
A Comparison of Three

Distributed File SYstem

Architectures : Vnode, SPrite,

and Plan 9

Brent V/elch Xerox PARC

ABSTRACT: This paper compares three distributed

file system architectures: the vnode architecture

found in SunOS, the architecture used in the Sprite

distributed file system, and the architecture used in

the Plan 9 distributed file system' The emphasis of
the comparison is on generalized support for remote

access to file system resources, which include periph-

eral devices and IPC communication channels as well

as regular files. The vnode architecture is an evolu-

tion óf sffuctures and interfaces used in the original,

stand-alone UNIX file system' The Sprite architecture

provides a network-wide shared name space and em-

phasizes a strong separation of the internal naming

and VO interfaces to easily provide remote access to

a variety of resources. The Plan 9 architecture relies

on per-process name spaces and is organized around a

singte frle system protocol, 9P, through which a variety

of devices and system services are accessed'
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l. Introduction

This paper compares three approaches to distributed ûle system architecture. The
vnode (or VFS) architecture is part of SunOS. It was added to the original Berke-
ley version of UNIX (4.1BSD) as that system was adapted to support networks of
Sun workstations [Sandberg et al. 1985; NFS 1985]. The Sprite file system was
built as part of the Sprite network operating system project [Ousterhout 1988].

Sprite was designed and built from scratch to support a networked environment
of high performance, multiprocessor workstations [Hill et al. 1986] and associ-
ated servers. Plan 9 is the latest version of the operating system built at AIT Bell
Labs [Pike et al. 1990], the lab at which the original version of UNIX was written

[Ritchie 1974]. To admit a bias up front, it should be noted that the author was
part of the ream rhar designed and built Sprite [Welch 1990].

There has been considerable work in distributed file systems, and these three
systems certainly do not encompass every approach taken. However, they share

enough features that a comparison is interesting. Many basics are similar and are

derived from these systems' UNIX heritage. File system objects are named in a
hierarchical name space that is distributed among multiple servers. The interface
to the file system is in terms of open, close, read, and write operations. Different
kinds of objects such as peripheral devices and user-provided server processes

are accessed via the file system interface, as well as ordinary files. Thus, on the
surface these systems are quite similar, but there are a number of interesting dif-
ferences in their internal structure that reflect different approaches to providing a
similar highJevel interface in a distributed environment.

Each of these systems takes a simple object-oriented approach that takes into
account the variety of system resources accessed via the file system interface.
Each system defines an internal file system interface, or set ofinterfaces, that
hides the differences among the resource types such as files and devices. Asso-
ciated with the different resources are typed object descriptors that encapsulate the
state for an instance of the resource. Given this similar approach to architecture,
we can compare these systems by looking at the operations and data structures as-

sociated with their main internal file system interfaces. After an overview of each
architecture, we will present more detailed comparisons of particular features.
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The terms client and seryer are used frequently in this paper. In nearly all

cases they refer to instances of an operating system acting in one of these two

roles. Typically a client operating system is acting on behalf of a user program

that has made a system call requiring access to a femote resource' Typically a

server is the operating system kernel that has direct access to a given resource

such as a file or peripheral device. However, there is also discussion of user pro-

grams that export a service via the flle system interface, and these situations will

typically be clarified with the termuser-level server'

2. The Original UNIX Architecture

A brief description of key aspects of the original UNIX architecture serves as a

starting point for the comparisons. There are three aspects of the system intro-

duced here: composition of the name space, name lookuP, and vo accesses.

The name space for the UNIX file system is a hierarchy of directories and

leaf nodes. A leaf node can represent a disk-resident f,le, a peripheral device,

a communication port, or another directory, which leads to a hierarchical name

space. The top of the hierarchy is called the root directory, or just "the root'" The

hìerarchy is divided into subtrees (unfortunately termedlle systems) that are self-

contained hierarchies. One subtree is taken to be the overall root of the hierarchy.

Other subtrees are attached by the mount operation that associates the root of a

subtree with an existing directory in the overall hierarchy'

Narne lookup proceeds by recursively traversing the directory hierarchy' A

lookup starts at the root with an absolute pathname, or at the process'S cufrent

directory with a relative pathname. A pathname is represented as a sequence of

directory names separated by slash characters (/) and it ends with the name of a

leaf node or a directory. An absolute pathname is distinguished because it begins

with a "/", which is the name of the root directory. Lookup is a simple matter of

scanning the current directory for the next component in the pathname. A match

advances the current directory or completes the lookup, and a miss terminates the

lookup with an error. The only complications are support for the mount operation

and for symbolic lint<s. A table of mount points is maintained by the operating sys-

tem, and this is checked at each component to see if the lookup should map to the

root of a different subtree. A symbolic link is leaf node that contains a pathname'

The system substitutes the value of the symbolic link for the current component

and continues the lookup operation.

The cost of name lookup is amortized over many VO operations with the open

operation to create adatastructure that is used by subsequent read andwrite oper-

ations to access the underlying object directly. The read and write operations also

A Comparison of Three Distributed FíIe System Architectures L77



mask differences among file system resources to allow general purpose programs
to access a variety of data sources.

The next three sections give a brief overview of each of the three systems
being considered. More detailed comparisons among the systems follow the
overviews.

3. The Vnode Architecture

The approach taken in SunOS with its'vnode (or vfs) architecture is to retain the
basic structure found in the original UNIX system but to generulize it by intro-
ducing two internal interfaces that include multiple implementations to support
different kinds of file systems. The v/s interfâce is concerned with the mount
mechanism and allows for different types of file systems (e.g., local or remote)
to be mounted into the hierarchy. The vfs operations are given in Table 1, which
shows the interface as defined for SunOS 4.1.1.

Table l. Vfs Operations <sys/vfs.h>.

Operation Description

vfs-rnount
vfs-unmount
vfsroot
vfs-statfs
vfs-sync
vfs-vget
vfs-mountroot
vfs-swapvp

Mount a ûle system onto a directory.
Unmount a file system.

Return the root vnode descriptor for a file system.

Get file system statistics.
Flush modified file system buffers to safe storage.

Map from a file ID to a vnode data structure.
Special mount of the root ûle system.

Return a vnode for a swap area.

The vnode interface is concerned with access to individual objects. The opera-
tions in the vnode interface are listed in Table 2. There is a rough classification
of the vnode operations into three sets. The first set of operations deals with path-
names: vn-access, vnJookup, vn-create, vn-femove, vnlink, vnJename, vn_rnkdir,
vn-rmdir, vn-readdir, vn-symlink, and vn-readlink. The second set of operations
applies to the underlying object being named by a pathname (e.g., a file or a de-
vice). These operations include vn-open, vn-close, vn:dwr, vn_ioctl, vn_select,
vn-getatff, vn-setattr, vn-fsync, vnJockctl, vn-getpage, vn-putpage, and vn:nap.
There is also a set of routines that deal more with the management of the vnode
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data structures themselves: vnjnactive, vn-fid, vn-dump, vn-cmp, vn-realvp,

vn-cntl.

Table 2. Vnode Operations <sys/vnode.h>.

Operation Description

vn-open Initialize an object for future VO operations.

vn-close Tþar down the state of the VO stream to the object.

vn-rdwr Read or write data to the object.

vnjoctl Perform an object-specific operation.

vn-select Poll an object for VO readiness.

vn-getattr Get the attributes of the object.

vn-setattr Change the attributes of the object.

vn-access Check access permissions on the object.

vnJookup Look for a name in a directory.

vn-create Create a directory entry that references an ob1'ect.

vn:emove Remove a directory entry for an object.

vnlink Make another directory entry for an existing object.

vn:ename Change the directory name for an object.

vn-rnkdir Create a directory.
vn-rmdir Remove a directory.
vn:eaddir Read the contents of a directory.

vn-symlink Create a symbolic link.
vn:eadlink Return the contents of a symbolic link.
vnJsync Force modified object data to disk.

vnjnactive Mark a vnode descriptor as unused so it can be uncached.

vnlockctl Lock or unlock an object for user-level synchronization.

vn-fid Return the handle, or file ID, associated with the object.

vn-getpage Read a page from the object.

vn-putpage Write a page to an object.

vn-rnap Map an object into user memory.

vn-dump Dump information about the object for debugging.

vn-cmp Compare vnodes to see if they refer to the same object.

vn:ealvp Map to the real object descriptor.

vn-cntl Query the capabilities of the object's supporting file system.

The choice of operations in the vnode interface reflects an evolutionary de-

sign choice to handle network distribution. The original, directory-scanning lookup

algorithm is retained, which means that the main loop of pathname resolution is

A Comparison of Three Distributed File System Architectures 179



done locally, and vnode operations are performed to find a name in a given di-
rectory and to retrieve the value of a symbolic link. This structure means that
resolving a pathname may require many remote vnode operations. The mount

mechanism is retained, which implies that each host must manage its own set

of mount points in order to assemble its file system from those available on re-

mote file servers. Thus, we can characterize this architecture as a modification to a
stand-alone system that allows for remote access.

The central data structure in the architecture is the vnode that represents a

particular object. There are also per-file system structures associated with the

vfs interface. The vnode contains some generic flelds for data structure lock-
ing, a vector of vnode operations, a pointer to the vfs structure, and then some

object-specific pointers. There is an opaque data pointer, as well as a union of
three pointers to either data pages, a streams data structure [Ritchie 1984], or a
socket data structure. This latter set of pointers indicates that streams and sockets

are not fully integrated into the architecture. Instead of all stream and socket oper-

ations being done through the vnode operations, there are many places in the code

where special case checks are made against the streams case and the socket case.

This approach defeats some of the goals of the vnode interface, namely, to abstract

the differences among object types.

4. The Sprite Architecture

The Sprite file system architecture was designed to support a network of diskless

workstations served by a collection of ûle servers. Two aspects of its design reflect
a network-orientation rather than the evolution of a stand-alone design. The first is
a shared, network-wide name space that permits the operating system to manage

distribution on behalf of users and application prograÍrmers. All hosts have identi-
cal views of the system, so they can be used just like terminals on a time-sharing
system. The second aspect of the design is a separation of the internal pathname

operations and VO operations into different interfaces. The internal split between

naming and VO reflects a goal to reuse the capabilities of the ûle servers as more

general name servers.

The shared name space is achieved by replacing the mount mechanism with
a system based on prefix tables [Welch 1986b]. The prefix tables divide name

lookup into a prefix matching part, which is done on clients, and a directory scan-

ning part, which is done on the servers. The Sprite prefix table system has two key
properties. The first is that the naming protocol between clients and seryers causes

new prefixes to be returned to clients as they access new parts of the shared name

space. The second is that clients dynamically locate servers when they add new

180 Brent Welch



preûxes to their cache. These properties make managing the distributed system

easy. The system administrator configures the servers to export their flle systems

under particular prefixes, and the naming protocol automatically propagates the

prefix information to clients.
The internal interfaces used in Sprite separate operations into those on path-

names, which involve the prefix table mechanism, and those on open VO streams.

An VO stream can be hooked to a file, peripheral device, or to a user-level server

process. The operations in the two interfaces are given in Tables 3 and 4. The

distinction between the two interfaces provides the flexibility to implement
names on the file servers for resources that are located on the client worksta-

tions. Client workstations have no need to maintain a directory structure, either

on disk or fabricated in main memory data structures, in order to access their
local resources. They do, however, depend on the file servers being up, but so

do workstations in most UNIX networks. At the same time, the shared name

space and division of the naming and VO interfaces automatically extends the

ability to access the peripheral devices and server processes on other worksta-

tions.

Table 3. Sprite Naming Interface <fs/fsNameOps.h>.

Operation Description

NameOpen

GetAttributes
SetAttributes

MakeDevice
MakeDirectory
Remove

RemoveDirectory
HardLink
Rename

Syml-ink

Map from a pathname to attributes of an object, and

prepare for VO.
Map from a pathname to attributes of an object.

Update the attributes of an object.

Create a special file that represents a device.

Create a directory.

Remove a named object.

Remove an empty directory.

Create another name for existing object.

Change the pathname of an existing object.

Create a symbolic link.

The central data structure in the Sprite file system is an object descriptor,
analogous to the vnode. The basic object descriptor has a type, UID, a reference

count, some flags, and a lock bit to serialize access. This base structure is embed-

ded into more complete object descriptors that correspond to the different types of
objects accessed via the file system. Above the naming and VO interfaces only the
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base structure is accessed, with the more specific stnrcture remaining private to the

various object implementations.

Table 4. Sprite VO Interface <fsio/fsio.h>.

Operation Description

IoOpen

Read

Write
PageRead

PageV/rite

BlockCopy
IoControl
Select

IoGetAttributes
IoSetAtributes
ClientVerify

Release

MigEnd
SrvMigrate

Reopen

Scavenge

ClientKill
Close

Complete the preparation for UO to an object.

Read data from the object.

Write data to the object.

Read a page from a swap file.
Write a page to a swap file.

Copy a block of a swap file. Used during process creation.

Perform an object-speciflc operation.

Poll an object for readability, writability, or an exceptional

condition.
Fetch attributes that are maintained at the object.

Change attributes that are maintained at the object.

Verify a remote client's request and map to local object

descriptor.

Release references after an VO stream migrates away.

Acquire new references as an VO stream migrates to a host.

Update state on the VO server to reflect anUO stream

migration.
Recover state after a server crash.

Garbage collect cached object descriptors.

Clean up state associated with a client.

Clean up state associated with VO to an object.

The client-side and server-side object descriptors for the same object are dif-
ferent. The client's descriptor is often very simple, containing just enough state to

support the recovery protocol described in Section 12, whereas the server's object

descriptor contains all the information needed to access the object directly. Spe-

cial support for the remote case is provided in two ways. First, the UID explicitly

encodes the server ID so that remote operations can easily be forwarded over the

network. Second, remote operations only pass types and UIDs, not object descrip-

tors. The server uses a mapping between local and remote types to find the object

descriptor that corresponds to the client's object type and UID. This mapping is

done by the ClientVerify operation, which is selected by the client's object type

but which returns the seryer's object descriptor.
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5. The Plan 9 Architecture

The architecture for the Plan 9 file system is centered around a single protocol
named 9P and the use of per-process name spaces. The 9P protocol reflects a de-

sign goal which eliminates special case operations by treating nearly all resources

as file systems. That is, a resource can have a name space associated with it, and

the resource is manipulated by writing and reading messages to the various names

associated with the resource.l Per-process name spaces allow customization to
support heterogenous clients and virtual device environments for the 8j window
system.

Table 5. Plan 9 Protocol, 9P.

Operation Description

Nop The null òperation.

Session Start a communication session.

Error Error return message in response to other messages.

Flush Abort an outstanding request message.

Auth Authenticate a client.
Attach Identifies the user and the server name space to be accessed

via the channel.

Clone Duplicate a reference to an object.

Clunk Close a reference to an object.

Cl\ilalk Combines the Clone and V/alk operations.

Open Prepare an object reference for future VO operations.

Create Create an object and prepare for UO on it.
Read Read data from an object.

Write Write data to an object.

Remove Remove an object from a server.

Stat Fetch the attributes of an object.

Wstat Write the attributes of an object.

Walk Descend a directory hierarchy.

The operations in 9P are listed in Table 5. They can be grouped into four cat-

egories: session management, authentication, naming, and UO. The Nop, Session,

1. The few important resources not modeled as file systems in Plan 9 include process creation and virtual mem-
ory. Creating a process is important and complex enough to warrant a special purpose implementation. Virtual
memory is not modeled as a file system because of the complexity associated with distributed shared memory
implementations.
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and Flush messages are used to condition the communication channel to a server.

A channel is a full duplex byte sffeam that is used to multiplex different client

requests, and a session is established with a server for a particular sequence of
client requests. The Auth and Attach messages are used to obtain a ne% authen-

ticated channel to a server. The channel starts out logically attached to the root of
the server's tree. The Clone, Walk, and ClWalk operations are used for pathname

traversal. Clone duplicates a channel, and Walk moves the channel to a different

named object. ClWalk combines these operations. Finally, we have the operations

on individual objects: Open, Read, Vy'rite, Clunk (i.e., close), Create, Remove, Stat

and Wstat.

The 9P protocol specifies objects in two ways, with client-specifiedfids and'

server-specifled qids. An fid comprises 16 bits and is chosen by the client to repre-

sent a particular reference to some object. The qid is a 64-bit unique ID for an

object chosen by the server. For example, in the Attach operation, the client

specifies a fid to represent its reference to the server's root directory. The Clone

operation specifies a new fid to represent another reference, and then the Walk

operation changes the association between the frd and a server object. The qid is

returned from the Attach, Open, Create, and V/alk operations in order to identify

the underlying object uniquely.
In addition to the 9P protocol, two other system calls manipulate the per-

process name spaces. Mount attaches a communication channel to a name, and

bind gives a new name to an existing object. If bind is used on directories, the

contents of the new directory can be merged with the existing contents, forming a

union directory. One of the parameters to bind specifies a search order in the case

of conflicting names. Union directories are used to replace the search path mecha-

nisms in other UNIX systems. Ordinarily, a process shares its name space with the

rest of its process group. However, a new process can also get a copy of the name

space and use mount and bind to customize the name space.

The following subsections consider particular aspects of a distributed file sys-

tem implementation and how they are effected by the design choices of the three

systems.

6. Remote Access

Because remote access is a fundamental aspect of a distributed file system, the

communication protocols for remote access are an important part of the sys-

tem architecture. The vnode architecture makes no particular commitment to

remote access. Instead, it is possible that some file system types support remote

access via their own protocols (e.g., NFS INFS 1985], AFS lHoward 1988] or
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RFS [Rifkin 1986]). In addition, a mount protocol is used to obtain a handle on
a remote file system. Though it is not fair to blame the vnode architecture for
the faults of NFS, it is important to note that the full vnode interface is not ex-
ported via NFS. The fact that the subset does not include open, close, or ioctl
operations changes the semantics that can be offered by remote file access, be-
cause the server must be o'stateless." For example, the server does not remember

that a file is opened for execution, and so it will allow the file to be overwritten,
usually causing an enor when new pages of the file are mixed with old pages as a

result of demand paging. Also, NFS is oriented toward flle access; it is not general

enough for remote device access.

Plan 9 defines the file system interface as a set of messages over a commu-
nication channel; thus it extends quite easily to a remote environment. A kernel-
based service called the mount device is used to attach communication channels

to remote servers in the name space. The mount device converts system calls on

the remote resource into 9P messages on the communication channel. The mes-

sage format is fairly simple, beginning with an operation type and a call sequence

number and followed by operation-specific arguments. It is noteworthy that multi-
ple clients can use the same channel to a server, and the server is responsible for
managing all the requests.

Sprite uses a kernel-to-kernel Remote Procedure Call (RPC) protocol for its
network communication [Welch 1986a] in order to provide an efficient means of
remote communication that permits structured semantics. Sprite RPC is layered

over ethernet packets directly or encapsulated in IP packets. The current Sprite

implementation defines 40 RPCs, of which 29 ne for the file system, 4 for process

migration, 2 for remote signals, 4 for testing the RPC system itself and I is to get

the current time. Two of the file system RPCs are directly in support of process

migration, which is described in detail by Douglis [Douglis 1990]. Most of the file
system RPCs correspond to procedures in the two main file system interfaces. In
addition, RPC is used for cache consistency callbacks, and a broadcast form of
RPC is used to support server location. Note that although most RPCs are issued

by client workstations and serviced by file server hosts, all Sprite hosts are capable

of servicing RPC requests. For example, cache consistency callbacks are issued by
the flle server and serviced by a workstation that caches the file. Process migration
involves RPCs between workstations. The complete set of Sprite RPCs is listed in
Table 6.
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Table 6. Kernel-to-Kernel RPC Used in Sprite.

RPC Description

ECHO-1

ECHO2
SEND

RECEIVE
GETTIME
FS-PREFIX
FS_OPEN

FS_READ

FS-WRITE
FS-CLOSE
FS-UNLINK
FS.RENAME
FSI\4KDIR
FS-RMDIR
FSI\,TKDEV
FSI-INK

FS-SYM-I-INK
FS-GET_ATTR

FS-SETAITR

FS-GETAMR-PATH
FS-SET-ATTR-PATH
FS-GET-IO-ATTR
FS_SETIO-AITR
FS-DEV-OPEN

FS-SELECT
FS-IO-CONTROL
FS-CONSIST

FS_CONSIST_REPLY

Echo. Performed by server's intemrpt
handler (unused).

Echo. Performed by Rpc-Server kemel lhread.

Send. Like Echo, but data only transferred to

server.

Receive. Data only transferred back to client.

Broadcast RPC to get the current time.
Broadcast RPC to find prefix server.

Open a file system object by name.

Read data from a file system object.

Write data to a file system object.

Close an VO sfream to a file system object.

Remove the name of an object.

Change the name of an object.

Create a directory.

Remove a directory.

Make a special device file.
Make a directory reference to an existing
object.

17 Make a symbolic link to an existing object.

18 Get the attributes of the object behind an

VO stream.

19 Set the attributes ofthe object behind an

UO stream.

20 Get the attributes of a named object.

2l Set the attributes of a named object.

22 Get the attributes kept by the VO server.

23 Set the atffibutes kept by the VO server.

24 Complete the open of a remote device or
pseudo-device.

25 Query the status of a device or pseudo-device.

26 Perform an object-specific operation.

27 Request that cache consistency action be

performed.

28 Acknowledgment that consistency action

completed.

)
3

4
5

6

7

8

9

10

11

12

13

l4
15

t6
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FS-COPY-BLOCK 29

FSIVTIGRATE 30

FS-RELEASE 3I

FS_R.EOPEN 32

FS-RECOVERY 33

FS-DOMAININFO 34

PROCI4IG-COMMAND 35

PROC-REMOTE-CALL 36

PROC-REMOTE-V/AIT 37

PROC-GETPCB 38

REMOTE-WAKEUP
SIG-SEND

Copy a block of a swap file.
Tell VO server that an VO stream has

migrated.
Tþll source of migration to release VO

sffeam.
Recover the state about an UO stream.

Signal that recovery actions have

completed.
Return information about a file system

domain.
Transfer process state during migration.
Forward system call to the home node.

Synchronize exit of migrated process.

Return process table entry for migrated
process.

Wakeup a remote process.

Issue a signal to a remote process.

39
40

7. Pathname Resolution

In a distributed system there are a number of places to split the pathname reso-

lution algorithm between clients and servers. Early systems put the split at a low
level to preserve existing higher-level code. Early versions of LOCUS modified
UNIX and put in remote access at the block access level to resolve pathnames by
reading remote directory blocks over the network [Walker 1983]. Sun originally
used a network disk device in a similar manner to support its diskless worksta-
tions. The primary limitation of a remote block access protocol concerns shar-

ing. LOCUS used a complex replication scheme to coordinate updates to shared

blocks, whereas Sun's network disk device did not support read-write sharing

at all.
The next level for the interface is at the component access level, as in the

vnode and Plan 9 architectures. This structure keeps the main lookup loop on the

client side. If pathnames are served mostly by remote servers, then lookup will be

expensive because it requires a remote operation for each remote component of
the pathname. Also, high-level file system operations, such as Open and Rename,

require multiple calls through the file system interface. The lookup function (e.g.,

vn-lookup or walk) is used to obtain a handle on a ûle, and then a second function
is applied to that object (e.g., vn:emove or remove).
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Sprite (and RFS lRifkin 19S6]) put the split at the pathname access level so

that component-by-component iteration happens on the server. The advantage

of a higher-level split is that more functionality can be moved to the server and

the number of client-server interactions can be reduced. Complex operations,

such as Create or Rename, can be done in a single server operation. For exam-

ple, the Fs-Rename and Fs-tlardl-ink operations in Sprite send both pathnames to

the server so that it can perform the operation atomically, thereby eliminating the

need for the server to maintain state between client operations.

The Sprite prefix table system works as follows. The local operating system

(or client) matches pathnames against a cache of pathname prefixes. The longest

matching entry in the cache determines the server for the pathname, and the re-

maining part of the pathname goes to the server for processing. Ordinarily the

server can process the complete pathname and perform the requested operation.

However, it might be the case that the pathname leaves the subtree implemented

by the server. Servers detect this situation by placing a special symbolic link at

points where other subtrees are attached (i.e., mount points). The content of such

a remote link is its own absolute pathname, which is the prefix for names below

that point. When a servet encounters a remote link, it combines the link value with

the remaining pathname to create a new pathname. The new pathname is returned

to the client, along with an indication of what part of the pathname is the valid

prefix.
If a new prefix is returned to the client as the result of a naming operation,

then the client broadcasts to locate the server for that prefix. Once the server is

located, or if it is already known, then the client restarts the lookup. At this point

the pathname matches on the new, longer prefix, and the lookup is directed to

the proper server. The process is bootstrapped on a client by broadcasting for the

server of the root directory. Initially all requests are directed to the root server, but

soon the client caches the prefrxes for other file system domains and bypasses the

root server. The iteration between client and server is also used to correct stale

entries in the client caches.

The iteration over the prefix cache is stightly more complex for the operations

that involve two pathnames, Fs-Rename and Fs-Hardlink. The main idea is that in

the best case only a single server operation is required.

Caching can be applied to these systems to speed name resolution. Caching of

lookup results and file attributes is used in the vnode implementation to eliminate

some remote accesses. However, the stateless NFS servers do not support caching

well; the clients must discard their cached data relatively quickly, reducing the

effectiveness oftheir caches. Because Sprite caches only prefixes, and each name

resolution requires at least one server operation, Sprite servers can easily keep

track of flle usage in order to support the file data caching system described in

188 Brent Welch



Section 11. Plan 9 does not cache name lookup results. The only optimization
for remote clients in Plan 9 is the ClWalk operation that combines the Clone and

Walk operations, designed for clients accessing the file system over a slow link
such as a 9600-baud phone connection.

8. Name Space Management

The main issue with managing the name space is keeping it consistent so that pro-
grams can be run on any host in the network without worrying about irregularities
in the name space. If consistency is not automatically provided, the burden of
managing the name space is pushed onto the workstation users, who probably will
not succeed in keeping their workstation consistent, or onto the system administra-
tor, whose effort grows with the size of the system.

The vnode architecture does not provide any explicit support for consistency;
so an external mechanism called an automounter is introduced. The automounter
consults a network database to find out how file systems are to be mounted into
the overall hierarchy. It introduces a level of indirection into name lookup that
lets it monitor access to the remote file systems, and to mount and unmount those
file systems in response to demand. The automounter process achieves the indi-
rection by implementing a directory full of symbolic links into another directory
that contains real mount points. For example, the automounter mounts itself onto
"/net." In response to a lookup of '7netlsage," the automounter makes sure that
the corresponding remote file system is mounted in an alternate location (e.g.,

'7tmp-rnnlnelsage"). Its response to the lookup indicates that "/nelsage" is a
symbolic link, triggering a second call on the automounter to retrieve the value of
the link. Finally the lookup gets routed to the remote file system by the new path-
name "/tmp-mnlnet/sage." Note that the automounter process remains involved
in the lookup of every pathname beginning with "/net" because it provides the
implementation of the symbolic link from there into the real file system.

Plan 9 supports consistency by providing a standard template for the per-
process name spaces and by sharing the name space among members of a process
group. The file '/lib/namespace" consists of a set of mount and bind commands
that assemble the prototypical name space. This file is used by init, the first user
process, and it is consulted by other commands such as the one that executes pro-
grams on remote hosts. The commands in '7liblnamespace" can be parameterized
with environment variables to take into account different users and machine types.
Additionally, users can supply their own set of mount and bind commands in a
personal namespace fl le,' Tusr/$user/lib/namespace. "
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Sprite builds consistency into the name lookup algorithm so that the name

space is shared consistently among hosts. Two configuration steps need to be taken

by the system administrator to add a new file system subtree. First, the server is

configured to export the subtree under a given prefix. Second, a remote link is

created so that the server of the parent subtree knows where the mount point is.

For example, if "lalblc" is a newly exported subtree, then the remote link "c" in

the directory "lalb" is created with the value "lalb/c." The pfesence of this link
triggers broadcasts by clients to locate the server fot "lalblc-" The range of this

search could be extended by adopting internet multicast instead of broadcast.

We can classify these approaches to name space consistency respectively as

an external solution, a solution by convention, and an internal solution. The ex-

ternal automounter solution used in SunOS is basically a retrofit to fix a problem

in their initial system. Its implementation is clever but less efficient than a built-

in solution. The solutions used in Plan 9 and Sprite acknowledge the consistency

problem up front and were built into those systems from the start.

9. Naming and Accessing Devices and User-Level

Servers

This section compares the way these systems allow extension of the distributed

fl|e system to name and access other kinds of objects. The notion of extending

the file system name space to include other objects such as peripheral devices has

been around for a long time [Feirtag l97ll-
Naming can be a tricky issue because of a TINIX tradition that gives the same

device different names according to its different uses. The best (or worst) example

is the use of different names for tape devices to specify the density of the tape

media and to determine whether to rewind the tape when the device is closed.

The opposite problem is the use of a single name (e.g., /dev/console) on different

hosts to refer to different devices (i.e., the local instance of the device). Another

example is that a user-level server is known by a single name, except that each

client that binds to the service (i.e., opens its name) gets a private communication

channel to the server. The general property that these scenarios share is that the

name of the object and the object itself are in fact different things, and, in general,

might be implemented by different servers.

The vnode architecture supports access to non-file objects. Peripheral devices

are named with special files that record the type and instance of the device

(i.e., its m.ajor and minor numbers). UNIX domain sockets are communica-

tion channels (pipes) that have names in the file system, and so they can name
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user-level servers. However, both of these mechanisms predate the vnode ar-
chitecture, and they were not extended to provide transparent remote access to
devices and servers. For remote access, programs must use TCP or UDP socket
connections that are chosen out of a different name space and created with a

different set of system calls than open0. The NFS protocol does not support
device access because it lacks open, close, and ioctl. In spite of its limitations,
NFS has been used in a number of systems to provide interesting extensions

[Minnich 1993; Gifford I99Il.If the vnode architecture included a general
way to export the vnode interface to user-level, then these projects might have
been even easier, and others, such as remote device access, could have been
added.

Plan 9 extends its name space in a clean fashion by allowing servers, user-
level or kernel-resident, to mount themselves onto names in the name space. The
servers handle all the 9P protocol requests for names below that point. Many
servers implement small name spaces to represent different control points. Re-
mote access to these services comes via an import operation that makes a portion
of a remote name space visible in the local name space. The decision about how
to import remote name spaces is concentrated into a few different programs, and
most processes just inherit their name space from their process group. In practice,
this situation results in partial sharing of remote name spaces in order to access
particular devices, such as the mouse and keyboard of a terminal, for a process
running on a compute server. This is a fine point that contrasts the per-process
name space, which requires explicit sharing arrangements, with a network-wide
shared name space.

Sprite uses the global file system name space to name devices and user-level
servers, and so these can be named and accessed from any host in the network.
The split between the internal naming and Uo interfaces allows the name to be
implemented as a special file on a file server, whereas the device or service,is
implemented on a different host. The attributes of the special file indicate on
which host the device or service is resident. A trick is employed in order to
present UNIX programs with a single directory "/dev," that contains the names
for commonly used devices. A special value of the location attribute maps to the
host of the process opening the device. Thus, device files can represent devices on
specific hosts, or they can represent devices on the local host.

Sprite provides user-level extensibility in a modular way by providing an up-
call mechanism that forwards kernel operations to a user-level server process.
The split means that either the naming interface or the VO interface, or both,
can be exported to user level. For example, a Sprite file server can implement
the name for the X display server running on a workstation. clients of the win-
dow system access the display server using the file system interface. Open goes
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through the flle server that implements the name (e.g., /hosts/sage/X0), and Read

and Write calls are handled by the display server. As another example, a CASE

tool could provide a different name space for files stored on a regular Sprite file

seryer.2

10. Blocking I/O

Blocking VO operations become more important when the file system is used to

access peripheral devices and server processes that take an arbitrary amount of

time to respond with data. UNIX adds an additional source of complexity with

the select system call that can be used to wait on a set of VO streams to be ready

for VO. Additionally, VO streams can be set into non-blocking mode so that if
a Read or V/rite is attempted when no data is ready, a special error code is re-

turned.
There are basically two choices regarding blocking VO operations: blocking

at the server or blocking at the client. The vnode and Plan 9 architectures include

no special support for long-term blocking; the operations implicitly block at the

server. That is, the servers have to maîage blocking operations, and they have to

decode whether requests should be non-blocking or not.

In Sprite, long term blocking is done on the client. Servers return a special

error code if they cannot process a request immediately, and they keep a list

of tokens that represent waiting processes. They support the select operation

in a similar way. When a device becomes ready for VO, the server notifies any

waiters. The notiflcation procedure employs RPC when the token represents a

process on a remote host. On the client, the main Read and Write routines are

constructed as loops around calls through the VO interface to the type-specific

Read or V/rite routine. The loop checks for the blocking return code and han-

dles any races with notifications from the server. The advantage of this approach

is that the interface to the server is always the same, regardless of the blocking

mode set for the client's VO stream. Moreover, the same notification mecha-

nism supports blocking VO and the select system call, and so select can be ap-

plied to a set of VO streams no matter where the servers for the VO streams are

located.

2. The ability to open a kemel-supported object via a user-level server is not fully implemented in Sprite. It
leverages off the mechanisms used by process migration to migrate.open VO streams between workstations.

The mìgration mechanisms work fine, but their integration into the user-level open procedure is not complete

Thus, the only userlevel servers that provide a name space (e.g., an NFS gaÛeway) also provide VO access to

their objects.
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ll. Data Caching

Data caching is known to be an effective way to optimize file system performance.

The file system manages a cache of data blocks in main memory in order to elim-
inate disk accesses. This section discusses how the different architectures handle

data caching in a distributed environment where caching can eliminate network
traffic as well. The main issue with distributed caching is consistency. That is,

how do network sharing patterns and the caching mechanism interact? If a cache

always returns the most recently written data, regardless of sharing patterns, then

it is regarded as a consistent cache. A closely related issue concerns the writing
policy of the cache. A few of the coÍrmon policies include write-through, in
which all data is written immediately through to the server; write-through-on-
close, in which the write back is postponed until the file is closed; and delayed-

write, in which the write is postponed for a delay period before being written.
The vnode architecture includes a cache, but it does not include an explicit

cache consistency scheme. It is up to the network file systems below the interface

to provide their own consistency scheme. NFS and AFS have different caching

schemes.

NFS's scheme relies on polling by the client and short time-outs on data to
shorten windows of time in which inconsistent data can return from the cache.

It uses a write-through-on-close policy. When data is placed into the cache, it is
considered valid for a short length of time, from 5 to 30 seconds depending on

the type of data, recent accesses to the file, and the particular client-side NFS im-
plementation. During this time period a client will use the cached data without
verifying its modification time with the server.

AFS uses a callback scheme in which the servers tell clients when cached

data is no longer valid. If a client is using a file for an extended period of time,

it must periodically renew its callback registration. It also uses write-through-
on-close. AFS maintains its cache on the local disk, and uses the ordinary UNIX
block cache to keep frequentþ used data blocks in main memory [Howard 1988].

The Plan 9 architecture has no explicit support for caching. There is one file
system implementation that does caching for clients that access the file system

over a slow link such as a 9600-baud phone connection. The caching file system

does write-through, and it checks the validity of the cached data when each file is
open. There is no server support in the way of callbacks.

Sprite supports caching through a cache consistency protocol between clients

and servers. Like AFS, servers make callbacks when cached data is no longer
valid. In addition, a callback may indicate to the client that it can no longer cache

the file because of network sharing. In this case all VO operations go straight
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through to the server and are serialized in the server's cache. Clients check the

validity of cached data each time a file is opened, and they tell the server when the

file is closed so that the server can keep accurate account of which clients are us-

ing its files. The check at open time, the server callbacks, and the ability to disable

caching on a file-by-file basis allow the caching system to be perfectly consistent

[Nelson 1988]. Sprite uses delayed-write caching. This means that data ages in the

cache for 30 seconds, even if the file is closed, allowing for reduction in network
traffic if the file is temporary and gets deleted after use. A study of the effective-
ness of the caching scheme is given in Welch U9911 and Baker t19911.

12. Crash Recovery

A distributed system raises the possibility that clients and seryers can fail indepen-

dently. V/hen a client fails, the servers may need to clean up state associated with
the client. When a server fails, the clients need some way to recover if they have

any pending operations with the server.

In vnode-based systems the failure recovery issues are left up to the network
file systems implementations. NFS takes a simple approach to failure. It relies on
"stateless" servers that do not keep any long-term volatile state about particular
clients. Hence there is no need for them to clean up if a client fails. In turn, the

clients typically address server failures at the level of network RPC. The default
behavior is for the clients to keep retrying an operation until the server comes

back on line. This behavior has been extended to allow for time-outs after some

number of attempts and to allow the RPC to be intemrpted by a signal.

AFS supports read-only server replication in order to improve availability.
The AFS cache manager will fail over to another server if the primary server fails.
Client clean-up is addressed by the time-outs on the server callback registrations.

The server can delay service after booting for this period of time and know that

clients do not expect any callbacks. If the server were to crash during a write op-

eration, the client would get an enor.
Plan 9 does not currently have a mechanism to handle server failure in a

graceful way. A new version of the system is addressing this limitation, but cur-

rently the failure of the root file server requires a reboot of the clients. Client
clean-up involves the use of sessions in the communication protocol with the

servers. Clients establish new sessions after they boot up, giving the server a

chance to clean up any state left over from previous sessions.

Sprite servers maintain state about their clients to support the cache consis-

tency scheme. The state allows the server to clean up after a client fails. There is
also an idempotent recovery protocol between clients and the server that allows

194 Brent Welch



the seryer's state to be reconstructed after it fails. The idempotent nature of the
protocol allows a client to invoke the protocol when it suspects the server's state
is different from what it expects, such as after a network partition. The recovery
protocol is based on mirroring state on the clients and the server. The state reduces
to a per-client count of the VO streams to each of the server's objects, plus a few
object-specific items such as the version number for a file. It is straightforward for
clients to keep the same state the server keeps about that client. After the server
reboots (or a network partition ends), its clients contact the server with their copy
of the state information. The server checks for any inter-client conflicts and then
rebuilds its state.

A Sprite server has the right to deny recovery on an object-by-object basis be-
cause not all object types can support recovery. Tape drives, for example, typically
get rewound upon system reset, making it difficult to conti4ue client operations.
Files are subject to a possible conflict due to client caching. It is possible that the
current writer of a file can be partitioned from the server by a network router fail-
ure. In this case the server might allow a different client to write a new version of
the file. When the original client attempts to recover its state, that file will be in
conflict.

13. Other Related Arcltitectures

The Apollo DOMAIN system was probably the first commercially successful re-
mote file system. It was modeled as a single-level-store system in which virtual
memory was used to map files into address spaces. The system was also based
around an object-oriented interface that provided extensibility [Leach 1982, 1983].

The LOCUS system was another early distributed UNIX system. It started as a
modification to UNIX that put in remote access at the disk-block level, though the
remote interface was gradually moved up higher in the system in a manner similar
to the vnode interface. LOCUS includes support for replication, and parts of this
syst€m have been incorporated into versions of AIX [Popek 1985; Walker 1933].

The ULTRIX gnode interface [Rodriguez 1986] is quite close to the vnode
interface.

The rnode interface used in ATT UNIX shares some similarities with the
Sprite architecture. The RFS architects classify it as a ooremote system call" in-
terface [Rifkin 1986]. Remote operations are trapped out at a relatively high levet
and forwarded to the remote node. For pathname operations in particular, this
procedure can result in fewer client-server interactions than a component-based
interface. The implementation is not as clean, however; the remote case was
added as a series of special cases in the code. It includes such tricks as patching
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the kernel-to-user copy routine to use RPC if needed, which was done in order to
avoid deeper structural changes required for a fully modular implementation. In
contrast, the Sprite implementation is quite clean, making it easy to add new cases

such as the notion of user-level servers. Some of the issues in porting RFS into the

vnode framework are described in Chartock tl987l.
The UIO interface of the V system is a clean design inffoduced to support

Uniform VO access in distributed systems [Cheriton 19871. Like the Plan 9 proto-

col, 9P, the UIO interface combines naming and UO operations into one interface

and manages the name space on a per-process basis. It is also coupled with a pre-

fix table mechanism to partition the name space among servers [Cheriton 1989].

Unlike Sprite, the preflx-based naming scheme does not include an iterative mech-

anism that loads new prefixes into the client caches.

The ambitious Echo distributed file system developed at DEC SRC includes

support for replication at several levels: the name service, file service, and disk

subsystem [Hisgen 1989]. The name service implements the upper levels of the

name space hierarchy and uses a background propagation scheme for updates.

File servers implement the lower parts of the name space and use a quorum-based

voting scheme for updates in which a client can act as a "witness," or tie-breaking

vote. Hosts in Echo still have local file systems, and the global file system name

space is not used for remote device or remote service access.

14. Overall Comparisons

In a highJevel, broad-brush comparison, the vnode architecture is a slight gener-

alization of the stand-alone UNIX architecture that allows for remote file access.

Many of the problems with remote access in a vnode-based system have more

to do with the NFS protocol than with the architecture itself. AFS makes some

improvements with respect to availability and caching support, but it does not ad-

dress remote device access. AFS did, however, add a general "vnode-intercept"

layer in order to implement its cache manager in a user process, and this move

is similar in spirit to the support for user-level servers in Sprite. The Plan 9 and

Sprite architectures depart from the original UNIX architecture in more radical,

though, different directions. Plan 9 emphasizes a per-process name space and a

single file system protocol, whereas Sprite has a network-wide shared name space

and2 maln protocols, one for naming and one for VO. Being complete redesigns,

Plan 9 and Sprite offer better support for extensibility, that is, for making more

things accessible via the file system interface, including remote access as well as

integration of user-level server processes.
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There are trade-offs between the per-process and network-global name spaces.

Plan 9 takes advantage of the per-process name space in order to provide virtual
environments for the purposes of remote execution, the window system, and mon-
itoring of the file system protocol. The potential pitfalls of managing many dif-
ferent name spaces are addressed by using a master template for the name spaces

and by concentrating the complexity of customizing the name space into a few
programs. Sprite's shared name space is simple for users and makes it easy to ad-
minister a network of workstations, most of which are diskless. The shared name
space entails a different approach to machine heterogeneity in which machine-
dependent files are explicitly segregated into subdirectories that indicate their
machine specificity. With respect to the window system, Sprite supports X, so

there is no need for private device names. Furthermore, by accessing the X server
via the file system interface, remote display servers are automatically accessible.

One distinctive quality of Sprite is its use of two primary internal interfaces,
one for naming operations and one for VO. This split is taken for granted in clas-
sical distributed systems literature that always includes a system-wide name server

lWilkes 1980]. However, the distributed file systems that evolved from UNIX
implementations tend to join naming and UO operations together. Whereas the
vnode architecture has a second interface for dealing with mounting the file sys-
tem name space together, the main interface for object access has both naming
and UO operations, reflecting a heritage in which a host with disks implements
files and directories together. However, a clean split between the two classes of
operation allows the directory structure of the file servers to be reused to name
other types of objects such as devices and user-level servers. It also complements
the use of the prefix-caching scheme that transparently distributes the name space

among servers. The prefix table system replaces the mount operation used in the
vnode and Plan 9 systems, and it keeps the global name space consistent.
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