then there are 45 edges and for each
edge there are 8 cases of transitive rules to consider.

3. The correctness of transitive rules can be easily verified using Venn diagrams and hence
is not elaborated further.

330 Vy'. Whang, S. Chakravarthy, and S. Navathe

3.1 Algorithm

Algorithm 3.1 checks the consistency of the RA matrix specified by
the designer and deduces new assertions from the existing ones in the

RA matrix.

ALG)RITHM 3.1: Algorithm for Checking Consistency of
Specified Relationships and Deriving New ones.

INPUT: Relationship Assertion (RA) matrix and Tiansitive
Rule (TR) table.

OUTPUT: Consistency of the RA matrix and new assertions

derivable from them.

METHOD: The first portion of the algorithm performs consistency

checking for the labeled edges by building transitive paths. If the rela-

tionship obtained from the rule in the TR table contradicts with the

specified assertion in the RA matrix, an inconsistency message along
with the participating relationships and relations is returned to the

designer. For the unlabeled edges, the algorithm finds all the transitive
paths for each unlabeled edge and checks its consistency. If the inter-
section of all the derived relationship assertions on the unlabeled edge

is empty, it means that there is inconsistencyo among the specified
assertions. If the intersection contains only one element, the assertion

is definite (and unique) and is inserted into the RA matrix. This infor-
mation is used for subsequent steps of processing. This process contin-
ues until no more assertions can be derived or any inconsistencies
detected. At the last step, the unlabeled edges for which relationships

cannot be derived are identified.

PROCEDTIRE Derivati on_Of_NewAssertions_Anrl-Cons i stency_Checking
BEGIN

LE :: all labeled edges in RA matrix;
NewUE : = alL unlabeled edges in RA matrix;

/* check consistency for labeled edges by building
transj-tive paths t'7

4. Mutual inconsistency of asserted relationships can also be detected using this algorithm.
This is the case when the relationship derived using the transition rule is different from
the one specified for an edge.

Relational Schema Integration 331

T :: all transitive paths in LE;
FOR each transitive path t e T DO

IF assertion in RA is different fron the transitive
relationship in TR table

TÍIEN inconsistent_state ;

/* check consistency for unlabeled edges and deriving new
relationships using TR table x,/

NEPEAT

UE := NewUE;

FOR each unlabeled edge ei € uE DO

BEGIN
T¡ := all transitive paths;
Bi :: þ'
FOR eaeh transitive path t € T¡ DO

IF assertion is found in RA natrix
TT{EN BEGTN

r :: transitive relationship in fB,
table;

R¡¡:R¡ñT
END

ELSE R: :: Unknown;
rFR¡=Ø

TI{EN inconsistent_state
ELSE IF Ri contains one element

THEN BEGIN
insert the element in Ri

into RA natrix;
NewUE := UE - ei

END;

END;

LJIITIL LJE I NewUE and NewUE I Ø;

/* for those edges that cannot be derived, a designer
feedback is required x,z

fF R: contains nore than one elenent or Ri contains
unknov¡n

TIIEN output Ri's;
END

3.2 An Example

We shall illustrate the above algorithm using the example introduced
earlier in Figures 3.1,3.2, and 3.3. The list of the labeled edges in

332 W. Whang, S. Chakravartþ, and S. Na¿athe

Figure 3.1 is |-2, 2-3, 3-4, 4-5,5-11. There are no transitive paths

between the labeled edges having length two. Therefore, we do not

need to consider the consistency of relationships in the initial state, but

consider the derivation of assertions of unlabeled edges. The initial list

of the unlabeled edges is [1-3, I-4,2-4,2-5,3-5]. For example, the

relationship of unlabeled edge 1-3 is obtained as follows:

1) edge 1-3

transitive paths
do]------2---3

t----4---3
ci ci1_--5----3

intersection of possible

possible relationships

{d, o, pci}

{u}

{u}

relationships = {d, o,pci}

For the edge 1-3, there are three possible transitive paths, l-2-3,1-4-
3, and l-5-3. From Figure 3.I, the relationships of edges l-2,2-3, 4'
3, and 1-5, are initially given as d, o, d, and ci, respectively. The

edges 1-4 and 5-3 arc unlabeled, therefore it is marked as u denoting

unknown. V/hen all the relationships in the edges of transitive paths

are identified, the Tiansitive Rule table in Figure 3.3 is used to derive
the relationship of transitive path. By this we mean that if the labels

on edges ab and bc are 11 and 12 respectively, the label 13 on the edge

ac can be derived as the "transitive relationship" by applying the rule

table. For example, for the transitive path I-2-3 where the relation-
ships of edges 1-2 and2-3 are d and o, the relationships of edge 1-3

will be one of {d,o,pci} that is found in the TR table in Figure 3.3. If
one of the edges is unknown in the transitive path as in 1-4-3 and 1-

5-3, the relationship in transitive path results in "unknown."
"IJnknown" relationship can be taken to be one of the elements,

{:,ci,c,d,o,pci,pc}. When all the relationships in transitive paths are

identified, the intersection5 of them will determine the relationship of
that edge with the relations corresponding to the nodes. Here the in-
tersection of relationships {d,o,pci}, {u} and {ui results in {d,o,pci}.
Derivation of relationship for other edges is shown below.

5. Note that the relationship unknown acts as the set of all possible relationships for the
intersection operation.

Relational Schema Integration 333

2) edge 1-4

transitive paths
duL_2_4
ud1_-_3_-__4
ci ci1----5_-4

intersection of

3) edge 2-4

transitive paths
dci2_L_4
od2_3*__4

possible relationships

{u}

{u}

{ci }

possible relationships : {ci}

4)

uci2_5__4
intersection of possible

edge z-s

transitive paths
dci2--_1-_--5
ou2-_-3--5
uc2_4__5

intersection of possible

edge 3-5

transitive paths
uci3_-1__-5
ou3-_-2--_5
dc3-__-4_--5

intersection of possible

possible relationships

{d, o, pci }

{d, o, Pc}

{u}
relationshiþs : {d, o}

possible relationships

{d, o, pci }

{u}

{u}

relationships = {d, o,pcii

possible relationships

{u}

{u}

{d}
relationships : {d}

5)

334 W. Whang, S. Chakravarthy, and S. Navathe

After the first iteration, the relationship of edges l-4 and 3-5 are

unique: {ci} and {d}, respectively. Their relationships are inserted in
the RA matrix. These relationships are used to derive relationships of
unlabeled edges in the next iteration. The second iteration proceeds

with the unlabeled edges, lI-3,2-4,2-5), in the same manner as in
the first iteration and the results obtained are as follows:

For edge 1-3, relationship : {d}
For edge 2-4, relationship : {d, o}
For edge 2-5, relationship : {d, o}

After the second iteration, the relationship of the edge 1-3 is
known, while that of the edge 2-4 has not changed from the first itera-
tion and that of edge 2-5 is more precisely determined. The third iter-
ation proceeds with the unlabeled edges, l2-4,2-51. The third itera-
tion does not yield any relationship having a definite value. Therefore,
the algorithm stops here and returns the result to the designer. In con-
clusion, the relationships obtained from the algorithm are given below
and the corresponding RA matrix is depicted in Figure 3.4.

(MAIN_FACULTY DISJOINT BRANCHz ELEC ENG_FACULTY)
(BRANCHz ELEC-ENG_FACULTY CONTAINED IN BRANCH2_FACULTY)
(MAIN_FACULTY DISJOINT BRANCHz ENG_FACULTY)
(BRANCHI_FACULTY DISJOINT OT OVERLAP BRANCH2 ENG-FACULTY)
(BRANCH2_FACULTY DISJOINT OT OVERLAP BRANCHz-FACULTY)

The first three cases give definite values for the relationship, while the
last two give two possible relationships.

Node I 2 J 4 5

I d d cl cl

2 d o {d,o} {d,o}

J d o d d

4 c {d,o} d c

5 c {d,o} d cl

Figure 3-4: Relationship Assertion (RA) Matrix after applying
Algorithm 3.1

Relational Schema Integration 335

The main contributions of this algorithm are: i) validating user
specified relationships among relations in a federated environment and
ii) deriving new relationships from partially known relationships. The
transitive rule table provides the inference rules for deriving un-
specified relationships; it is not provided by the designer and need not
be changed unless new relationships are added. Even when new rela-
tionships are added, the algorithm does not change as it is driven by
the TR table. Algorithm 3.1 has been implemented in pROLOG. We
discuss the implementation in Section 5.

4. Global Schema and An Extended
SQL For Querying

Earlier work on query languages for federated databases has concen-
trated on querying against the global schema. For merging component
relations, we take the approach of generating a generalization of a re-
lation (entity) from the component relations (entities) in the cluster.
Earlier work, however, does not consider the relationship between oc-
currences of an entity type and occurrences of its subentity types
(e.g., information about "intersection" occurrences between two over-
lapped subentity types or "difference" occurrences by subtracting a
particular subentity type from its entity type). suppose we integrate
the databases of state universities described earlier and assume that
faculty are allowed to work on more than one campus. From the feder-
ated database, the Regents may want to know the names of faculty
working in more than one campus, for example; or the names of fac-
ulty who are working in 3 specif,c campuses. To answer these queries,
it is necessary to provide set operations on the component relations,
which are related to one another in terms of relationships (derived in
the previous section) among them.

Although conventional sQL allows set operations on the relations
that are union-compatible, it requires several subqueries and a proce-
dural specification to relate those subqueries. In contrast, the set opera-
tions proposed in ESQL are expressed nonprocedurally in a single
statement and are described below.

In the following two subsections, we propose a mechanism for
specifying integrated schemas over relations and ESeL for supporting
set operations on component relations, respectively.

336 W. Whang, S. Chakravarthy, and S. Navarhe

4.1 The Global Relational View

As described in Section 3, there are seven possible relationships
among relations in a cluster. Once these relationships are known, rela-
tions belonging to the same cluster can be integrated into a generalized
relation. The generalized relation plays the role of the "global relation"
using its "component" relations. We call a generalized relation a

global view relntion and relation constituents of a global view relation
as component relations. A global view relation can be a component re-
lation at a higher level of abstraction. The attributes that are common
(semantically, not just syntactically) to component relations would be
the attributes of a global view relation. The names of component rela-
tions are preserved in the global view relation. By introducing the con-
cept of a global view relation into the relational model, we are able to
perform set operations on the component relations that are named in
the global view relation. The global view relation is a metarelation in
a sense that it encompasses the relations that participate in that global
view relation. However, it is reduced to a traditional relation unless
the names of its component relations are explicitly specified.

The names of the global view relation and component relations can
be used to denote tuple variables in the tr'Rolvt clause of ESQL. The
general rRotvt clause syntax can be defined as follows. In this notation,

[] denotes one or zero occurrences and symbols enclosed in single
quotes denote literals.

<Global view relation> ['AS' <Component
rel-ation> | <runctionName>
(' <Refation> ' , ' <Component relation> ') 'l
<Relation>: <Global view relation>

I

<component relation>
<FunctionName>: UNION I ornn I fNrs

The "AS" construct is used for a global view relation to provide
various functions of its component relations. Unless stated explicitly,
the global view relation implies the union of its component relations.

As an example, consider the two component relational schemas

shown in Figure 4.1 and Figure 4.2. They represent information re-
lated to a university database, either on the main campus or on a
branch campus. For simplicity, type declarations are omitted. For
FAcuLTy relations in both databases, the first one describes main cam-
pus faculty, who have a yearly salary and have an office on the main

Relational Schema Integrarton 337

MAIN_FACULTY (Name, Salary, Of f ice#)
MAIN_OFFICE (Of f i ce#, Phone)
MAIN_UNDERGRADUATE (SS#, UndergradName, cpA, Class, Maj or)
MAIN_GRADUATE (SS#, GradName, GPA, Degreeprogram, Maj or)
MAIN_ADVISOR (Nane, SS#)
MAIN_ENROLLùIENT (SS#, CourseName, Grade)
MAIN_COURSE (CourseNane, Sect i on#, Time)

Figure 4.1: Component Schema at Site I

BRANCH_FACULTY (Name, Sa1ary, Phone)

BRANCH_T]NDERGRADUATE (SS#, Under gr adName, GPA, C 1 as s)
BRANCH_GRADUATE (SS#, GradName, GPA)
BRANCH_ENROLLMENT (SS#, CoureseName, Grade)

BRANCH_COURSE (CourseName, Secti on#, Tine)

Figure 4.2: Component Schema at Site 2

FACULTY (Name, SaÌary, Phone, [Main_f aculty, Branch_f aculty])
UNDERGRADUATE (SS#, Under gradName, GpA, Cl as s,

[Mai n_under gr aduat e, Br anch_under gr aduat e])

GRADUATE (SS#, GradName, GPA, [Main_graduate, Br anch_graduate])

STUDENT (SS#, StudName, GPA, [Undergraduate, Graduate])
ENROLLilIENT (SS#, CourseName, Grade,

[Main_enro I lnent, Branch_enro I lment])
COURSE (CourseName, Sect i on #, T íme, [Main_cour s e, Branch_cour se]

Figure 4.3: Global Schema

campus. The second one describes branch faculty, who have a monthly
salary, but do not have an office. The same person can be both a main
campus faculty and a branch campus faculty. The global schema shown
in Figure 4.3 provides an integrated view of faculty, in which
MArN_FACULTv and BRANcH_FAcuLTv are seen as component rela-
tions of a generalization hierarchy having FACULTv as a global view
relation. The relation FACULTY has three single valued attributes:
Name, Phone, and Salary. The information about offices of faculty is
assumed to be irrelevant for the global view. The relations
MArN_UNDERGRADUATE and eRANcu*UNDERGRADUATE, and
MArN_cRADuetn and BRANCH_cRADUATE are integrated into the global
view relations UNDERcRADU¡Io and cRADUATE, respectively. The rela-
tions UNonncRADUATE and cRADUATE are integrated into the global
view relation sruDENT.

338 W. Whang, S. Chakravarthy, and S. Navathe

The global schema is shown in Figure 4.3. A list (shown in square
brackets) specifies the names of the component relations that partici-
pate in the global view relation. This is termed the "relation-name" at-
tribute of the global view relation. This schema representation is simi-
lar to GEM [Zan183l. The arithmetic comparison operations, such as
:, #, (, s,), à are not applicable to the "relation-name" attri-
bute, while set operations such as union, intersection, and difference
are allowed on this attribute.

There are two options for the visibility of integrated and compo-
nent schemas in a heterogeneous database depending upon whether
component schemas are accessible to the user or not. One option al-
lows the user to access a global schema as well as component sche-
mas. By allowing the user to access component schemas, the user can
query attributes of component schemas that are not integrated in the
global schema (e.g., of f ice# in Figure 4.1). However, when we join
two relations in both global and component schemas, sophisticated
query processing is required. This option is not recommended if all
the attributes of component schemas are represented in the global
schema. The other option allows the user to access only the attributes
of the global schema. This option is recommended for the novice users
who want to avoid the complexity of many similar attributes in global
and component schemas. Whether component schemas should be visi-
ble to the user or not is ultimately a matter of policy.

4.2 ESQL as a Query Language

ESQL (Extended SQL) is designed to be a generalization of SQL.
Whenever the relation-name attribute in the global view relation is not
used, the global view relation is identical to a conventional relation
and the syntax of the query is reduced to that of SQL. For example,
the following query that retrieves those faculty whose salary is over
$50,000 uses the FACULTy as a normal relation.

SELECT
FROM

WHERE

f. name
faculty f
f. salary > 50,000

Figure 4.4: Find those faculty whose salary is over $50,000.

Relational Schema Integration 339

The global view relation FACULTv is the union of its component
relations. Thus the same query can also be generated using component
relations as follows:

SELECT f. name
FROM f IS faeulty AS UNION(main_faculty,branch_faculty)
WHERE f. salary > 50, O00

Figure 4.5: Same as Figure 4.4

The "rs" construct is used to denote f as a tuple variable for fac-
ulty. In relational calculus the above query is expressed as shown be-
low. Note that for those faculty who are both at the main and branch
campuses, the annual salary is computed by adding the salary as

main_faculty to the salary as branch_faculty computed from
monthly salary.

Relational calculus equivalent of the ESQL query is shown in Fig-
ure 4.5:

{t.name I ft e rnain_faculty ^ (7 ul (u C
branch_faculty

 (u. nanne :
t. name))

.\ (t € branch-ra;t{; ït?ä"; Il'ä0"
nain_faculty

,\ (u. name :
t. nane))

,\ (t. salary*tZ >
50,000))

,\ (3 u) (3 v) (u € main_f aculty ,r v C
branch_faculty

,\ (u. name : v. ttalûê)
,\ (t.name = ü.DâÍrê)
,\ (u. salary * v. salary*A2 >

50,000)) Ì

The equivalent SQL query is given as follows:

SELECT m. name
FROM main_faculty n
WHERE NOT EXISTS (SELECT ,E

FROM branch_faculty b
WHERE m.name : b.name)

340 W. Whang, S. Chakravarthy, and S. Navathe

AND m. salary > 50,000
T.]NION

SELECT b. name
FROM branch_faculty b
WHERE NOT EXISTS (SELECT *

FROM main_faculty m

WHERE b.name : m.name)
AND b. salaryxl2 > 50,000
UNION
SELECT m. nanne
FROM main_faculty m

WHERE EXISTS (SELECT X

FROM branch_faculty b
WHERE m.name : b.name
AND m. salary * b. salary*Lz >

50,000)

As we can observe from the above example, the query shown in
Figure 4.5 when expressed in SQL requires several subqueries and the
user has to know the details of the integration. However, in ESQL,
the query is a single statement and expresses the intent in a succinct
manner. TVhen a query is invoked, the integration represented inter-
nally is mapped to operations of component relations. Query process-
ing and optimization of ESQL queries and the translation of ESQL
queries into queries on component relations is discussed in [WhNC91 ,

WhCN93 , Wha92l. Note that a complete knowledge of component
relations is not required to express queries in ESQL; the relation-name
field captures sufficient information to help formulate a query without
having to know the details.

If we wish to retrieve the salary of the main_faculty whose name

is "Smith" in the global view, we can write the query in ESQL as fol-
lows:

SELECT f. salary
FROM f IS faculty AS main-faculty
WHERE f. name:"smith"

Figure 4.6: Find the salary of the nain_f aculty whose name is
"Smith" in the global view.

The above query can also be expressed in the following way with-
out an explicit declaration of tuple variable:

Relational Schema Integratíon 341

SELECT salary
FROM faculty AS main_faculty
WHERE name:"Smith"

Figure 4.7: Same as Figure 4.6

The query "List the names of faculty who work at the main
and branch campuses and earn more than $50,000 a yeaf" can be
expressed as:

SELECT f.name
FROM f IS faculty AS INTS(main_faculty,branch_faculty)
WHERE f. salary > 50,000

Figure 4.8: Find those facuþ who work at both the main campus and
the branch campus, and earn more than $50,000 a year.

In relational calculus the above query is defined as follows:

{t. narne I tt e rnain_faculty ,\ (f v) (v € branch_faculty
,\ (t.name : v.name)
,t. (t. salary + v. salary*1z

For another example, to query the faculty who works only at the main
campus one can write:

SELECT f.name
FROM f IS faeulty AS DIFF(main_faculty,branch_faculty)

Figure 4.9: Find the faculty who work only at the main campus.

We can define the query in relational calculus as follows:

{t.name I tt e rnain-faculty ,\ (7 u) (u c branch-faculty
^. (u. name : t. name))

^ (t. salary) 50,000)) Ì

Again, if the above queries were to be expressed in SQL, it will re-
quire several subqueries.

If we want to know what campus faculty "Smith" belongs to, the

query can be written as follows:

342 Vy'. Vy'hang, S. Chakravarthy, and S. Navathe

SELECT faculty*
FROM faculty f
WHERE f.name - "Smith"

Figure 4.10: Find the campus in which faculty "Smith" works.

The * operator specifies how the global view relation is composed

from its component relations in the global schema. By allowing the

component relations in the global schema, we can access the attributes
of component schema that cannot be integrated in the global schema
(e.g., of f i ce# in Figure 4.1). However, even though both the at-

tributes Salary in ueri.l_rlcul.TY (Figure 4.1) and FACULTY (Figure

4.3) are accessible to the user, the semantics is different. For example,

if we want to retrieve salary of rnain-f aculty whose name is
"Smith" in the component schema, it will be:

SELECT salary
FROM main_faculty
WHERE name = "Smithil

Figure 4.11: Find the salary of the nain_f aculty whose name is
"Smith" in the component schema.

If "Smith" happens to work both at the main and branch campuses,

Figure 4.11 returns the salary received only at the main campus,

while Figure 4.6 returns the salary computed at both campuses.

4.2.1 Aggregate Functíons and Grouping

Aggregate functions are important in federated databases, because one

might frequently perform aggregate operations on each component re-
lation participating in the global view relation. Consider an integrated
database of state universities described earlier. From the federated

database, the Board of Regents may want to know the total number of
graduate students or the average GPA of each state university. To an-

swer these queries it is necessary to group the global view relation into
component relations and apply aggregate functions to each component
relation. In SQL, the "cRotrp BY" clause is used to group the tuples

Relational Schema Integration 343

that have the same value for some collection of attributes. In addition
to the facility provided by conventional SQL, the "cRoup By" clause

in ESQL is used to group the component relations in the global view
relation and functions such as AVc, suM, couNT, MAx, and MrN can
be applied to each component relation independently. In ESQL, the
"GRoup By" clause is used as shown below:

GROUP BY COMPONENT

By using the keyword coùpoNstrn, the global view relation is parti-
tioned into component relations which are specified in the relation-
name attribute of the global view relation. As in SQL the grouping
attributes appear in the SELECT clause, the keyword cotræoweNt must
also appear in the SELEcT clause. For example, the query for finding
the total number of graduate students and computing the average of
GPA in each of the state university in Florida, can be formulated as

follows:

SELECT COMPONENT, COUNT (*), AVG (GPA)

FROM graduate
GROT.JP BY COMPONENT

Figure 4.12: Find the total number of graduate students and the
avetage GPA for graduate students in each state university

If the global view relation cRADUATE is composed of the graduate

students from the component relations University-of-Florida, Flor-
ida State-University, University-of-South-Florida, etc, the an*

swer to the query will be in the format shown below:

COMPONENT(graduate) couNT(*) AVG(GPA)

University-of- Florida

Florida-S tate-University

University-of-S outh---F lorida

5. Implementation

The Algorithm 3.1 (described in Section 3.1) for checking the consis-

tency of relationships and deriving new ones as well as ESQL to SQL

344 W. Whang, S. Chakravarthy, and S. Navathe

translation has been implemented in PROLOG. In the following we
show the implementation of the Algorithm 3.1 given in Section 3.1.
In PROLOG, one typically distinguishes between facts and rules. Facts
that are considered in the algorithm are component relations in a clus-
ter, relationships among component relations, and the transitive rule
table. The representation of relations in a cluster, their relationships,
and the transition rule table in PROLOG are described below:

(a) Relations in the same cluster are asserted as follows:

relations ([rnain_f , branchl_f , branch2_f , branch2_eng f ,

branch2_ele_eng_fl) .

The predicate "relations" contains the name of the relation that
belongs to the same cluster.

(b) Relationship between a pair of relations is asserted as follows:

rel-ationship (main_f , branchl_f , o).
relationship (main_f , branch2_f , d) .

rel-ationship (branchl_f , branch2_e1e_eng_f , d) .

relationship (branch2_ele_eng f , branchZ_eng_f , ci) .

relationship (branch2_eng_f , branch2_f , ci) .

The predicate "relationship" contains a pair of relations in the first and
second arguments, and the relationship between them in the third
argument. For example, relationship (main_f , branch_f , o)
means that the relationship value between the pair of relations
MArN_FAcuLty and BRANcH_FACULTv is "overlap."

(c) Before representing the Thansitive Rule table shown in Figure
3.4 using Horn clauses, let us consider again the meaning of the table.
If for three relations Rr, Rz and R3, Er,E, and E3 are relationships be-
tween Rt and Rr, Rr and R3, and Rr and R3, respectively, then the fol-
lowing transitive relationship holds:

(Rr Er Rz) and (Rz Ez Rg) --> (R1 E3 R3)

Each of Er, Er, and E3 can be one of the following elements, {:, c, ci,
d, o, pc, pci). The predicate "transitive_rule" represents the
relationship among Er, Ez, and E¡ as follows:

transitive_rule (Er, Ez, Ea) .

For example, transitive_rule(c,d,[d,o,pc]) means that for the three
relations R,, Rr, and R3, if the relationships between Rr and R2, and
Rz and R3, âro c (CONTAINS) and d (DISJOINT), respectively, then

ReLational Schema Integration 345

the relationship between Rr and R3 should be one of the elements,

{d,o,pc}. The Transitive Rule table in Figure 3.4 is asserted as follows:

transitive_rule (e, e, te]) .

transitive_rule (e, ci, [ci]) .

transitive_rule (e, c, tcl) .

transitive_rule (e, d, tdl) .

transitive_rule (e, o, to]) .

transitive_rule (e, pci, lpci]) .

transitive_rule (e, pc, tpcl) .

transitive_rule (ci, e, tcil) .

transitive_rule (ci, ci, tcil) .

transitive_ru1e (ci, c, Ie, ci, c, d, o, pci, pc]) .

transitive_rule (ci, d, tdl) .

transitive_rule(ci, o, [d,o,pci]) .

transitive_rule (ci, pci, tpcil) .

transitive_rule (ci, pc, Ie, ci, c, d, o, pci, pc]) .

transitive_ru1e (c, e, tcl) .

transitive_ru1e (c, ci, Ie, ci, c, o]) .

transitive_rule (c, c, [c]) .

transitive_rule (c, d, [d, o, pc]) .

transitive_rule (c, o, [o,pc]) .

transitive_rule (c, pci, [e, ci, c, o]) .

transitive_rule (c, pc, tpcl) .

transitive_rule (d, e, tdl) .

transitive_rule (d, ci, [d, o, pci]) .

transitive_rule (d, c, tdl) .

transitive_rule (d, d, [e, ci, c, d, o, pci, pc]) .

transitive_rule (d, o, Id, o, pei]) .

transitive_rule (d, pci, [d, o,pei]) .

transitive_rule (d, pc, tdl) .

transitive_rule (o, e, toj) .

transitive_ruLe (o, ci, [o, pci]) .

transitive_rule (o, c, Id, o, pc]) .

transitive_rule (o, d, Id, o,pc]) .

transitive_rule (o, o, [e, ei, c, d, o, pci, pc]) .

transitive_rule (o, pci, [o,pci]) .

transitive_rule (o, pc, [d, o,pc]) .

transitive_rule (pci, e, tPcil) .

transitive_ruIe (pci, ci, [pci]) .

346 W. Whang, S. Chakravarthy, and S. Navathe

transitive-rule (Pci,
transitive-rule (Pci,
transitive-rule (Pci,
transitive-ru1e (Pci,
transitive-rule (Pci,

c, [e, ci, c, d, o, Pci, Pc]) .

d, tdl).
o, [d, o, pci]) .

pci, [pci]).
þc, [e, ci-, c, d, o, Pci , Pc])

transitive-rule (Pc, e, [Pc]) .

transitive-rule (Pc, ci, Ie, ci, c, o]) .

transitive-rule (Pc, c, [Pc]) .

transitive-rule (Pc, d, Id, o, Pc]) .

transitive-rule (Pc, o, Io' Pc]) -

transitive-rule (pc, pci, Ie, ci, c, o]) .

transitive-rule (Pc, PC, tPcl) .

With the "transitive-rule" predicate, we can now represent relation-

ship by transitive path in the form of a Horn clause as follows:

relationship-by-transitiveiath (R1, R2, R3, E3) : -
relationshiP (R1, R2, E1) ,

relationshiP (R2, R3,82) ,

transitive-rule (El,82, E3) .

Clauses of (a) and (b) constitute the input to the algorithm and are as-

serted by the system dynamically, whereas clauses of (c) state the

static information that is used to derive relationships using transitive

rules and therefore is asserted once.

V/ith the above inputs, the algorithm is implemented in PROLOG.

The top-level clauses of PROLOG are shown below. First it reads rela-

tions in a cluster and relationships between a pair of relations. Then it
checks the consistency of asserted relationships. If the asserted rela-

tionships are consistent, then new relationships are derived from the

asserted relationships; otherwise, the process Stops and returns the in-

consistent relationship to the designer. The built-in predicate "asserta"

is used to accommodate dynamically changed relationships during

derivation of new relationships. Finally, the builfin predicate "retract"

is used to remove from the dynamic databases all clauses whose head

matches the relationship.

top:-
read_data,
f ind-pairs-as serted (Assertedli st),
f indjairs-not-asserted (NotAssertedl-i st),
check cons i stency-of

-as
s er ted-equiv (As ser tedli st),

Relatíonal Schema Integration 347

der ive_new*equiv_f rom_asserted_equiv (NotAssertedl,i st),
retract_al1 (pairs (_)) ,

retract_al1 (relationship (_, _, _)) .

check_consistency_of_asserted_equiv (t I) .

check_consistency_of_asserted equiv(tpairlLl) : -
Pair [R1 , R2] ,

relationship (R1, R2 , Eq) ,

get_trans i t ive_path_f r om_pair (pair, Tr ans i t ivepath),
check_equiv_f r om_trans i t ive_path (Eq, Tr ans i t ivepath),
check_cons i stency_of_asserted-equiv (L) .

check_equiv_from_transitive_path (Eq, t I) .

check_equiv_from_transitive_path (Eq, [Transitivepath I U I : -
TransitivePath [R1,R2,R3], l,
rel-ationship_by_transitive_path (R1 , R2, R3, E) ,

(member (Eq, E)
;

writeln ('consistency error')) ,

check_equiv_f ron_trans i t ive_path (Eq, L) .

check_equiv_from_transitive_path (Eq, [Transitiveeath I 11 ; : -
check_equiv_from_transitive_path (Eq, L) .

der ive_new_equiv_f rom_as ser ted_equi v (Pairl. i s t) : -
asserta(pairs (Pairl-ist)) ,

derive_new_relat ionship (Pairl,i st),
pairs (NewPairlist) ,

((Pairl-ist : NewPairlist) , !

;

der i ve_new_equ iv_f rom_as s er te d-e quiv (NewPa i rL i s t)) .

derive_new_relationship ([]) .

derive_new_relationship(tPairlLl) : -
get_tr ans i t ive_path_f rom_pair (Pair, Trans i t ivepath),
inter sec t i on_of _poss ib I e_equiv (Trans i t ivepath, Eq),
Pair [R1 , R2] ,

writeln (relationship (R1, R2, Eq)) ,

(Iength(Eq,1), !, Eq [SingleEq],
asserta (relationship (R1, R2, SingleEq)) ,

pairs (PairsList) , delete (Pair, Pairslist, Newpairlist) ,

asserta(pairs (NewPairlist)) ,

der ive_new_re I at i onship (L)
;

derive_new_relationship (L)) .

348 W Whang, S. Chakravarthy, and S. Navathe

PROLOG implementation enables us to non-procedurally specify
the relations in a cluster, relationship among relations in a cluster (the

RA matrix), the TR table, and the transitive relationship rule. Changes

to the TR table (when new relationships are added or deleted) only
change the assertions in (c). Problem specific inputs are provided in
(a) and (b).

6. Conclusions

We have presented an algorithm to check the consistency of asserted

relationships among component relations in a cluster. The algorithm
also derives new ones from partially known relationships. Our work
extends the work of [EILN86] by considering more types of relation-
ships and by giving results explicitly as a set when the derived rela-
tionship is not unique. The algorithm described in this paper is also

implemented in PROLOG (actually KB-Prolog [BoDMP89]), which is
suitable for this purpose because the inputs (i.e., relationships and

transitive rule table) are asserted as facts and new relationships are

derived using rules. The approach presented here can be used as a

component of a knowledge discovery [Pia91] system that facilitates the
user to uncover relationships for use in different ways.

We have extended the relational model to represent a global view
relation from component relations. With simple extensions to the rela-
tional query language SQL, ESQL can query the information on the
component relations using a set of operators as part of the query. Set

comparison operator and "GRoLIp By" clauses are applicable to the
component relations, while set operations (i.e., union, difference, and
intersection) are applicable to the tuples of the component relations.
For details on query processing and optimization of ESQL queries

refer to [Wha92 , WhCN93].

Relational Schema Integration 349

References

[BaLeSa] Batini, C., M. lænzerini, "Methodology for Data Schema Inte-
gration in the Entity-Relationship Model," IEEE Transactions on
Software Engineering, Vol. 10, No. 6, pp. 650-663, November
1984.

[BaLN86] Batini, C., M. Lenzerini, and S.B. Navathe, "A Comparative
Analysis of Methodologies for Database Schema Integration,"
ACM Computing Surveys, Vol. 18, No. 4, pp.323-364,
December 1986.

[BeGN89] Beck, H. W., S. K. Gala, and S.B. Navathe, "Classification as a
query processing technique in the CANDIDE semantic data
model", in Proc. 5th IEEE Data Engg. Conf., Los Angeles, CA,
Feb. 1989, pp.572-581.

[BoDMPSg]Bocca, J., M. Dahmen, G. Macartney, and P. Pearson,
"KB-Prolog User Guide", ECRC Munich, 1989.

[810T86] Breitbart, Y., P.L. Olson., and G.R. Thompson, "Database
Integration in a Distributed Heterogeneous Database System,"
ln Proceedings of the 2nd International Conference on Data
Engineering, pp. 301-310, 1986.

[CaViS3] Casanova, M., and M. Vidal, "Towards a Sound View Integration
Methodology,o' In Proceedings of the 2nd ACM SIGACTISIGMOD
Conference on Principles of Database Systems (Atlanta, Ga.),
ACM, New York, pp.36-47, March 1983.

[EILN86] Elmasri, R., J. Larson, and S.B. Navathe, "schema Integration
Algorithms for Federated Databases and Logical Database
Design," Tech. Rep. No. CSC-86-9:8212, Honeywell Corporate
Systems Deveþment Division, Camden, Minn.

[ENa8a] Elmasri, R., and S.B. Navathe, "Object Integration in Logical
Database Design," In Proceedings of the Ist International
Conference on Data Engineering, pp. 418-425, 1984.

[ElNa89] Elmasri, R., and S.B. Navathe, Fundamentals of Database Sys-
tems, The Benjamin/Cummings Publishing Company, Inc, 1989.

[Jac85] Jacobs, B. E., Applied Database Logic: Fundamental Issues
(Volume I), Prentice-Hall, Inc., Englewood Cliffs, 1985.

[LaNE89] Larson, P., S.B. Navathe, and R. Elmasri, "A Theory of Attri-
bute Equivalence in Databases with Application to Schema Inte-
gration," IEEE Transactions on Software Engineering, Vol. 15.

No. 4, pp.449-463, April 1989.

350 W. Whang, S. Chakravarthy, and S. Navathe

[MaEfSa] Mannino, M.V., and W. Effelsberg, "Matching Techniques in
Global Schema Design," In Proceedings of the Ist Internntional
Conference on Data Engineering, pp. 418-425, 1984.

[Pia91] Piatesky-Shapiro, G., "Knowledge Discovery in Databases",
(Ed.) Proc. of 1991 AAAI Workshop, Anaheim, July 1991.

[MoBu81] Motro, 4., P. Buneman, "Constructing Superviews,'o In Pro-
ceedings of the ACM SIGMOD International Conference on Mqn-
agement of Data, pp. 54-64, May 1981.

[Motr87] Motro, 4., "superviews: A Virtual Integration of Multiple Data-
bases," IEEE Transactions on Software Eng., Yol. 13, No. 7,
pp.785-798, July 1987.

[NaEL86] Navathe, S.8., R. Elmasri, and J.A. Larson, "Integrating User
Views in Database Design," IEEE Computer, pp.50-62, January
1986.

[NaGa82] Navathe, S.8., and S.G. Gadgil, "A Methodology for View Inte-
gration in Logical Database Design," In Proceedings of the 8th
International Conference onVery Large Data Bases, pp. I42-
164,1982.

[SSGN9l] Savasere,4., A.P. Sheth, S. Gala, S.B. Navathe, andH. Mar-
cus, "On Applying Classification to Schema Integration," In the
First International Workshop on Interoperability in Mutidatabase
Systems, þoto, Japan, pp.258-261, 1991.

[ShLa90] Sheth, 4.P., and J.A. Larson, "Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Data-
bases," ACM Computing Surveys, Yol. 22, No. 3, pp. 183-236,
September 1990.

[ShGN93] Sheth, 4.P., S. K. Gala, and S.B. Navathe, "On Automatic Rea-
soning for Schema Integration", International Journal of Intelligent
and Cooperative Information Systems (IJICIS), 1993, to appear.

[Wha92] Whang, W'K., "A Logic-Based Approach to Federated Data-
bases", Ph.D thesis, Electrical Engineering Department, Univer-
sity of Florida, Gainesville, January 1992.

[WhNC91] Whang,]V.K., S.B. Navathe, and S. Chakravarthy, "Logic-Based
Approach to Realizing a Federated Information System", In Proc.
of the First International Workshop on Interoperability in Multi-
database Systems, þoto, 1991.

[]VhCN93] Whang, W.K., S. Chakravarthy, and S.B. Navathe, "Query
Processing in Federated Databases using Logic-Based approach,"
in preparation,1993.

Relational Schema Integration 351

[Zani83] Zantolo, C., "The Database Language CEM'" ln Pr'oeeedings

of the ACM SIGMOD Interrntional Conference on Management
Ðata, pB. 207 -2L8, 1983.

Pcrmission to copy without fee all or p¿rt of this material is gfantoi! provided,that the copie-s

are ûot made or distributed for direct commercial advant4ge" the Computing Sys.teræs copyright
notice and ite date appear, aod notice is given that copying is by permission of the Regents _of
the University of California. To copy otherwise, or to republish, roquires a fee and/or specific
permission. See inside front cover fsr details.

352 W. rWhang, S. Chakravarthy, and S. Navathe

