Secure Timeliness: On the Cost of
Non-Synchronized Clocks

Raphael Yahalom The Hebrew University

ABSTRACT: The establishment of event timeliness
in a distributed system by reliance on an assumption
of closely synchronized clocks may introduce secu-
rity flaws. We present a method for determining the
message cost associated with the relaxation of such
an assumption in protocols. The method is used to ex-
amine multi-domain authentication protocols and to
establish that for these protocols the additional cost
may be insignificant.

Raphael Yahalom was supported in part by grants from the Recanati and Schonbrunn Foundations at the
Hebrew University, Jerusalem.

© 1994 The USENIX Association, Computing Systems, Vol. 7 * No. 4 Fall 1994 451

1. Introduction

It is often important that an entity involved in interactions with other remote enti-
ties in a distributed computing system be able to establish that certain events have
happened relatively recently. Such a timeliness requirement implies that an entity
is able to determine, in terms of its own local clock, the furthest point in the past
in which some event at another location has actually occurred. A secure timeliness
requirement is one in which such determination is possible even when malicious
attackers may attempt to lead an entity to wrong timeliness conclusions.

Establishing the timeliness of an event may be important in cases in which
the information corresponding to that event is valid only for a limited period,
or in which such information should only be acted upon once. In the hostile
environment we are considering, attackers may be able to block messages and
then send them at arbitrary points in the future, re-play messages which were
already received in the past, or in some cases, set certain clocks backwards or
forwards.

Consider a transfer $10000 from accountp to accountg request submitted
by an authorized client from some local node to a bank server. An attacker may
attempt to replay that request again at a later point hoping that the funds would
be transferred again. He could alternatively block the original message and (pos-
sibly much) later, after that request was aborted by the initiator due to a time-out,
send it to the server (who will then receive that request for the first time and may
consider an aborted request as valid).

Solutions to such timeliness challenges can be classified into two categories:
those which rely on an assumption that various clocks of different entities are
closely synchronized (cf. [5, 16, 11]), and those which do not rely on such an as-
sumption (cf. [14, 7, 15, 18]). Although the Needham-Schroeder protocol {14],
which was the first to address related issues, is not based on a synchronized clocks
assumption, most current real systems, such as Kerberos [16] or SPX [17], are.
Some protocols, such as the CCITT data exchange protocol [4], provide the op-
tion to select between these two possibilities. It is generally accepted that closely
synchronized clocks may reduce the number of messages required to achieve the
specified goals of a distributed exchange [11].

452 Raphael Yahalom

However, an assumption that certain clocks are always closely synchronized
may be considered questionable, in particular in widely-distributed, possibly open
systems. For example, it is conceivable that clocks at certain sites may maliciously
or incompetently be set wrongly, and so, at least temporarily, not be synchronized
with other clocks in the system. This may imply potentially serious security flaws
in protocols which rely on close clock synchronization for their correctness ([7,
1]).

In this paper we present an approach for computing the number of extra mes-
sages that are required in a protocol in which timeliness requirements need to be
achieved without an assumption of closely-synchronized clocks. It turns out that in
certain cases such extra message cost may be insignificant. It may thus be reason-
able in such cases to design a protocol without a synchronized clocks assumption
and thus reduce the potential security risks implied if such an assumption is in fact
invalid.

In particular we examine a multi-domain authenticated exchange protocol.

For that protocol we establish that with a closely synchronized clock assumption
n+3 messages are required, whereas without that assumption only n +4 messages
are required for achieving all the protocol goals. In other words, adding a single
message to the n 4 3 required anyhow, suffices in order to attain all the secure
timeliness goals of the protocol, without assuming close synchronization between
any of the clocks in the system.

The rest of this paper is organized as follows. In the next section we introduce
a model within which event timeliness, ways of establishing it, and the kinds of
risks that may be associated with close clock synchronization assumptions, are
described. In section 3 we present a general method for determining the number
of extra messages that are associated with the relaxation of the synchronized clock
assumption for a protocol. In section 4 we demonstrate the use of that method to
examine multi-domain authenticated exchange protocols. Finally in section 5 we
present some concluding remarks.

2. The Timeliness of Events

A hardware platform located at some physical location together with the local pro-
cesses which it may be executing are considered an entiry. A distributed system
consists of multiple entities and communication links. Entities may communicate
with each other by exchanging messages on these communication links.

Attackers may read, or modify, any part of any message flowing on a commu-
nication link, and similarly suppress any part of such a message or generate a new
one. Attackers may thus also replay old messages.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

453

An entity may share a secret with another one and use it as a key in some
pre-agreed encryption scheme.! Such an encryption scheme is assumed to be asso-
ciated with the following properties:?

Let {msg}k represent the result of encrypting msg with a key K. Then, with
sufficiently high probability

 Only a holder of K may obtain msg from {msg}x
+ Only a holder of K may have initially generated {msg} k.
A holder of msg and {msg}x can not derive K.

« Any change to any bit in {msg}x may affect randomly all the bits of the
decrypted message.

A protocol execution is a sequence of messages exchanged for the aim of
achieving some goals. As part of such protocol executions, each entity may per-
form local events—take local actions (e.g. receive a message, send a message,
provide cash, etc.).

Each entity may possess a clock which ticks at a certain rate—thus increasing
its value. Clocks may be set to a value such that consequent ticks will increment
that value. As we discuss below, each pair of clocks in the system may or may not
be closely synchronized.

There are circumstances in which it is important to establish at some entity
A that an event Eg that occurred at some other entity B has occurred relatively
recently—that is, it has occurred no longer than A ticks ago as measured on A’s
clock. We refer to that as a requirement of A to establish the timeliness of Ep.

In particular, two reasons may motivate such a requirement:

1. The information associated with g may be considered by A as stale a
certain period after it occurred. For example, if Ep is a request by B to A
to purchase a specified number and type of shares, B may not wish A to go
ahead and perform the transaction if it arrived long after it was sent.

2. The information associated with g may be considered by A as valid only
once. The actions at A which are implied by Ep are non-idempotent. In
the shares-purchase example above, A could have received the request rel-

1. For the sake of consistency, throughout this paper we refer only to shared-key encryption schemes. The timeli-
ness issues associated with public-key based protocols are analogous.

2. Whereas these are quite strong properties, we assume that a scheme such as DES provides a reasonable ap-
proximation of such properties.

3. Note that in the environment we assume, an attacker could have blocked the original request, and transmitted it
to A, say weeks, later.

454 Raphael Yahalom

Ep

A {T’A,...}KAB

A

|
£ A N

Figure 1. Asynchronous timeliness.

atively shortly after it was generated, but replayed for the second (or nth)
time. It is common for A to try and detect such replays by maintaining
some bounded state—for example corresponding to messages it received
within some time window of length A’

A’s ability to establish the timeliness of £’ depends on whether it assumes
B’s clock to always be closely synchronized with its own (|5, 16, 11]) or not ([14,
7, 15, 18]).

Consider first the case in which A does not make such an assumption about
clock synchronization. As was first suggested by Needham and Schroeder in [14]
and generalized by the author in [18], a necessary condition for A to establish
the timeliness of Ep at B is a message flow from A to B (which we denote
A ~» B) which includes a random value 74 (chosen from a sufficiently large
space) generated by A, arrives at B before Ep is generated followed by a flow
B ~» A.* That non-synchronized clocks case is demonstrated in Figure 1.

If Ep is represented by the generation by B of {r4,...}k,,. the key is a
secret key shared between A and B; A can establish that, with sufficiently high
probability, Ep could not have occurred before £/, and so has occurred not longer
than A ticks, on its local clock, before it received the corresponding message.

Consider now the case in which A assumes that B’s clock is always closely
synchronized with its own. In particular, A assumes that whenever a clock reading
tsp is made in B, its own clock value is ts4 and tsp — d4p < ts4 < tsp + OaB.
In such a case the flow A ~» B is not required, and the flow B ~» A simply needs
to contain the value tsp, representing B’s clock value when E'p was generated.

4. The notion of a nonce introduced by Needham and Schroeder in [14] is in fact more restrictive. A nonce is a
value which was never used by A before (such as a counter value). Consequently, such a nonce may only allow
A to establish valid only once aspect of Eg but not its staleness aspect.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

455

EB(tSB)

{tSB, "'}KAB

(tsp —baB)

A l A T >t

Figure 2. Synchronous timeliness.

That case is represented in Figure 2.

If A received that message at ts'; it can conclude that Ep has occurred at
most ¢tsy — (tsp — 64p) ticks ago on its local clock.

An assumption about clocks being always closely synchronized may in many
cases be considered questionable (e.g. [15, 1, 7]). Not only is the problem of syn-
chronizing clocks across multiple sites in distributed environments considered to
be a potentially non-trivial challenge, but in the environment we assume attackers
may maliciously set certain clocks backward or forward.” Consider for example
the attack described by Gong in [7], demonstrated in Figure 3.

Assume that at some point in the past B’s clock was temporarily set for-
ward by an attacker to a value greater by 6p than its previous (correct) value.
Consequently, at ts’; B may have unwittingly generated a message which in-
cludes the value tsp. A should now conclude that the message was generated
at B at most ts;1 — (tsp — 84p) ticks ago on its local clock, whereas in fact
the message was generated ts’y — (tsp — 6ap — ép) ticks ago on its local
clock.

We may thus conclude that, ignoring overheads associated with conventional
clock synchronization algorithms, certain potential attacks associated with clock
values may be eliminated at the cost of additional messages—the additional A ~»
B message flow.

In the next sections we demonstrate that in some cases that additional cost
may not be significant.

5. For example, an attacker may set the clock in a workstation before a valid user starts her session.

456 Raphael Yahalom

A L

A\ 4

Figure 3. A clock-forwarding attack.

3. Determining the Additional Cost

In this section we present a method for determining the additional cost, in terms
of extra messages, associated with protocols which do not require an assumption
of synchronized clocks. In the next section we demonstrate the approach in the
context of authentication protocols.

Such an approach is targeted at protocols’ design and analysis. One of the
important steps in such phases is the determination of whether to rely on closely-
synchronized clocks. Our results lead us to suggest that for certain protocols the
potential risks associated with such a reliance may outweigh the performance
gains.

Essentially, we compare the optimal flow of messages in a protocol in which
all entities are assumed to possess closely-synchronized clocks, with a derived
protocol in which the clocks are not synchronized. It turns out that in various
cases the required extra flow A ~» B, or parts of it, can be combined with flows
which are inhetently part of the protocol. Note that, because of protocol or en-
vironment characteristics (e.g. encrypted messages need to be sent via a path of
entities which share keys), a flow A ~» B may include more than a single mes-
sage.

The method consists of the following three steps:

1. Determine which events need to be established as timely by which entities.
In particular, construct a set S in which each element is a pair (£}, E;) of
events at entities P; and P; respectively. The meaning of such a pair is that
at the point when FE; occurs, entity F; needs to be able to establish that F;
is timely (i.e. that it has occurred within the last A ticks, for some A).

2. Determine the optimal message flow of the protocol, starting with an initia-
tion entity A, assuming that all clocks are closely synchronized.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

457

3. Let C;; denote the number of messages that need to be added to a proto-
col’s flow so that there is a message flow P; ~» P; for each pair (F;, E;)
in & such that the last message of the flow arrives to P; before E;. Consis-
tently with flows implied by the protocol and environment specifications,
compute the minimal Z Cij.

S

That minimal sum over all the pairs in § is the additional message cost associ-

ated with the relaxation of the synchronized clock assumption.

4. Multi-Domain Authentication Protocols

In this section we apply the method presented in the previous section in the con-
text of a multi-domain shared-key authentication and data-exchange protocol.

Let a shared key path be a sequence of entities such that each entity shares a
long term secret with its successor and predecessor. Consider an environment with
two entities A and B and in which the shortest shared key path between them,

A, AS4, AS), .. .AS,_1,ASRB, B consists of n intermediate entities (authentication
servers). The identities of the entities on that shortest shared key path can be pre-
determined, for example based on some global hierarchical structure (]2, 10, 6,
20]). The entities A and B consider all the entities in that path to be trustworthy
with respect to performing the algorithm correctly, and, in addition, they both
consider ASg to be trustworthy with respect to the generation of good quality
temporary session keys [20].

Informally, the protocol requires that both A and B receive a timely secret
session key which is generated by ASp and that a single secure timely request-
response exchange between A and B be performed using that new session key.®

The above specifications imply the following message flows:

A~ ASp ASp would only generate a key after it receives information
from the initiator, A.

ASp~ A A needs to obtain the session key generated by ASp. That
flow is constrained by secrecy requirements—the generated
key should not be obtainable by non-trusted entities (e.g.
ones which are not on the trusted shared key path).

6. Variants of this protocol, for example, ones in which an entity other than ASp generates the session key [19],
or in which the session itself has a different structure than a simple request-response, may similarly be
considered.

458 Raphael Yahalom

ASp~ B Similarly, B needs to obtain the session key generated by
ASp.

A~ B B needs to obtain the data-request which A generates. The
secrecy and integrity of that request need to be protected by
the new session key.

B~ A Similarly, A needs to obtain the data-response which B
generates.

The following timeliness requirements are associated with such a protocol:

» By the time it sends its data-request message (event send-datas) A
needs to have established that a key generation event at ASp (event key-
generations,) is timely.

« By the time it sends its data-response message (event send-resp) B
needs to have established that a key generation event at ASp (event key-
generationasy) is timely.

« By the time it sends its data-response message (event send-resg) B needs
to have established that event send-data 4 is timely.

« By the time it receives the data-response message (event receive-ress) A
needs to have established that event send-resp is timely.

Consequently, the set S contains the following 4 pairs:

{ (key-generations, , send-datas)
(key-generationas, , send-resg)
(send-datay , send-resg)
(send-resp , receive-resy) }

Let ts denote a timestamp, S, denote a unique session identifier generated by
the initiator A, and K 45, 45; denote a secret key shared between entities AS; and
AS; (in particular K 4p is the new session key generated by ASg for A and B).
{msg} K denotes the encryption of msg with a key K, and AS; — AS; : msg,
denotes a message msg sent from AS; to AS;. The following protocol, which
relies on closely synchronized clocks, achieves the specified goals’ :

7. We assume that shared-key path information is globally available to all principals, so that, for example, each
principal can unambiguously determine the next one in the flow below. Such an assumption is justified in cases
in which the principals are organized in some global static structure (e.g. a hierarchy) which also reflects their
trust relations. That assumption may be relaxed, cf. [20], by incorporating additional path related information
into the protocol messages.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

459

460

n+1

n+2 ~
n+3

Figure 4. A synchronous authentication protocol.

1. A—*ASBI Sn,ASB,A,B

2. ASp— ASn-1: {Sn,ASp.ts, A, B, KaB}K s, as,
{Sn,ASB,tS,A,B,KAB}KASBB

3. AS,_1— ASn_>: {Sn,ASB,tS,A, B, KAB}KAS,H,ASnQ
{SR,ASB,tS,A, B, KAB}KASBB

n. AS; — AS4: {Sn,ASB,tS, A, B, KAB}KAszASA
{Sn,ASB,tS,A, B’KAB}KASBB
n+1. AS4— A: {Sn,ASB,tS,A,B,KAB}KASAA
{SH,ASB,tS,A,B, KAB}KASBB
n+2. A— B: {Sn, A, B,tsa,request}k ,
{Sn,ASB,tS,A,B,KAB}KASBB
n+3. B—A: {Sn. B, A,tsp,response}k , 5

The message flow of that protocol is described in Figure 4.

The optimality of that protocol follows from the fact that the ASp ~» A flow,
considering its secrecy constraints, cannot contain less than n messages (because
of the assumption regarding the shortest shared key path), and the fact that the
flow ASp ~» B was in fact piggybacked on top of the ASp ~ Aand A ~
B flows. The other flows may not be piggybacked and consist of only a single
message each.

The fact that timeliness requirements are attained follows from the included
timestamp fields and the synchronized clocks assumption.

We now consider the flows that need to be added to that protocol in an envi-
ronment in which close clock synchronization is not assumed. Consider the timeli-
ness requirements as represented by the pairs of events in set S:

 The first pair implies a flow A ~ ASp. That flow is already included in

Raphael Yahalom

the protocol, because there is a requirement that A, the initiator, will notify
ASp of the need to generate a session key.

» The second pair implies a flow B ~» ASp. The shortest such additional
flow (1 message) can be achieved by the two messages A — B followed by
B — ASp, replacing the A — ASp message. Note that these 2 messages
satisfy both the flows implied by the first 2 pairs in S.

+ The third pair implies a flow B ~» A. That flow is already included by
the message B — ASp (added above) followed by the flow ASp ~ A
(required for delivering the key to A).

 The fourth pair implies a flow A ~» B. Again, that flow is already included:
A is required to transfer the data-request to B.

Thus, the minimal Z C; is equal to 1 (0+1+0+0). That corresponds to the fact

that it costs only a sfnglc message to relax the assumption of closely synchronized
clocks for such a multi-domain authentication protocol. A cost of n -+ 4 messages
instead of » + 3 messages seems to potentially be insignificant.

The derived protocol is the following one. 74 and r/, are random numbers,
from a sufficiently large space, generated by A, and rp a random number gener-

ated by B.
1. A—B:
2. B——>ASBZ

3. ASB — ASn_l :

4, AS,_1 — AS,_:

n—+3.

n + 4.

ASy; — AS,
AS4 — A
A— B:

B—A:

Sn.T4,A, B

Sn,r4,78,A, B

{Sn,'I‘A,TB,ASB,A, B’KAB}KASBASn_l
{Sn,’f'B, ASB,A,B,KAB}KASBB
{Sn,74,78,ASB, A, B, KAB}KASn_lASn_Z
{Sn,T‘B,ASB,A, B, KAB}KASBB

{Sn,TA,T‘B,ASB,A, B’KAB}KASZASA
{Sn,?”B, ASB,A, B, KAB}KASBB
{Sn,T4,7B,ASB, A, B, KAB}KASAA
{Sn.7TB, ASB, A, B, KAB}KASBB

{Sn, 74,78, A, B, request}k ,
{Sn,rB,ASB,A, B, KAB}KASBB

{Sn. 7'y, B, A,response}k ,

The message flow of that protocol is described in Figure 5.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

461

1
n+3 _
n+4

Figure 5. An asynchronous authentication protocol.

4.1. Subsequent Authenticated Exchanges

We now consider cases in which A and B may be involved in exchanges based on
a session key K 4p which they obtained earlier and which each of them considers
as still valid.®

Again, consider each such exchange as consisting of a request from A and
a response from B. We first refer to the case in which A needs to establish the
timeliness of the response, but B does not wish to establish the timeliness of the
request. That corresponds to a scenario in which the nature of the request is such
that B may consider it valid, and act upon it, even if it may be old, and B also
considers such an action to be idempotent—the question of whether that request
has already been processed in the past is considered irrelevant. For example, a
data query request from a client to a server may have such characteristics.

The set S includes only one pair:

{ (send-resp,receive-resy) }
Assuming close clock synchronization the optimal protocol is the following:
1. A— B:{A,B,request}k,,
2. B— A:{B,A,tsp,response} i ,,

Relaxing the close clock synchronization assumption and considering the set S we
conclude that a flow A ~» B is required before B generates its response. However
such a flow is already part of the protocol. Consequently the asynchronous version
of the protocol requires no additional messages:

8. Kehne, Schonwalder, and Langendorfer [9] and Neuman and Stubblebine [15] have considered subsequent
exchanges in which only A stores the session key as well as a ticket generated by B. That ticket includes that
session key (along with some of its parameters) and A forwards it to B when required. Our analysis applies to
such variations as well.

462 Raphael Yahalom

1. A— B:{A,B,r},request} i,
2. B— A:{B,A,rj,response}k

We now consider the case in which in addition to A establishing the timeliness
of the response, B is required to establish the timeliness of the request. That for
example corresponds to a case in which the request from A represents a shares
purchase order.

The set S now contains two pairs:

{ (send-reqs , send-resp)
(send-resp , receive-ress) }

The closely synchronized clocks version of the protocol still contains two mes-
sages:

1. A— B:{A,B,tsa,request} i,

2. B— A:{B,A,tsp,response}i
The additional pair in the set S implies a B ~» A flow which precedes the request
from A to B. Such a flow needs to be triggered by the initiator A and so an addi-
tional A ~» B flow is required. Consequentiy 2 additional messages are required

for the version of the protocol in which clocks are not closely synchronized, and
we obtain the following protocol:

1.A—-B:AB

2.B— A:B,Ar}

3. A— B:{A,B,r,r},requestt i,
4. B— A:{B,A,r,response} i,

5. Conclusions

A few researchers have pointed out the potential risks associated with protocols
like Kerberos [16] which rely on a closely synchronized clocks assumption for
establishing timeliness (cf. [7, 1]). Kehne et al. [9] and Neuman and Stubblebine
[15] have recently proposed protocols which would achieve the goals of Kerberos
but would not require a synchronized clock assumption.’

9. The Kehne-Schonwalder-Langendorfer protocol in [9] is sub-optimal as demonstrated in [18]. The Neuman-
Stubblebine protocol, based on a protocol presented by the author in [18], is similar to a single domain special
case version of the protocol presented in section 4 and is indeed optimal.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

463

The contribution of this paper is to present a systematic method for deter-
mining the message cost associated with a relaxation of the synchronized clocks
assumption and to demonstrate that there are important cases in which such ad-
ditional cost may be considered insignificant. Even in the cases in which such
additional cost is significant the trade-off between potentially enhanced security
and degraded performance needs to be carefully evaluated.

Further work needs to proceed in various directions:

» Applying the method to other important types of protocols.

+ Considering cases in which only certain clocks are assumed to be closely
synchronized while others are not.

 Extending protocol analysis methods, for example those of Burrows, Abadi,
and Needham [3], Gong, Needham and Yahalom [8], Meadows [12],
Millen, Clark, and Freedman [13], and others, to capture notions such as
clock synchronization and timeliness in the sense we have presented them
here.

» Examining systematically general security-performance trade-offs in dis-
tributed protocols.

Acknowledgements

I thank the anonymous referees for helpful comments and suggestions.

References

1. S. M. Bellovin and M. Merritt, “Limitations of the Kerberos Authentication Sys-
tem,” Computer Communication Review, Vol. 20, No. 5, October 1990, pp. 119-
132.

2. A. Birrell, B. Lampson, R. Needham, M. Schroeder: “A Global Authentication
Service Without Global Trust,” Proceedings of the IEEE Conference on Security
and Privacy, 1986, pp. 223-230.

3. M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication,” in Pro-
ceedings of the 12th ACM Symposium on Operating Systems Principles, Litchfield
Park, Arizona, December 1989, pp.1-13. Published as ACM Operating System
Review, Vol. 23, No. 5, December 1989. A fuller version was published as DEC
Systems Research Center Report No. 39, Palo Alto, California, February 1989.

464 Raphael Yahalom

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CCITT Draft Recommendation X.509 “The Directory-Authentication Framework,”
version 7, Gloucester, November 1987.

D. E. Denning and G. M. Sacco, “Timestamps in Key Distribution Protocols,”
Comm of the ACM, Vol. 24, No. 8, August 1981, pp. 533-536.

V. D. Gligor, S.-W. Luan, J. N. Pato: “On Inter-realm Authentication in Large
Distributed Systems,” in Proceedings of the IEEE Conference on Security and
Privacy 1992, pp. 2-17.

L. Gong, “A Security Risk of Depending on Synchronized Clocks,” Operating
Systems Review, Vol. 26, No. 1, 1992, pp. 49-53.

L. Gong, R. Needham, and R. Yahalom, “Reasoning about Belief in Cryptographic
Protocols,” in Proceedings of the 1990 IEEE Symposium on Security and Privacy,
Oakland, California, May 1990, pp. 234--248.

A. Kehne, J. Schonwalder, H. Langendorfer, “A Nonce-Based Protocol for Multi-

ple Authentications,” Operating Systems Review, Vol. 26, No. 4, October 1992, pp.

84-89.

B. Lampson, M. Abadi, M. Burrows, E. Wobber: “Authentication in Distributed
Systems: Theory and Practice,” The 13th ACM Symposium on Operating Systems
Principles, October 1991.

B. Liskov, “Practical Uses of Synchronized Clocks in Distributed Systems,” in
Proceedings of the 1991 ACM Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, August 1991, pp. 1-9.

C. Meadows, “Applying Formal Methods to the Analysis of Key Management
Protocols,” Journal of Computer Security, 1, 1992, pp. 5-53.

J. K. Millen, S. C. Clark, and S. B. Freedman, “The Interrogator: Protocol Secu-
rity Analysis,” IEEE Trans on Software Eng SE-13, 1987, pp. 274-288.

R. M. Needham and M. D. Schroeder, “Using Encryption for Authentication in
Large Networks of Computers,” Communications of the ACM, Vol. 21, No. 12,
December 1978, pp. 993-999.

B. C. Neuman and S. G. Stubblebine, “A Note on the Use of Timestamps as
Nonces,” Operating Systems Review, Vol. 27, No. 2, April 1993, pp. 10-14,

J. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An Authentication Service for
Open Network Systems,” Proc. Winter Usenix Dallas, 1988.

J. J. Tardo and K. Alagappan “SPX: Global Authentication Using Public Key
Certificates,” Proc. of the IEEE Symposium on Security and Privacy, Oakland,
California, 1991.

R. Yahalom, “Optimality of Asynchronous 2-Party Secure Data-Exchange Proto-
cols,” Journal of Computer Security, Vol. 2, No. 2, 1993, pp. 191-209.

R. Yahalom, “Optimality of Multi-Domain Protocols,” Proc. of the 1st ACM Con-
ference on Computer and Communication Security, Fairfax, Virginia, November
1993, pp. 38-48.

R. Yahalom, B. Klein, Th. Beth: “Trust Relationships in Secure Systems—A Dis-
tributed Authentication Perspective,” Proceedings of the IEEE Conference on
Research in Security and Privacy, 1993, pp. 150-164.

Secure Timeliness: On the Cost of Non-Synchronized Clocks

465

