
Delayline: A Wide-Area Network
Emulation Tool

David B. Ingham and Graham D. Parrington

University of Newcastle

ABSTRACT: Programming distributed applications
is already potentially difficult, although tools exist to
aid in their creation. Applications developed to com-
municate over local area networks can expect to enjoy
highly reliable communications with minimal latency.
However, such applications may no longer continue
to perform as expected if moved to a wide-area net-
work environment, due to the reduced performance
inherent in wide-area networking. During application
development it is often impractical or inconvenient to
evaluate application performance under real wide-area
network conditions. In this paper we describe the de-
sign and implementation of the Delayline tool which
provides a fully configurable mechanism for emulat-
ing wide-area network communications on a local area
network. Delayline allows real distributed applications
to be evaluated under emulated wide-area network
communication characteristics.

@ 1994 The USENIX Association, computing systems, vol. 7 . No. 3 . summer 1994 313

l. Introduction

Computer networks vary widely in scale and performance, from small local net-

works connecting a few machines to those spanning the globe providing connec-

tivity between millions of machines. Similarly, there are also large variations in

the scale of distributed applications that are connected by such networks. Widely

distributed applications must typically tolerate reduced network performance in

comparison to those communicating over a local network.

From the point of view of the application pfogrammer, the difference between

wide- and local-area network programming is principally observed in two ways,

namely, an increased communication latency and a higher probability of message

loss. There is also a greater chance of message comrption, but this is masked from

the application by the error checking in the low-level network protocols. As the

scale of networks increases, there is also an increased tikelihood of network par-

titioning, typically caused by a gateway failure. This causes the original single

network to become two or more subnetworks.

This paper describes the design and implementation of the Delayline system,

an application-level emulation tool, which is capable of changing the observed

characteristics of the underlying network supporting an application. Using De-

layline, a set of locally connected hosts, running a distributed application, can

be made to appear as if they afe connected over a wide-area network with user-

defined topology and communication characteristics. To achieve this, Delayline

provides a mechanism for describing a map of the required virtual-network, in-

cluding the parameters for the interhost communications.

Delayline has been successfully used with a number of large applications

based on the Arjuna distributed programming system [Shrivastava et al. l97l],
where it has provided useful information for tuning the underlying remote proce-

dure call subsystem of Arjuna.

314 David B. Ingham and Graham D' Parrington

2. System Overview

Delayline has been developed in C on a UNIX platform and is designed to operate

with applications that communicate using Berkeley sockets, specifically those that
use the Internet protocol suite [Comer 1988]. Delayline is nonobtrusive; that is, it
has been designed to be easily incorporated into applications with the minimum
effort from the programmer. To this end, Delayline requires no source-code mod-
ifications and runs on standard unmodified UNIX systems. To use Delayline, an

application is simply recompiled, using a number of alternative header files, and

relinked with the Delayline library provided.

Wide-area network emulation is achieved in a number of stages:

. Configuration: A mechanism is required to allow the specification of the
topology and communication parameters of the network to be emulated.

. Interception: In order to perform any form of manipulation of interprocess
communications, the messages themselves must be intercepted as they are

transmitted from one process to another.

. Decision: Once a message has been intercepted, the decision must be made

as to what action, if any, should be performed on the message.

. Manipulation: After the required action has been ascertained, this must
be carried out. A major constraint here, which makes the operation more
complex than is readily apparent, is ensuring that any manipulation still
preserves the semantics of the Berkeley socket interface.

2.1. Configuration

Delayline provides a mechanism to allow the user to specify the type of emulation
that is required. Conflguration is a multistage process. First, a map of the desired
network must be described. Delayline uses the concept of host groups for describ-
ing the desired network topology. For example, Figure 1 illustrates an example
distributed system consisting of six hosts located at two physically remote sites.

At each site, the hosts are interconnected using a local-area network; communica-
tion between the two sites takes place over a wide-area network, to which both of
the LANs are connected. This system could be described by making hosts ,4, B,
and C members of Delayline group 1 and hosts D, E, and .F members of group 2.

Once the map has been decided upon, the next stage is to describe the type
of communication that exists between the groups. To this end the user is able to
create a set of named emulation styles that are described in terms of a number

Delayline: A Wide-Area Network Emulation Tool 315

Site 1 Site 2

Figure 1. Example of an emulated network topology.

of user-specifled performance parameters. These figures comprise the percentage

of messages to be lost, the distribution type for message delay (e.g., fixed, nor-

mal, gamma, etc.) and the distribution parameters (e.g., the mean and standard

deviation in the case of a normal distribution). The user then specifies the type of
emulation to be applied to messages being sent from one group to another group;

for example, messages from group 1 to group 2 should be subjected to a certain

named emulation type.

For a consistent emulation to be achieved, all of the processes that comprise

the distributed application must have the same view of the network topology to be

emulated. To achieve this consistency Delayline maintains its configuration infor-
mation at a single host in the distributed system. A configuration server conveys

conflguration information to the other processes in the system that are running
Delayline using remote procedure calls. The application processes contact the

server the first time that a Delayline routine is executed. At this time the config-
uration information relevant to that particular process is received from the server

and stored locally.
After a message has been intercepted by Delayline, the sending and receiving

hosts are determined and the local copy of the network emulation map is refer-
enced to determine the communication parameters to be applied to the particular

message.

2.2. Interception

Interprocess communication using the Berkeley socket application programming

interface is achieved by sending and receiving messages over sockets. There are

five system calls that may be used to send data over sockets and a corresponding

set of five for receiving data. By intercepting all of the application program's invo-
cations of these system calls, the interprocess communication can be manipulated

in such a way so as to provide the required network emulation.

316 David B. Ingham and Graham D. Parrington

Using compile-time switches, an application can be forced to use a set of al-
ternative header files in preference to the standard ones. The entry points into the

Delayline system are created by redefining the necessary system call-entry routines
to Delayline functions. In this manner, Delayline is able to monitor the invoca-
tions of the relevant system calls and to view the parameters to the calls, which
is a technique similar to that employed in the Newcastle Connection [Brown-
bridge 1982; Black et al. 19871. The actual system calls may be invoked by De-
layline as required. Figure 2 illustrates this integration approach.

Another possible approach to message interception would be to integrate the
Delayline functionality into the UNIX kernel, which would allow applications to
be subjected to Delayline emulation without requiring recompilation. Moreover, all
networking applications running on the machine would be affected by Delayline.
Alternatively, on host systems on which they are supported, shared libraries could
be used to provide alternative versions of the relevant system-call routines for
sending and receiving messages.

Although the current approach requires that the source code of the applica-
tion be available, this is not thought to be too severe a restriction since the tool
is designed to be used during the evaluation stages of application development.
This chosen technique has the advantage of being portable between heterogeneous

machines and does not rely on kernel modifications or shared library support.

Figure 2.lntegration of Delayline into an application
program.

Delayline: A Wide-Area Network Emulation Tool 317

2.3. Decision

After intercepting a message, the source and destination hosts are determined and

the network emulation map is referenced to determine the parameters to be ap-

plied to such messages. For example, the parameters for a particular link may be

5 percent probability of message loss and normally distributed message delays

with mean 500ms and standard deviation 100ms. The decision as to what ac-

tion should be taken for a particular message-lose message or delay message

by 400 ms-is made by using statistical functions based on the given parameters.

The protocol for the communication also affects the action to be carried out; for

example, messages using the reliable TCP protocol are never lost.

2.4. Manipulatíon

The aim of the Delayline system is to mimic as closely as possible the interpro-

cess conìmunication performance of the desired wide-area network. To achieve

this goal the system is able to introduce message loss and delay into the commu-

nications. The main constraint in performing this manipulation is the requirement

that the semantics of the standard socket interface must be preserved. The fol-

lowing sections describe the techniques that are used by Delayline to provide the

required message manipulation.

3. Emulation of Message Loss

As stated previously, one of the primary differences between local and wide-

area network communications is a higher probability of message loss. Delayline

achieves message-loss emulation by manipulating the application program's invo-

cations of the sending system calls. Consider the C language prototype of the send

system call:

int send(int sockfd, char *buff, int nbytes, int flags)

The first parameter indicates the socket descriptor to use, the address of the

data to be sent is speciûed by buf f , and the length of the data is given in nbytes.

The final argument, f lags, allows certain transmission options to be set. The call

returns the number of bytes that have been transmitted.

The header files provided by Delayline redefine all application program in-

stances of the system calls used for sending data (e.g., send, sendto, etc') to

318 David B. Ingham and Graham D. Parrington

Delayline versions (e.g., dl-send, dl-sendto, etc.). The code segment to fol-
low illustrates, in a simplistic fashion, how message loss is implemented in the
Delayline sending routines.

int dl-send(int dl-sockfd, char xdl-buff, int d1-rrbytes, int dl-f1ags)
{

if (action == L0SE-MESSAGE)

return(dl-nbytes);
else

return(send(dl-sockfd, d1-buff , dl-nbytes, dl-f1ags)) ;

]

The application program receives the expected return value but the actual
send is not performed. The result is semantically equivalent to the message being
lost during its journey from source to destination. A slight additional complexity
arises from the use of the wri.tev, readv, sendmsg and recvnsg system calls
which use scatter/gather buffers to provide the ability to read into or write from
noncontiguous buffers. For these routines, the total number of bytes in each of the

buffers is calculated and returned to the application program.

4. Emulating Increased Latency

Introducing latency into interprocess communication in a semantically correct
manner is somewhat harder to achieve than the emulation of message loss. Con-
sider two communicating processes, -4 and -B. The diagram in Figure 3 shows the

situation in which process -4 is attempting to send a message to process B.
V/hen process ,4 executes the send system call, the data to be sent is copied

into kernel buffer space and queued to be sent. At this point, the kernel returns
control to the application program, allowing it to continue. When process B ex-
ecutes the recv call, control is passed to the kernel and, under normal circum-
stances, the application is blocked until the data arrives, at which point the data

received is passed to the application and control is returned.
The time taken for the message to travel from process ,4 to process B is in-

fluenced by a number of factors including the input/output scheduling policy of
the operating system. However, the primary dependency is the type of commu-
nication link connecting the two hosts. If the two processes are running on hosts

connected by a LAN, the communication will typically be very fast, in the order
of milliseconds (dotted line in diagram), while a wide-area connection could result
in a much slower delivery typically in the order of seconds. In order to emulate

Delayline: A Wide-Area Network Emulation Tool 319

Process A Process

LANLink

.*;

l';l = aoolication code

Figure 3. Interprocess coÍtmunication.

wide-area communications, this increased communication delay must be inserted

by the Delayline software, while preserving the correct semantics of the Berkeley

socket interface.

In the current version of the Delayline software, latency is introduced by in-

tercepting messages in both the sending and receiving phases of the interprocess

communication. As messages to be sent are intercepted by Delayline, they are

signed, indicating that they should be delayed on reception. The process of signing

the messages involves prepending the messages with a flxed-length header con-

taining a Delayline signature and the required delay in milliseconds. The revised

buffer is sent to its destination using the appropriate system call with modified pa-

rameters, indicating the differing size of the buffer. The return value from the sys-

tem call is modified to take into account the additional header before being passed

back to the application program. This technique allows a semantically correct flow

of control in the sender, because control can be returned to the application as soon

as the sending-system call returns from the kernel. These control-flow semantics

are described further later.

The system calls for receiving data through sockets are also remapped to De-

layline functions so as to allow the examination and removal of the prepended

signatures before passing data to the application program. V/hen these calls are

executed by an application, control is passed to the kernel and the application is

320 David B. Ingham and Graham D. Parrington

l¡l

F

Process A Process B

W = Delayline code

Figure 4. Emulating increased latency.

blocked until the data arrives on the socket (exceptions to these semantics are dis-
cussed in Section 5.2).

When data is received over the socket the first stage of processing is to check
whether the data received originated from a process running the Delayline soft-
ware. This check is a necessary inclusion so as not to exclude the possibility of
communication with processes that are running Delayline and those that are not.
With this assumption in mind, it was necessary to be able to check for the ex-
istence of a signature without affecting the data in the cases where a signature
was not found. The signature checking was achieved by performing a generic re-
ceive from the socket, using an additional option flag, known as MSG_PEEK, which
allows data to be read from the socket without removing the contents from the
kernel buffer. If a signature is found in a received message, the delay time is
extracted and the buffer is stripped of the signature.l Instead of returning this
received data directly to the application, the specified delay is introduced at this
stage before control is returned to the application. This technique provides a good
emulation of a message arriving later than it actually did. This processing is illus-
trated in the diagram in Figure 4.

A simpler method of emulating increased latency would be to introduce the

l. The signature technique used by Delayline operates using the simple assumption that it is very unlikely for a
non-Delayline process to generate a message containing the Delayline signature; it does not provide a 1007o
success guarantee.

èo

J4()
o
-o

ffi = application code

Delayline: A Wide-Area Network Emulation Tool 321

necessary delay in the sending phase of the communication, that is, sleeping for

the desired time before passing the message to the kernel to be transmitted. In-

deed, from the point of view of the receiving process' this approach would have

the same effect in terms of creating the illusion of increased transmission latency.

It would have the advantage of not requiring interception of the application calls

for receiving messages, and consequently the construction of the Delayline signa-

tures would also not be required during the sending phase. However, this approach

was not used as it breaks the semantics of the Berkeley socket interface. The prob-

lem is that by introducing the delay in the sending routines, control flow is held

in the Delayline system for the duration of the sleep, rather than being returned to

the application as soon as the data is copied into kernel buffer space.

Using the adopted approach, the unwanted latency in the sending process is

reduced to the time taken for Delayline to decide the fate of the message and to

add the required signature.

5. Additional Complexities

Although the technique described in the previous section was found to be a good

mechanism for introducing the additional communication latency, the Berkeley

socket interface provides additional functionality that causes complications for

Delayline. The most significant of these is the select system call, which can be

used to multiplex input/output requests among multiple sockets or files.

5.1. Select

Certain application programs, typically server programs, require communication

over a number of sockets. Issuing a receive call on one of the sockets typically

will cause the process to block even though there may be data waiting to be ser-

viced on one of the other sockets. A number of techniques may be used to pro-

gram this scenario, including nonblocking sockets and asynchronous input/output,

both of which are discussed in subsequent sections. The most convenient approach

for implementing such an application is to use the select system call, which al-

lows the programmer to specify a number of descriptors (either sockets or files)

to watch for activity. When data is detected on any of these descriptors, the call

returns indicating the active descriptor. The prototype for the select call is as

follows:

int select(int width, fd-set xreadfds, fd-set *writefds,
fd-set xexceptfds, struct tineval *tineout)

322 David B. Ingham and Graham D. Parrington

The f d-set arguments represent the sets of descriptors of interest. These are
divided into three classes: readfds identifies the descriptors on which the caller
wishes to be able to receive data; writefds identifles the descriptors to which
data is to be written; and the third set is for descriptors for which exceptional con-
ditions are pending. The call returns the number of active descriptors and modifies
the data sets to indicate the descriptors that are ready for processing. The timeout
parameter is used to specify the time after which the call should return if no activ-
ity is detected. V/hen a sel-ect call returns and indicates that data is available to
be read from a particular descriptor, then the application can invoke a receive call
knowing that it will not be blocked.

In order for Delayline to maintain the correct semantics of the Berkeley socket
interface when introducing latency into communications, it also intercepts ap-
plication program invocations of the select call. The Delayline select routine
(dl-select) invokes the standard select system call with the same parame-
ters that it has received. If, upon return, the system call indicates that a socket has
data ready, then a few bytes of data are read from the socket, without removing
the data from the kernel's buffer. This data is examined to determine whether the
message originated from a Delayline process and, if so, what latency is required
to be injected. If the message does contain a Delayline signature, then the latency
is introduced in dl--sel-ect rather than in the receive call. In order to record this
fact, Delayline maintains a descriptor set, similar in operation to the sets previ-
ously described. When a message is manipulated in the dl_select routine, the
corresponding socket is marked in the set. This can be examined by later invoca-
tions of either receive calls or further dI-select calls. After Delayline has made
the message visible, the relevant socket is unmarked.

The action to be performed on messages intercepted during the dl-select
routine depends on the relationship between three time values: (a) the delay to
be introduced, Td"luy, @) the timeout value supplied to the select call, T¡¡-"ou1,

and (c) the elapsed time between the select call being invoked and the message
arriving, Telapsed. The three different timing scenarios to be considered are

. Tdmeour : indefinite: The delay can be introduced after the select system
call returns and before control is passed back to the application. The socket
is marked so that no further delay will be introduced during the receive call.

. Td"tuy ((T¡-"out - Terapseo): Processed in the same manner as for the infinite
timeout case.

. Tdelay) (T1i*"out - T"upseo): This scenario reflects the situation in which
no messages have a:rived within the specified timeout period. In order to
emulate this, Delayline waits until the timeout expires and then returns to

Delayline: A Wide-Area Network Emulation Tool 323

the application, indicating that no activity has been detected, which involves

specifying a retum value of zero and massaging the descriptof sets. At the

same time the emulated arrival time of the message is determined, which

is known to be T6"6, time units after the message was detected to have

arrived. This is the time after which the message is to be made visible to

the application. Delayline maintains a list of these visibility times for each

of the active sockets in an application.

After an application has returned from select due to timeout expiry, it will
typically invoke select again soon afterwards. If the Delayline dI-select rou-

tine intercepts a message over a socket that has already been marked as processed

in the flle descriptor set, then the visibility time table is referenced to determine

whether this particular message should be now passed to the application.

When the Delayline receive routines intercept a message, the corresponding

socket is referenced against the file descriptor set to determine whether the receive

call was preceded by a dl-select call; if so, the visibility time table is refer-

enced to determine whatever extra delay may be required before the message is

passed to the application. At this point the socket is removed from the f,le descrip-

tor set.

5.2. Nonblocking Sockets

It was previously stated that when a process invokes a receive system call over

a socket the normal behavior is for the process to block until data arrives on that

socket. However, UNIX provides a mechanism to override this behavior to allow

programs to poll sockets rather than block awaiting data. This is achieved by using

the fcntl or ioctl system calls to apply the FNDELAY (for fcntl) or FIONBIO

(for ioctl) options to the required sockets. Once applied, an input/output request

that cannot complete over such a nonblocking socket is not done. Instead, return is

made to the caller immediately and the global errno is set to EI'IOULDBLOCK.

Naturally, allowing Delayline to introduce arbitrary delays into receive op-

erations over nonblocking sockets would break the semantics of the Berkeley

interface. To overcome this problem, a scheme is proposed which uses the vis-

ibility time table that was introduced during the discussion of the select call.

When a message that is to be delayed arrives on a nonblocking socket, the visi-

bility time is calculated, and the call returns, indicating that the operation would

block. Further invocations reference the visibility time table to determine whether

the message should be made available to the application.

324 David B. Ingham and Graham D. Parrington

5.3. Asynchronous Input/Output

All of the previous discussion about socket communication has assumed syn-
chronous vo. It is also possible to program interprocess communication appli-
cations using asynchronous VO, which allows a process to instruct the kernel to
notify it when a specified descriptor is ready for vo. In order to achieve this, a
process must perform a number of steps.

Using signal-driven VO, an application is able to perform a receive operation
on a socket knowing that data is ready to be read. Again, as in the select case,
Delayline should not introduce delays into such receive calls because they would
break the semantics of the asynchronous VO.

Ideally, this problem could be solved by creating alternative signal handlers
within the Delayline system to intercept the SIGIO signals. These handlers could
mask the signal from the application for as long as required. unfortunately, UNIX
does not allow the nesting of signal handlers that would be required to implement
this scheme, and at present Delayline does not provide a mechanism to suitably
cater for this scenario.

5.4. Message Reordering

The current prototype implementation of Delayline has a limitation concerning the
reordering of messages. Consider the following situation in which three hosts, A,
B and c, connected by the same local-area network, are cooperating in an appli-
cation. On host A, atypical server process, Po, is listening on a well-known port
for client requests. After receiving an initial message, the server creates another
process to deal with the request and then continues listening on the well-known
port. At each of the hosts B and C, processes P6 and P" are required to utilize the
service provided by ,4.

Delayline is being used with this application to emulate the scenario where
host C is physically remote from the other two hosts. In this situation, it is ex-
pected that messages from Pc to Po would suffer from a greater latency compared
with those from P6 to Po. For the sake of illustration say that Delayline subjects
all messages from P" to Po to a fixed delay of 10 units, while messages from P6
to Po arc left untouched. At some point in the application's operation, P" sends
a message (M.) to Po, and shortly afterward P6 also sends a message (M) to p".
'When

Po receives M.,Delayline introduces the required delay of 10 units before
passing the message to the application. During this delay period message M6 nnves
on the same well-known port at which P, has just received M". This message
should be passed directly to the application. However, since Delayline is currently
processing M., then M6 is not read from the socket lunrtil M" has been passed to

Delayline: A Wide-Area Network Emulation Tool 325

the application. It is apparent that a problem arises in this situation. Although M"
arrived at Po before M6 the messages should be passed to the application in the

reverse order. This problem is also visible in certain situations when using the De-

layline d1-select routine. A general solution to this message re-ordering problem

is currently being prepared for a future version of the Delayline system.

6. Network Partitioning

Providing an efficient and accurate emulation of network partitioning is more

difflcult to achieve than the other wide-area network characteristics previously

described. The basic illusion that one host is partitioned from another host is log-

ically straightforward to cfeate and could be implemented by losing all messages

sent between hosts on opposite sides of the emulated partition.

The major difflculty is due to the necessity that all of the processes in the

distributed application must have a consistent view of the emulated network. If
a partition occurs in a real network, separating one group of hosts from another,

then typically all of the processes will be affected by this partition when inter-

group communication is attempted. The emulation of increased latency and mes-

sage loss only requires that all of the processes have the same set of configuration

patameters, whereas emulating a network partition requires a technique by which a

change of network state can be propagated to all of the application processes at a

specified time.

Effective partition emulation means that Delayline must be aware of the con-

nectivity of the emulated network, that is, the Delayline groups that would be

affected if the network partitioned at a particular point. Describing this connectiv-

ity requires that the current configuration information be augmented by parameters

indicating the effect of the various partition possibilities. Additionally, the conflg-

uration system must allow the various partition options to be described in terms of
the probabilities of their occurrence and the distributions of their recovery times.

The current version of Delayline does not support network partition emulation.

A more detailed study of the problem is currently being carried out, with a view to

incorporating this additional functionality into future releases.

7. Evaluation

Delayline performance can be evaluated in two ways. Of primary importance is

the accuracy of the emulation. However, even a perfect emulation would not be

326 David B. Ingham and Graham D. Parrington

acceptable if Delayline imposed too large a processing overhead on the applica-
tion. These two factors are discussed in the remainder of this section.

7.1. Emulation Accuracy

In order to test the operation of Delayline, a small utility program (tiner) was

developed to produce round-trip time statistics between two hosts. This program
operates in two modes, server or client mode. In server mode, the program listens
for messages on a specified port and immediately echoes them back to the orig-
inator. In client mode, the program measures the time taken between sending a

message to a specifled server and receiving the reply. The program can send the

messages using either UDP or TCP protocols.
In order to evaluate the emulation abilities of Delayline, an experiment was

carried out to attempt to make two locally connected hosts appear as if they were
physically located on opposite sides of the world-one in Newcastle, England,
and one in Adelaide, Australia.

V/hen Delayline is used to emulate the communication characteristics of a par-

ticular wide-area network connection, some information about the performance
of the connection to be emulated is needed. In some circumstances it may be
possible, by using a program such as the timer utility, to measure the actual
performance. However, there are other situations where it is impractical or even

impossible to obtain real, measured performance figures. In these cases, an ap-
proximation is required. For this experiment the UNIX ping program (Packet

InterNet Groper) was used to determine an approximation of the communication
characteristics of the connection between Newcastle and Adelaide. The ping pro-
gram uses the Internet Control Message Protocol (ICMP) [Postal 1981] to send

echo request messages to a specified host and waits for a reply. ICMP messages

are encapsulated in IP datagrams and therefore do not rely on upper-layer pro-
tocols. However, ping statistics give a reasonable indication of the perfoûnance
achievable using UDP or TCP.

The ping program was used to send 5,000 test messages from Newcastle to
Adelaide, the resulting statistics produced are as follows:

----cruskit. aarnet. edu. au PING Statistics----
5000 packets transmitted, 4050 packets received, 197" packet loss
round-trip (ns) min/avg/max = tt43/ 7524/6547

The corresponding statistics between the two locally connected hosts are

----glororan.nc1. ac.uk PING Statistics----
2000 packets transnitted, 2000 packets received, 0"/. packet loss
round-trip (ns) min,/avg/max = 2/3/20

Delayline: A Wide-Area Network Emulatíon Tool 327

12 00

10 00

800

600

400

200

0

ooo6
ô6

Time

Figure 5. Observed Newcastle to Adelaide timings.

Comparing the two sets of results shows that communications between the

two local machines is, as expected, fast (average round-trip time of 3 ms) and very

reliable (0 percent packet loss). Communication between Newcastle and Adelaide

is considerably slower (average round-trip time of l,524ms) and less reliable (19

percent packet loss). Using the traceroute program to examine the route taken

shows that the packets pass through a total of 13 hops en route from source to

destination, traveling via America to reach their destination in Adelaide.

The individual round-trip times, produced by ping, between Newcastle and

Adelaide were halved to provide an approximation to the one-way times. These

results were analysed and a distribution of the results is shown in Figure 5. Al-

though the return routes taken by the messages may not be the same as the outgo-

ing routes, it is thought reasonable to assume approximately equal performance.

The parameters for the distribution are given in Figure 6. A number of distri-

bution functions were used with these parameters to find the optimum emulation

of the observed distribution. The best emulation results were produced using the

two-sided gamma distribution provided by Delayline. Standard statistical tech-

niques were used to calculate the required parameters for the distribution.

Delayline was configured so that communication between the two local hosts

was subjected to 9.5 percent message loss and message delays distributed with the

aforementioned gamma distribution.

Two versions of the tiner program were developed, one compiled without

Delayline and one with. These two versions were used to time 2,000 round trips

328 David B. Ingham and Graham D. Parrington

U
É
o
att
o
tr
fi

oooooooooo!o6O6OnonOn-ñ
Oo¡dNNóm$$:j
¡¡:¡¡¡JJ¡d'

(ms)

ooooooooooooono60nonononmmS<lnn9@È-rOO

Mean 762.34
Standard Deviation 203.09
Variance 4T245.9

Minimum value 571.5

Ma><imum value 3273.s

Figure 6. Newcastle to Adelaide distribution parameters.

o
o
:Jtt
c)
f{
G,

450

400

350

300

250

200

150

100

50

0 -+.-.-+-_.-+r

oo o o a o oo o o o o o o<? 9 o o o oo o o o !On O n O n On O nO n O nOnO n O nO n O n 6mOS I n n 9@ f f @ @O OOOd d N Nmó $ I ddililJdJ;JJJ

Time (ms) ^

Figure 7. Emulated Newcastle to Adelaide timings.

between the two locally connected hosts using UDP. The summary results pro-
duced by the version of the timer compiled without Delayline are

2000 roundtrips fron glororan.ncl.ac.uk have been analysed.
Min = 1 ms, avg = 1 ns, nax = 40 ms.

The corresponding results from the timer compiled with Delayline are

2000 roundtrips fron glororan.ncl.ac.uk have been analysed.
Min = 1160 rns, avg = 1541 ns, max = 272Q ns.

As with the ping statistics between Newcastle and Adelaide, the individual
round-trip times were halved to get an approximation of one-way times. These
results were analysed and a distribution of the results is shown in Figure 7.
It can be seen that the emulated distribution is a close approximation to the actual
distribution shown in Figure 5, thus validating the hypothesis that Delayline is
able to effectively emulate wide-area networking performance using a local-area
network.

Delayline: A Wide-Area Network Emulation Tbol 329

7.2. Delayline Overhead

Each time a message is intercepted, processing is carried out to determine what

action, if any, should be performed. This processing naturally introduces an over-

head, even when no message manipulation is required. Delayline uses a number of

techniques, including caching, to minimize this overhead.

In order to quantify the unwanted latency introduced by the system, the ver-

sion of the timer progfam compiled with Delayline, described earlier, was used

with configuration settings indicating no message loss and no additional delays.

The program was again run between the two local workstations, and the results are

2000 roundtrips fron glororan.ncl.ac.uk have been analysed'
Min = 2 ms, avg = 2 ms, Inax = 123 ns.

The maximum value of 1.23ms is due to the processing required to contact

the conflguration server the first time the process executes a Delayline foutine.

The remaining values are all located close to the mean of 2 ms. Comparing these

results to those produced by the version of the timer compiled without Delayline

indicates an average round-trip overhead of lms. This equates to an overhead of

500 ¡.r,s per message interception. This additional overhead incurred is thought to

be small enough not to adversely effect the performance of the application being

tested.

8. Conclusions

This paper has shown that Delayline has the ability to change the characteristics

of the underlying network supporting a distributed application. Experience in us-

ing Delayline with large distributed systems has shown the usefulness of such a

technique for tuning applications to run in a wide-area network environment.

There are a number of other systems available that are loosely described as

network emulation tools. Nest [Bacon et al. 1988] is a tool for prototyping dis-

tributed algorithms and systems. Nest provides its own communications interface

to construct prototype distributed applications. The system provides a simulation

of the entire distributed application within a single process. NET [Baclawski 1987]

provides a software simulation of a computer network that allows distributed ap-

plications to be modeled as a number of processes that execute on a single host.

Systems like Network II.5 TCACI 19931 and Starlite [Cook 1987] allow simula-

tions of distributed computer systems to be carried out by providing modules for

representing devices such as clocks, disks, and networks. Delayline differs from

330 David B. Ingham and Graham D. Parrington

all of these simulation tools in that it operates with real distributed applications
rather than providing a simulation of a distributed system.

The most challenging aspect of the Delayline implementation was providing
the message manipulation techniques needed to obtain a good emulation while
maintaining, as closely as possible, the correct semantics of the socket program-
ming interface. The current version of Delayline incorporates functionality that
achieves this successfully in most cases. However, further work is necessary to
effectively handle asynchronous VO using signals.

Another area for continued study includes experimentation with the other pos-
sible methods of message interception outlined in Section 2.2. ÍJsing alternative
shared libraries to provide the entry points into the Delayline software would
allow the system to be used with applications for which the source code is not
readily available.

The network partitioning emulation, introduced in Section 6, requires more
research in two areas: first, an investigation of the types of partitioning problems
that are visible in real wide-area networks so as to provide the basis for accurate
emulation and second, an investigation of how to effectively integrate partition
emulation into the Delayline software.

Another quite different development would be to use the Delayline infrastructure
to provide a fault injection facility for distributed applications. Currently, Delay-
line pays no regard to the content of the messages that are intercepted. A scheme
has been conceived that could use the existing techniques provided by Delayline
and extend them to perform user-defined actions based on the content of the in-
tercepted messages. This approach would make it possible to transparently inject
faults into a distributed system at a certain point in the communications. For ex-
ample, a host could be made to appear as if it had crashed, from the point of view
of the other nodes in the system, by masking all further communications at a cer-
tain user-defined stage in the processing.

Acknowledgments

This work has been supported in part by grants from the UK MOD, the Science
and Engineering Research Council (Grant number GR/I{81078), and ESPRIT ba-
sic research project 6360 (BROADCAST).

Delnyline: A Wide-Area Network Emulation Tool 331

References

1. K. Baclawski. A Network Emulation Tool. In Proceedings of the Symposium on

the Simuløtion of Computer Networlcs, pp.l98-206, August 1987.

2. D. F. Bacon, A. Dupuy, J. Schwartz, and Y. Yemini. Nesfi A Network Simulation
and Prototyping Tool. IBM T. J. Watson Research Center, 1988.

3. J. P. Black, L. F. Marshall, and B. Randell. The Architecture of UND(United. In
IEEE Special Issue on Distributed Døtabase Systems, pp. 709-718, 1987.

4. D. R. Brownbridge, L. F. Marshall, and B. Randell. The Newcastle Connection
or UNIXes of the V/orld Unrte! Sofrware Practice and Experienre, I2(12):II47-
1162, December 1982.

5. D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architec-
tøre. New York Frentice-Hall, 1988.

6. R. P. Cook. Starlite: A Network-Softwate, Prototyping Environment.ln Proceed'
ings of the Symposium on the Simulation of Computer Networks, pp. 178-184,

August 1987.

7. J. B. Postel. Internet Control Message Protocol. Technical Report RFC762, Net-
work Information Center, SRI International, September 1981.

8. S. K. Shrivastava, G. N. Dixon, and G. D. Parrington. An Overview of the Arjuna
Distributed Programming System, I EEE Softwarê, PP. 66-7 3, January 1 99 1.

9. CACI Products Company. A Quick I'ook at Network 11.5,1993.

332 David B. Ingham and Graham D. Parrington

