
Plan 9 from BeII Labs

Rob Pike

Dave Presotto

Se¿n Dorward

Bob Flandrena

Ken Thourpson

Howard Trickey

Phil Winterbottom

Af&T Bell Laboratories

Munay Hill, New Jersey 07974 USA

@19954T&T. Reprintedbypermission.Cornpøting Systems, Vol.8 . No.3 . Summer 1995 221

l. Motivation

By the mid 1980's, the trend in computing was away from large centralized time-

shared computers towards networks of smaller, personal machines, typically UNIX
'workstations'. People had grown weary of overloaded, bureaucratic timesharing

machines and were eager to move to small, self-maintained systems, even if that

meant a net loss in computing power. As microcomputers became faster, even that

loss was recovered, and this style of computing remains popular today.

In the rush to personal workstations, though, some of their weaknesses were

overlooked. First, the operating system they run, UNIX, is itself an old timeshar-

ing system and has had trouble adapting to ideas born after it. Graphics and net-

working were added to UNIX well into its lifetime and remain poorly integrated

and difficult to administer. More important, the early focus on having private ma-

chines made it difficult for networks of machines to serve as seamlessly as the

old monolithic timesharing systems. Timesharing centralized the management

and amortization of costs and resources; personal computing fractured, democ-

rafized, and ultimately amplified administrative problems. The choice of an old

timesharing operating system to run those personal machines made it difficult to

bind things together smoothly.

Plan 9 began in the late 1980s as an attempt to have it both ways: to build

from cheap modern microcomputers a system that was centrally administered

and cost-effective. The idea was to build a timesharing system out of worksta-

tions, but in a novel way. Different computers would handle different tasks: small,

cheap machines in people's offices would serve as terminals providing access to

large, central, shared resources such as computing servers and file servers. For the

central machines, the coming wave of shared-memory multiprocessors seemed ob-

vious candidates. The philosophy is much like that of the Cambridge Distributed

System lNeedham & Herbert 1982]. The early catch phrase was to build a UNIX
out of a lot of little systems, not a system out of a lot of little UNIXes.

The problems with UNIX were too deep to fix, but some of its ideas could be

brought along. The best was its use of the file system to coordinate naming of and

access to resources, even those, such as devices, not traditionally treated as files.

For Plan 9, we adopted this idea by designing a network-level protocol, called

222 Rob Pike et al.

9P, to enable machines to access files on remote systems. Above this, we built
a naming system that lets people and their computing agents build customized
views of the resources in the network. This is where Plan 9 first began to look
different: a Plan 9 user builds a private computing environment and recreates it
wherever desired, rather than doing all computing on a private machine. It soon
became clear that this model was richer than we had foreseen, and the ideas of
per-process name spaces and file-system-like resources were extended throughout
the system-to processes, graphics, even the network itself.

By 1989 the system had become solid enough that some of us began using
it as our exclusive computing environment. This meant bringing along many of
the services and applications we had used on UNIX. We used this opportunity
to revisit many issues, not just kernel-resident ones, that we felt UNIX did not
address well. Plan t has new compilers, languages, libraries, window systems, and
many new applications. Many of the old tools were dropped, while those brought
along have been polished or rewritten.

Why be so all-encompassing? The distinction between operating system, li-
brary, and application is important to the operating system researcher but unin-
teresting to the user. What matters is clean functionality. By building a complete
new system, we were able to solve problems where we thought they should be
solved. For example, there is no real 'tty driver' in the kernel; that is the job of
the window system. In the modern world, multi-vendor and multi-architecture
computing are essential, yet the usual compilers and tools assume the program
is being built to run locally; we needed to rethink these issues. Most important,
though, the test of a system is the computing environment it provides. Producing
a more efficient way to run the old UNIX warhorses is empty engineering; we
were more interested in whether the new ideas suggested by the architecture of the
underlying system encouraged a more effective way of working. Thus, although
Plan 9 provides an emulation environment for running POSIX commands, that is a
backwater of the system. The vast majority of system software is developed in the
onative' Plan 9 environment.

There are benefits to having an all-new system. First, our laboratory has a his-
tory of building experimental peripheral boards. To make it easy to write device
drivers, we want a system that is available in source form (no longer guaran-
teed with UNIX, even in the laboratory in which it was born). Also, we want to
redistribute our work, which means the software must be locally produced. For
example, we could have used some vendors' C compilers for our system, but even
had we overcome the problems with cross-compilation, we would have had diffi-
culty redistributing the result.

This paper serves as an overview of the system. It discusses the architecture
from the lowest building blocks to the computing environment seen by users.

Plan 9 from Bell Labs 223

More detail about topics in this paper can be found in the Plan 9 Programmer's

Manual IAT&T Bell Labs. 19951.

2. Desígn

The system is built upon three principles. First, resources are named and accessed

like files in a hierarchical file system. Second, there is a standard protocol, called

9P, for accessing these resources. Third, the disjoint hierarchies provided by differ-

ent services are joined together into a single private hierarchical file name space.

The unusual properties of Plan 9 stem from the consistent, aggressive application

of these principles.
A large Plan 9 installation has a number of computers networked together,

each providing a particular class of service. Shared multiprocessor servers provide

computing cycles; other large machines offer file storage. These machines are lo-

cated in an air-conditioned machine room and are connected by high-performance

networks. Lower bandwidth networks such as Ethernet or ISDN connect these

servers to office- and home-resident workstations or PCs, called terminals in Plan

9 terminology. Figure 1 shows the arrangement.

The modern style of computing offers each user a dedicated workstation or

PC. Plan 9's approach is different. Although Plan 9 can run on a workstation with

flles stored on local disk, that is not the canonical setup. Instead, machines with

screens, keyboards, and mice acquire most computing and storage resources over

the network, becoming terminals of the system, analogous to the terminals on old

timesharing systems. V/hen someone uses Plan 9, the terminal is temporarily per-

sonalized by that user. Rather than customizingthe hardware, Plan 9 offers the

ability to customize one's view of the system provided by the software. That cus-

tomization is accomplished by giving local, personal names for the publicly visible

resources in the network. Plan 9 provides the mechanism to assemble a personal

view of the public space with local names for globally accessible resources. Since

the most important resources of the network are files, the model of that view is

file-oriented.
Local name spaces provide a way to customize the user's view of the network.

The services available in the network all export file hierarchies. Those important

to the user are gathered together into a custom name space; those of no immediate

interest are ignored. This style of use differs from a 'uniform global name space'.

In Plan 9, there are known names for services and uniform names for files ex-

ported by those services, but the view is entirely local. As an analogy, consider the

difference between the phrase 'my house' and the precise address of the speaker's

home. The latter may be used by anyone but the former is easier to say and makes

224 Rob Pike et al.

Fiber Network

Figure 1. Structure of a large Plan 9 installation. CPU servers
and file servers share fast local-area networks, while terminals
use slower wider-area networks such as Ethernet, Datakit, or
telephone lines to connect to them. Gateway machines, which
are just CPU servers connected to multiple networks, allow
machines on one network to see another.

sense when spoken. It also changes meaning depending on who says it and when,
yet that does not cause confusion. Similarl¡ in Plan 9 the name /dev/nouse al-
ways refers to the user's mouse and /bir./date the correct version of the date
command to run, but which files those names represent depends on circumstances
such as the architecture of the machine executing date. Plan 9, then, has local
name spaces that obey globally understood conventions; it is the conventions that
guarantee sane behavior in the presence oflocal names.

The 9P protocol is structured as a set of transactions that each send a request
from a client process to a (local or remote) server and return the result. 9p con-
trols file systems, not just files: it includes procedures to resolve file names and
traverse the name hierarchy of the file system provided by the server. On the other
hand, the client's nÍrme space is held by the client system alone, not on or with the
server, a distinction from systems such as Sprite [ousterhout et al. 1988]. Also,

Plan 9 from Bell lnbs 225

frle access is at the level of bytes, not blocks, which distinguishes 9P from proto-

cols like NFS and RFS. For a fuller comparison, see the paper by Welch [Welch

19941.

Although Plan 9 was originally designed with traditional files in mind, the

ideas were extended to many other resources. Plan 9 services that export file

hierarchies include VO devices, backup sefvices, the window system, network

interfaces, and many others. One example is the process file system, /proc, which

provides a clean way to examine and control running processes' Precursor sys-

tems had a similar idea [Killian Ig84l, but Plan 9 pushes the file metaphor much

further [Pike et al. 19931. The file system model is well understood, both by sys-

tem builders and general users, so services that present fllelike interfaces are easy

to build, easy to understand, and easy to use. Files come with familiar, uniform

rules for protection, naming, and access both local and remote, so services built

this way are ready-made for a distributed system. (This is a distinction from

'object-oriented' models, where these issues must be faced anew for every class

of object.) Examples in the sections that follow illustrate these ideas in action.

3. The Command-Level Vew

plan 9 is meant to be used from a machine with a screen running the window

system. It has no notion of 'teletype' in the UNIX sense. The keyboard han-

dling of the bare system is rudimentary, but once the window system, 8 t/2 [Pike

19911, is running, text can be edited with 'cut and paste' operations from a pop-

up menu, copied between windows, and so on. Stfz permits editing text from the

past, not just on the current input line. The text-editing capabilities of Srfz ate

strong enough to displace special features such as history in the shell, paging and

scrolling, and mail editors. 8 t/2 windows do not support cursor addressing and, ex-

cept for one terminal emulator to simplify connecting to traditional systems, there

is no cursor-addressing software in Plan 9.

Each window is created in a separate name space. Adjustments made to the

name space in a window do not affect other windows or programs, making it safe

to experiment with local modiûcations to the name space, for example to sub-

stitute files from the backup file system when debugging. Once the debugging is

done, the window can be deleted and all trace of the experimental apparatus is

gone. Similar arguments apply to the private space each window has for environ-

ment variables, notes (analogous to UNIX signals), etc'

Each window is created running a program, such as the shell, with standard

input and output connected to the editable text of the window. Each window

also has a private bitmap and multiplexed access to the keyboard, mouse, and

226 Rob Pike et al.

other graphical resources through files like /dev/mouse, /d.ev/bi-tblt, and
/dev/cons (analogous to UNIX's /dev/tty). These files are provided by 81f2,
which is implemented as a flle server. unlike X windows lscheifler & Gettys
19861, where a new application typically creates a new window to run in, an

Stfz graphics application usually runs in the window where it starts. It is possi-
ble and efficient for an application to create a new window, but that is not the
style of the system. Again contrasting to X, in which a remote application makes
a network call to the X server to start running, a remote 8tl2 application sees the
mouse, bitbl-t, and cons files for the window as usual in /dev; it does not know
whether the files are local. It just reads and writes them to control the window; the
network connection is already there and multiplexed.

The intended style of use is to run interactive applications such as the window
system and text editor on the terminal and to run computation- or file-intensive
applications on remote servers. Different windows may be running programs on
different machines over different networks, but by.making the name space equiv-
alent in all windows, this is transparent: the same commands and resources are
available, with the same names, wherever the computation is performed.

The command set of Plan 9 is similar to that of UNIX. The commands fall
into several broad classes. some are new programs for old jobs: programs like ts,
cat, and who have familiar names and functions but are new, simpler implementa-
tions. vJho, for example, is a shell script, while ps is just 95 lines of c code. Some
commands are essentially the same as their UNIX ancestors: awk, trof f, and oth-
ers have been converted to ANSI C and extended to handle Unicode, but are still
the familiar tools. Some are entirely new programs for old niches: the shell rc,
text editor sam, debugger acid, and others displace the better-known UNIX tools
with similar jobs. Finally, about half the commands are new.

compatibility was not a requirement for the system. when the old commands
or notations seemed good enough, we kept them. When they didn't, we replaced
them.

4. The File Server

A central file server stores permanent files and presents them to the network as a
file hierarchy exported with 9P. The server is a stand-alone system, accessible only
over the network, designed to do its one job well. It runs no user processes, only
a fixed set of routines compiled into the boot image. Rather than a set of disks or
separate file systems, the main hierarchy exported by the server is a single tree,
representing files on many disks. That hierarchy is shared by many users over a
wide area on a variety of networks. Other file trees exported by the server include

Plan 9 from BeIl Labs 221

special-purpose systems such as temporafy storage and, as explained below, a

backup service.

The file server has three levels of storage. The central server in our installation

has about 100 megabytes of memory buffers, 27 gigabytes of magnetic disks, and

350 gigabytes of bulk storage in a write-once-read-many (WORM) jukebox. The

disk is a cache for the WORM and the memory is a cache for the disk; each is

much faster, and sees about an order of magnitude more traffic, than the level it

caches. The addressable data in the file system can be larger than the size of the

magnetic disks, because they are only a cache; our main file server has about 40

gigabytes of active storage'

The most unusual feature of the flle server comes from its use of a V/ORM

device for stable storage. Every morning at 5 o'clock, a dump of the file system

occurs automatically. The file system is frozen and all blocks modified since the

last dump are queued to be written to the WORM. Once the blocks are queued,

service is restored and the read-only root of the dumped file system appears in a

hierarchy of all dumps ever taken, named by its date. For example, the directory

/n/ùnp/L99Sl0315 is the root directory of an image of the file system as it ap-

peared in the early morning of March 15, l995.It takes a few minutes to queue

the blocks, but the process to copy blocks to the WORM, which runs in the back-

ground, may take hours.

There are two ways the dump file system is used. The first is by the users

themselves, who can browse the dump file system directly or attach pieces of it

to their name space. For example, to track down a bug, it is straightforward to try

the compiler from three months ago or to link a program with yesterday's library.

With daily snapshots of all files, it is easy to flnd when a particular change was

made or what changes were made on a particular date. People feel free to make

large speculative changes to files in the knowledge that they can be backed out

with a single copy command. There is no backup system as such; instead, because

the dump is in the flle name space, backup problems can be solved with standard

tools such as cp, ls, greP, and diff.
The other (very rare) use is complete system backup. In the event of disaster,

the active file system can be initialized from any dump by clearing the disk cache

and setting the root of the active file system to be a copy of the dumped root. Al-

though easy to do, this is not to be taken lightly: besides losing any changes made

after the date of the dump, this recovery method results in a very slow system.

The cache must be reloaded from WORM, which is much slower than magnetic

disks. The file system takes a few days to reload the working set and regain its full

performance.

Access permissions of frles in the dump are the same as they were when the

dump was made. Normal utilities have normal permissions in the dump without

228 Rob Pike et al.

any special arangement. The dump file system is read-only, though, which means
that files in the dump cannot be written regardless of their permission bits; in fact,
since directories are part of the read-only structure, even the permissions cannot
be changed.

once a file is written to woRM, it cannot be removed, so our users never see
"please clean up your files" messages and there is no df command. we regard
the woRM jukebox as an unlimited resource. The only issue is how long it will
take to fill. our v/oRM has served a community of about 50 users for flve years
and has absorbed daily dumps, consuming a total of 65vo of the storage in the
jukebox. In that time, the manufacturer has improved the technology, doubling
the capacity of the individual disks. If we were to upgrade to the new media, we
would have more free space than in the original empty jukebox. Technology has
created storage faster than we can use it.

5. Unusual File Servers

Plan 9 is characterizedby a variety of unusual servers with flle-like interfaces.
Many of these are implemented by user-level processes, although the distinction
is unimportant to their clients; whether a service is provided by the kernel, a user
process, or a remote server is irrelevant to the way it is used. There are dozens of
such servers; in this section we present three representative ones.

Perhaps the most remarkable file server in Plan 9 is 81f2, the window system.
It is discussed at length elsewhere [Pike 1991], but deserves a brief explanation
here. 8l/z provides two interfaces: to the user seated at the terminal, it offers a tra-
ditional style of interaction with multiple windows, each running an application,
all controlled by a mouse and keyboard. To the client programs, the view is also
fairly traditional: programs running in a window see a set of flles in /dev with
names like mouse, screen, and cons. Programs that want to print text to their
window write to /dev/cs¡s; to read the mouse, they read /dev/mouse. In the
Plan 9 style, bitmap graphics is implemenred by providing afrre /dev/bitblt
on which clients write encoded messages to execute graphical operations such
as bitblt (Rasterop). what is unusual is how this is done: Stfzis a flle server,
serving the files in /dev to the clients running in each window. Although every
window looks the same to its client, each window has a distinct set of files in
/dev. 8 l/z multiplexes its clients' access to the resources of the terminal by serv-
ing multiple sets of files. Each client is given a private name space with a dffirent
set of files that behave the same as in all other windows. There are many advan-
tages to this structure. one is thatStlz serves the same files it needs for its own
implementation-it multiplexes its own interface-so it may be run, recursively,

Plan 9 from Bell Labs 229

as a client of itself. Also, consider the implementation of /dev/tty in UNIX,

which requires special code in the kernel to redirect open calls to the appropriate

device. Instead, inBtfz the equivalent service falls out automatically:8tfz serves

/d,ev/cons as its basic function; there is nothing extra to do. When a plogram

wants to read from the keyboard, it opens /dev/cons, but it is a private f,le, not

a shared one with special properties. Again, local name spaces make this possible;

conventions about the consistency of the files within them make it natural.

Brfzhas a unique feature made possible by its design. Because it is imple-

mented as a ûle server, it has the power to postpone answering read requests for

a particular window. This behavior is toggled by a reserved key on the keyboard.

Toggling once suspends client reads from the window; toggling again resumes

normal reads, which absorb whatever text has been prepared, one line at a time.

This allows the user to edit multiline input text on the screen before the applica-

tion sees it, obviating the need to invoke a separate editor to prepare text such as

mail messages. A related property is that reads are answered directly from the data

structure deflning the text on the display: text may be edited until its final newline

makes the prepared line of text readable by the client. Even then, until the line is

read, the text the client will read can be changed. For example, aftet typing

7" make

rnx

to the shell, the user can backspace over the final newline at any time until make

finishes and the next shell prompt appears beþre the rm. The user can hold off
execution of the rn command, or even point with the mouse before the rm and

type another command to be executed first.

There is no ftp command in Plan 9. Instead, a user-level file server called

f tpf s dials the FTP site, logs in on behalf of the user, and uses the FTP protocol

to examine fi|es in the remote directory. To the local user, it offers a file hierarchy,

attached to /n/ftp in the local name space, mirroring the contents of the FTP

site. In other words, it translates the FTP protocol into 9P to offer Plan 9 access

to FTP sites. The implementation is tricky: ftpf s must do some sophisticated

caching for efficiency and use heuristics to decode remote directory information.

But the result is worthwhile: all the local flle management tools such as cp, grep,

dif f , and of course ls are available to FTP-served files exactly as if they were

local files. Other systems such as Jade and Prospero have exploited the same op-

portunity [Rao 1991; Neuman 1992], but because of local name spaces and the

simplicity of implementing 9P, this approach frts more naturally into Plan 9 than

into other environments.

One server, exportf s, is a user process that takes a portion of its own name

space and makes it available to other processes by translating 9P requests into

230 Rob Pike et al.

system calls to the Plan 9 kernel. The file hierarchy it exports may contain files
from multiple servers. Exportf s is usually run as a remote server started by a lo-
cal program, either import or cpu. rmport makes a network call to the remote
machine, starts exportf s there, and attaches its 9P connection to the local name
space. For example,

import helix /net
makes Helix's network interfaces visible in the local /net directory. Helix is a
central server and has many network interfaces, so this permits a machine with
one network to access any of Helix's networks. After such an import, the local
machine may make calls on any of the networks connected to Helix. Another ex-
ample is

import heLix /proc
which makes Helix's processes visible in the local /proc, permitting local debug-
gers to examine remote processes.

The cpu command connects the local terminal to a remote cpu server. It
works in the opposite direction to import: after calling the server, it starts a /o-
cal exportfs and mounts it in the name space of a process, typically a newly
created shell, on the server. It then rearanges the name space to make local de-
vice files (such as those served by the terminal's window system) visible in the
server's /dev directory. The effect of running a cpu command is therefore to start
a shell on a fast machine, one more tightly coupled to the file server, with a name
space analogous to the local one. All local device files are visible remotel¡ so
remote applications have full access to local services such as bitmap graphics,
/dev/cons, and so on. This is not the same as rlogin, which does nothing to
reproduce the local name space on the remote system, nor is it the same as file
sharing with, say, NFS, which can achieve some name space equivalence but not
the combination of access to local hardware devices, remote files, and remote CpU
resources. The cpu command is a uniquely transparent mechanism. For example,
it is reasonable to start a window system in a window running a cpu command; all
windows created there automatically start processes on the CpU server.

6. Configurability and Administration

The uniform interconnection of components in Plan 9 makes it possible to config-
ure a Plan 9 installation many different ways. A single laptop pC can function as a
stand-alone Plan 9 system using a local disk for file storage; at the other extreme,
our setup has central multiprocessor CPU servers and flle servers and scores of
terminals ranging from small PCs to high-end graphics workstations. It is large
installations like this that best represent how Plan 9 operates.

Plan 9 from Bell lnbs Z3l

The system software is portable and the same operating system runs on all

hardware. Except for performance, the appearance of the system on, say, an SGI

workstation is the same as on a laptop. Since computing and file services are cen-

tralized, and terminals have no pennanent file storage, all terminals are function-

ally identical. In this way, Plan t has one of the good properties of old timesharing

systems, where a user could sit in front of any machine and see the same system'

In the modern workstation community, machines tend to be owned by people who

customize them by storing private information on local disk. We reject this style

of use, although the system itself can be used this way. In our group, we have a

laboratory with many public-access machines-a terminal room-and a user may

sit down at any one of them and work.

Central file servers centralize not just the files, but also their administra-

tion and maintenance. In fact, one server is the main server, holding all sys-

tem flles; other servers provide extra storage or are available for debugging

and other special uses, but the system software resides on one machine. This

means that each program has a single copy of the binary for each architec-

turs, so it is trivial to install updates and bug fixes. There is also a single user

database; there is no need to synchronize distinct /etclpasswd files. On the

other hand, depending on a single central server does limit the size of an in-

stallation and the continuity of service. Although the central server typically

stays up for months at a time, when it is down, machines depending on it can-

not function.
Another example of the power of centralized file service is the way Plan

9 administers network information. On the central server there is a directory,

/Ilb/ndb, that contains all the information necessary to administer the local

Ethernet and other networks. All the machines use the same database to talk to

the network; there is no need to manage a distributed naming system or keep par-

allel files up to date. To install a new machine on the local Ethernet, choose a

name and IP address and add these to a single file in /Llb/ndb; all the machines

in the installation will be able to talk to it immediately. To start running, plug the

machine into the network, turn it on, and use BOOTP and TFTP to load the ker-

nel. All else is automatic.

Finally, the automated dump file system frees all users from the need to main-

tain their systems, while providing easy access to backup flles without tapes, spe-

cial commands, or the involvement of support staff. It is difflcult to overstate the

improvement in lifestyle afforded by this service.

Plan 9 runs on a variety of hardware without constraining how to configure

an installation. In our laboratory, we chose to use central servers because they

amortize costs and administration. A sign that this is a good decision is that our

cheap terminals remain comfortable places to work for about ûve years, much

232 Rob Pike et al.

longer than workstations that must provide the complete computing environment.
'We

do, however, upgrade the central machines, so the computation available from
even old Plan 9 terminals improves with time. The money saved by avoiding reg-
ular upgrades of terminals is instead spent on the newest, fastest multiprocessor
servers. We estimate this costs about half the money of networked workstations,
yet provides general access to more powerful machines.

7. C Programming

Plan 9 utilities are written in several languages. Some are scripts for the shell, rc
[Duff 1990]; a handful are written in a new C-like concurrent language called Alef
[Winterbottom 1995], described below. The great majority, though, are written in
a dialect of ANSI C [ANSI 1990]. Of these, most are entirely new programs, but
some originate in pre-ANSI C code from our research UNIX system [AT&T Bell
Labs. 19851. These have been updated to ANSI C and reworked for portability
and cleanliness.

The Plan 9 C dialect has some minor extensions, described elsewhere [Pike
19951, and a few major restrictions. The most important restriction is that the

compiler demands that all function definitions have ANSI prototypes and all
function calls appear in the scope of a prototyped declaration of the function.
As a stylistic rule, the prototyped declaration is placed in a header file included
by all files that call the function. Each system library has an associated header file,
declaring all functions in that library. For example, the standard Plan 9 library is
called libc, so all C source files include <libc.h>. (The names of header files
disagree with ANSI C.) These rules guarantee that all functions are called with
arguments having the expected types-something that was not true with pre-ANSI
C programs.

Another restriction is that the C compilers accept only a subset of the prepro-
cessor directives required by ANSI. The main omission is #if , since we believe
it is never necessary and often abused. Also, its effect is better achieved by other
means. For instance, an #if used to toggle a feature at compile time can be writ-
ten as a regular if statement, relying on compile-time constant folding and dead

code elimination to discard object code.

Conditional compilation, even with #ifdef , is used sparingly in Plan 9. The
only architecture-dependent #if def s in the system are in low-level routines in
the graphics library. Instead, we avoid such dependencies or, when necessar¡ iso-
late them in separate source files or libraries. Besides making code hard to read,
#ifdef s make it impossible to know what source is compiled into the binary or

Plan 9 from Bell Labs 233

whether source protected by them will compile or work properly. They make it
harder to maintain software.

The standard Plan 9 library overlaps much of ANSI C and POSIX IPOSIX
19901, but diverges when appropriate to Plan 9's goals or implementation. When

the semantics of a function change, we also change the name. For instance, instead

of UNIX's creat, Plan t has a create function that takes three arguments, the

original two plus a third that, like the second argument of open, defines whether

the returned file descriptor is to be opened for reading, writing, or both. This de-

sign was forced by the way 9P implements creation, but it also simplifies the com-

mon use of create to initialize a temporary file.
Another departure from ANSI C is that Plan 9 uses a 16-bit character set

called Unicode [ISO 10646-l 1993, Unicode I99Il. Although we stopped short

of full internationalization, Plan 9 treats the representation of all major languages

uniformly throughout all its software. To simplify the exchange of text between
programs, the characters are packed into a byte stream by an encoding we de-

signed, called UTF-8, which is now becoming accepted as a standard [)VOpen
19941. It has several attractive properties, including byte-order independence,

backwards compatibility with ASCII, and ease of implementation.

There are many problems in adapting existing software to a large character set

with an encoding that represents characters with a variable number of bytes. ANSI
C addresses some of the issues but falls short of solving them all. It does not pick
a character set encoding and does not define all the necessary VO library routines.

Furthermore, the functions it does define have engineering problems. Since the

standard left too many problems unsolved, we decided to build our own interface.

A separate paper has the details [Pike & Thompson 19931.

A small class of Plan 9 programs do not follow the conventions discussed in
this section. These are programs imported from and maintained by the UNIX com-

munity; tex is a representative example. To avoid reconverting such programs

every time a new version is released, we built a porting environment, called the

ANSI C/POSIX Environment, or APE [Trickey 1995]. APE comprises separate in-
clude files, libraries, and commands, conforming as much as possible to the strict
ANSI C and base-level POSIX specifications. To port network-based software

such as X Windows, it was necessary to add some extensions to those specifica-

tions, such as the BSD networking functions.

8. Portability and Compilation

Plan 9 is portable across a variety of processor architectures. Within a single com-

puting session, it is common to use several architectures: perhaps the window

234 Rob Pike er al.

system running on an Intel processor connected to a MIPS-based CPU server with
files resident on a SPARC system. For this heterogeneity to be transparent, there

must be conventions about data interchange between programs; for software main-

tenance to be straightforward, there must be conventions about cross-architecture

compilation.
To avoid byte order problems, data is communicated between programs as text

whenever practical. Sometimes, though, the amount of data is high enough that

a binary format is necessary; such data is communicated as a byte stream with
a pre-defined encoding for multi-byte values. In the rare cases where a format is

complex enough to be defined by a data structure, the structure is never commu-

nicated as a unit; instead, it is decomposed into individual fields, encoded as an

ordered byte stream, and then reassembled by the recipient. These conventions af-

fect data ranging from kernel or application program state information to object

flle intermediates generated by the compiler.
Programs, including the kernel, often present their data through a flle system

interface, an access mechanism that is inherently portable. For example, the sys-

tem clock is represented by a decimal number in the file /dev/time; the time
library function (there is no time system call) reads the file and converts it to bi-
nary. Similarly, instead of encoding the state of an application process in a series

of flags and bits in private memory, the kernel presents a text string in the file
named status in the /proc file system associated with each process. The Plan 9
ps command is trivial: it prints the contents of the desired status files after some

minor reformatting; moreover, after
inport helix /proc

a local ps command reports on the status of Helix's processes.

Each supported architecture has its own compilers and loader. The C and Alef
compilers produce intermediate files that are portably encoded; the contents are

unique to the target architecture but the format of the file is independent of com-

piling processor type. When a compiler for a given architecture is compiled on

another type of processor and then used to compile a program there, the interme-

diate produced on the new architecture is identical to the intermediate produced

on the native processor. From the compiler's point of view, every compilation is a
cross-compilation.

Although each architecture's loader accepts only intermediate files produced

by compilers for that architecture, such files could have been generated by a com-
piler executing on any type of processor. For instance, it is possible to run the

MIPS compiler on a 486, then use the MIPS loader on a SPARC to produce a

MIPS executable.

Since Plan 9 runs on a variety of architectures, even in a single installation,

distinguishing the compilers and intermediate names simplifies multi-architecture

Plan 9 from BeIl Labs 235

development from a single source tree. The compilers and the loader for each

architecture are uniquely named; there is no cc command. The names are derived
by concatenating a code character associated with the target architecture with the

name of the compiler or loader. For example, the code character for Intel x86
processors is '8'; the corresponding C compiler is named 8c, the Alef compiler
8a1, and the loader is called 81. Similarly, the compiler intermediate files are

sufflxed .8, not .o.
The Plan 9 build program nk, a relative of make, reads the names of the cur-

rent and target architectures from environment variables called $cputype and

$objtype. By default the current processor is the target, but setting $objtype to
the name of another architecture before invoking mk results in a cross-build:

'/. objtype=sparc nk
builds a program for the SPARC architecture regardless of the executing machine.
The value of $objtype selects a file of architecture-dependent variable definitions
that confrgures the build to use the appropriate compilers and loader. Although
simple-minded, this technique works well in practice: all applications in Plan 9 are

built from a single source tree and it is possible to build the various architectures
in parallel without conflict.

9. Parallel programming

Plan 9's support for parallel programming has two aspects. First, the kernel pro-
vides a simple process model and a few carefully designed system calls for syn-
chronization and sharing. Second, a new parallel programming language called
Alef supports concurrent programming. Although it is possible to write parallel
programs in C, Alef is the parallel language of choice.

There is a trend in new operating systems to implement two classes of pro-
cesses: normal UNIX-style processes and light-weight kernel threads. Instead, Plan
9 provides a single class of process but allows fine control of the sharing of a pro-
cess's resources such as memory and file descriptors. A single class of process is
a feasible approach in Plan 9 because the kernel has an efficient system call inter-
face and cheap process creation and scheduling.

Parallel programs have three basic requirements: management of resources

shared between processes; an interface to the scheduler; and fine-grain process

synchronization using spin locks. On Plan 9, new processes are created using
the rf ork system call. Rf ork takes a single argument, a bit vector that speci-

fies which of the parent process' resources should be shared, copied, or created

anew in the child. The resources controlled by rf ork include the name space,

the environment, the flle descriptor table, memory, and notes (Plan 9's analog of

236 Rob Pike et al.

UNIX signals). One of the bits controls whether the rf ork call will create a new
process; if the bit is off, the resulting modification to the resources occurs in the
process making the call. For example, a process calls rf ork(RFNAMEG) to discon-
nect its name space from its parent's. Alef uses a fine-grained fork in which all the
resources, including memory are shared between parent and child, analogous to
creating a kernel thread in many systems.

An indication that rf ork is the right model is the variety of ways it is used.
Other than the canonical use in the library routine f ork, it is hard to find two calls
to rf ork with the same bits set; programs use it to create many different forms
of sharing and resource allocation. A system with just two types of processes-
regular processes and threads-could not handle this variety.

There are two ways to share memory. First, a flag to rfork causes all the
memory of the parent to be shared with the child (except the stack, which is
forked copy-on-write regardless). Alternatively, a new segment of memory may be
attached using the segattach system call; such a segment will always be shared
between parent and child.

The rendezvous system call provides a way for processes to synchronize.
Alef uses it to implement communication channels, queuing locks, multiple
reader/writer locks, and the sleep and wakeup mechanism. Rendezvous takes
two arguments, a tag and a value. V/hen a process calls rendezvous with a tag it
sleeps until another process presents a matching tag. When a pair of tags match,
the values are exchanged between the two processes and both rendezvous calls
return. This primitive is sufficient to implement the full set of synchronization
routines.

Finally, spin locks are provided by an architecture-dependent library at user
level. Most processors provide atomic test and set instructions that can be used

to implement locks. A notable exception is the MIPS R3000, so the SGI Power
Series multiprocessors have special lock hardware on the bus. User processes gain
access to the lock hardware by calling segattach to map pages of hardware locks
into their address space.

Regardless of its 'weight', a Plan 9 process will block in a system call. This
means that when a program wishes to read from a slow device without blocking
the entire calculation, it must fork a process to do the read for it. The solution is to
start a satellite process that does the VO and delivers the answer to the main pro-
gram through shared memory or perhaps a pipe. This sounds onerous but works
easily and efficiently in practice; in fact, most interactive Plan 9 applications, even
relatively ordinary ones written in C, such as the text editor sam [Pike 1987], run
as multiprocess programs.

The kernel support for parallel programming in Plan 9 is a few hundred lines
of portable code; a handful of simple primitives make the problems tractable from

Plan 9 from Bell lnbs 237

user level. Although the primitives work fine from C, the Alef language and its
run-time system make them particularly convenient; the creation and management

of slave VO processes can be written in just a few lines of Alef. Providing high-
level assistance for parallel programming in a user-level language rather than in
the kernel encourages consistent interfaces between all components, not just those

in the kernel. Compare this approach to the UNIX select system call: select
applies only to a restricted set of devices, legislates a style of multiprogramming
in the kernel, does not extend across networks, is difficult to implement, and is

hard to use.

Another reason parallel programming is important in Plan 9 is that multi-
threaded user-level file servers are the preferred way to implement services. Ex-
amples of such servers include the programming environment Acme [Pike 1994],

exportf s [Pike et al.I993l, the HTTP daemon, and the network name servers

cs and dns [Presotto & Winterbottom 1993]. Complex applications such as Acme
prove that careful operating system support can reduce the difficulty of writing
multi-threaded applications without moving threading and synchronization primi-
tives into the kernel.

10. Implementation of Name Spaces

Three system calls construct name spaces: mount, bind, and unmount. The mount
call attaches a tree served by a file server to the current name space. Before call-
ing mount, the client must (by outside means) acquire a connection to the server

in the form of a file descriptor that may be written and read to transmit 9P mes-

sages. That frle descriptor represents a pipe or network connection.

The mount call attaches a new hierarchy to the existing name space. The bínd
system call, on the other hand, duplicates some piece of existing name space at

another point in the name space. The unmount system call undoes a mount or
bind.

Using either bind or mount, multiple directories may be stacked at a sin-
gle point in the name space. In Plan 9 terminology, this is a union directory and

behaves like the concatenation of the constituent directories. A flag argument to
bind and mount specifies the position of a new directory in the union, permit-
ting new elements to be added either at the front or rear of the union or to replace

it entirely. When a file lookup is performed in a union directory, each compo-

nent of the union is searched in turn and the first match is taken; likewise, when a

union directory is read, the contents of each of the component directories is read

in turn. Union directories are one of the most widely used organizational features

of the Plan 9 name space. For instance, the directory /bin is built as a union of

238 Rob Pike et al.

/$cputype/bin (program binaries), /rc/bin (shell scripts), and perhaps more

directories provided by the user. This construction makes the old shell $PATH vari-

able unnecessary.

One question raised by union directories is which element of the union re-

ceives a newly created file. After several designs, we decided on the following.
By default, directories in unions do not accept new files, although the create sys-

tem call applied to an existing file succeeds normally. When a directory is added

to the union, create permission (a property of the name space) may be enabled

in that directory. V/hen a flle is being created with a new name in a union, it is
created in the first directory of the union with create permission; if that creation

fails, the entire create fails. This scheme enables placing a private directory
anywhere in a union of public ones, while allowing creation only in the private

directory.

By convention, kernel devices are bound into the /dev directory, but to boot-

strap the name space it is necessary to have a notation that permits direct access to

the devices without an existing name space. The root directory of the tree served

by a device driver can be accessed by the notation #c, where c is a unique char-

acter (typically a letter) identifying the type of the device. Simple device drivers

serve a single level directory containing a few files. As an example, each serial

port is represented by a data and a control f,le:

% bind -a)#t'
% cd /dev
% ls -1 eiax
--rw-rw-rw- t
--rw-rút-rld- t
--rw-rw-rw- t
--rw-rw-rw- t

/dev

0 bootes bootes 0
0 bootes bootes 0
0 bootes bootes 0
0 bootes bootes 0

Feb 24 2t:L4 eíat
Feb 24 2t:14 eialctl
Feb 24 2t:14 eia2
Feb 24 2t:14 eia2ctl

The bind program encapsulates the bind system call; its -a flag positions the

new directory at the end of the union. The data files ej-al and eia2 may be read

and written to communicate over the serial line. Instead of using special opera-

tions on these f,les to control the devices, commands written to the files eialctl-
and eia2ctl- control the corresponding device; for example, writing the text string

b1200 to /dev/eialctl sets the speed of that line to 1200 baud. Compare this

to the UNIX ioctl- system call: in Plan 9, devices are controlled by textual mes-

sages, free of byte order problems, with clear semantics for reading and writing.

Devices can often be configured and debugged by shell scripts.

The universal use of the 9P protocol connects Plan 9's components together

to form a distributed system. Rather than inventing a unique protocol for each

service such as rlogin, FTP, TFTP, and X windows, Plan 9 implements services

Plan 9 from Bett Labs 239

in terms of operations on file objects, and then uses a single, well-documented
protocol to exchange information between computers.

Although superficially like NFS, 9P treats files as a sequence of bytes rather
than blocks. Also, unlike NFS, 9P is stateful: clients perform remote procedure

calls to establish pointers to objects in the remote flle server. These pointers are

called file identifiers orfids. All operations on files supply a fid to identify an ob-
ject in the remote file system.

The 9P protocol defines 16 messages, providing means to authenticate users,

navigate fids around a file system hierarchy, copy fids, perform I/O, change file at-

tributes, and create and delete files; Table t has a summary. Here is the procedure

to gain access to the name hierarchy supplied by a server. A file server connec-
tion is established via a pipe or network connection. An initial session message

performs a bilateral authentication between client and server. An attach mes-

sage then connects a fid suggested by the client system to the root of the server
file tree. The attach message includes the identity of the user performing the at-

tach; henceforth all fids derived from the root fid will have permissions associated

with that user. Multiple users may share the connection, but each must perform an

attach to establish his or her identity.
The r^ratk message moves a fid through a single level of the file system hi-

erarchy. The cl-one message takes an established fid and produces a copy that
points to the same file as the original. Its purpose is to enable walking to a file in
a directory without losing the fid on the directory. The open message locks a fid
to a specific file in the hierarchy, checks access permissions, and prepares the fid
for I/O. The read and r¡rite messages allow I/O at arbitrary offsets in the f,le;
the maximum size transferred is defined by the protocol. The cl-unk message in-
dicates the client has no further use for a fid. The remove message behaves like
clunk but causes the file associated with the fid to be removed and any associated

resources on the server to be deallocated.

9P has two forms: RPC messages sent on a pipe or network connection and

a procedural interface within the kernel. Since device drivers are compiled into
the kernel, they are directly addressable and there is no need to pass messages to
communicate with them; instead each 9P transaction to a device is implemented
by a direct procedure call. This dichotomy is a historical artifact but has a couple
of advantages. The first is greater speed when accessing local devices. The second

is that the complexity of having two interfaces is offset by having only one im-
plementation of RPC: the system's remote procedure call mechanism is integrated
with the multiplexing of 9P messages in a single component, called the mount
device, described below.

For each fid, the kernel maintains a local representation in a data structure
called a channel, so all operations on frles performed by the kernel involve a

240 Rob Pike et al.

Table l. 9P Messages.

9P Message Description

Nop
Session

Attach
Clone
Walk
Open

Create

Read

Write
Clunk
Remove

Stat

Wstat

Flush

Error
Clwalk

No operation; used for debugging.
Establish connection.
Authenticate user and attach fid to root.
Duplicate fid.
Advance fid along one element of file name.
Check access permissions and enable read and write.
Create new file (or directory).
Read contents of file associated with fid.
Write contents of flle associated with fid.
Drop fid.
Remove file associated with fid and drop fid.
Read properties of file associated with fld.
Modify properties of file associated with fid.
Abort 9P message in progress.
(Reply only) Return error message from failed call.
Clone and walk; used only by special servers over low-speed lines.

channel connected to that fid. The simplest example is a user process's file de-
scriptors, which are indexes into an array of channels. A table in the kernel
provides a list, for each device, of entry points corresponding to 9p messages.
A system call such as read from the user translates into one or more procedure
calls through that table, indexed by a type stored in the channel: procread,
eiaread, etc. Each call takes at least one channel as an argument. A special
kernel device, the mount device, translates procedure calls to messages, that is,
it converts local procedure calls to remote ones. In effect, this special driver
becomes a local proxy for the files served by a remote file server. The chan-
nel pointer in the local call is translated to the associated fid in the transmitted
message.

The mount driver is the sole RPC mechanism. The semantics of the supplied
files, rather than the operations performed upon them, create particular services
such as the cpu command. The mount driver demultiplexes protocol messages for
clients sharing a communication channel with a file server. For each outgoing RPC
message, the mount driver allocates a buffer labeled by a small unique integer,
called atag.The reply to the RPC is labeled with the same tag.

Plan 9 from Bell Labs 241

The kernel maintains a mount table, which stores a list of bindings between

channels. Each entry in the mount table contains a pair of channels: afrom chan-

nel and a to channeL Every time a walk succeeds in moving a channel to a new

location in the name space, the mount table is consulted to see if a 'from' chan-

nel matches the new name; if so the 'to' channel is cloned and substituted for the

original. Union directories are implemented by converting the 'to' channel into a

list of channels: a successful walk to a union directory returns a 'to' channel that

forms the head of a list of channels, each representing a component directory of
the union. If a walk fails to find a file in the f,rst directory of the union, the list is

followed, the next component cloned, and walk tried on that directory.

Each file in Plan 9 is uniquely identified by a set of integers: the type of the

server (stored in the channel and used as the index of the function call table), the

server or device number distinguishing the server from others of the same type

(decided locally by the driver), and a qid formed from two 32-bit numbers called

path and version. The path is a unique file number assigned by a device driver

or file server when a file is created. The version number is updated whenever the

file is modifled; as described in the next section, it can be used to maintain cache

coherency between clients and servers.

The type and device number are analogous to UNIX major and minor device

numbers; the qid is analogous to the i-number. The device and type connect the

channel to a device driver and the qid identifies the file within that device. If the

frle recovered from a walk has the same type, device, and qid path as an entry in

the mount table, they are the same file and the corresponding substitution from the

mount table is made. This is how the name space is implemented.

11. FiIe Caching

The 9P protocol has no explicit support for caching files on a client. The large

memory of the central file server acts as a shared cache for all its clients, which

reduces the total amount of memory needed across all machines in the network.

Nonetheless, there are sound reasons to cache files on the client, such as a slow

connection to the file server.

The version field of the qid is changed whenever the file is modified, which

makes it possible to do some weakly coherent forms of caching. The most impor-

tant is client caching of text and data segments of executable files. When a process

execs a program, the ûle is re-opened and the qid's version is compared with that

in the cache; if they match, the local copy is used. The same method can be used

to build a local caching file server. This user-level server interposes on the 9P con-

nection to the remote server and monitors the traffic, copying data to a local disk.

242 Rob Pike et al.

When it sees a read of known dala, it answers directly, while writes are passed
on immediately-the cache is write-through-to keep the central copy up to date.
This is transparent to processes on the terminal and requires no change to 9P; it
works well on home machines connected over serial lines. A similar method could
be applied to build a general client cache in unused local memory, but this has not
been done in Plan 9.

12. Networks and Communication Devices

Network interfaces are kernel-resident file systems, analogous to the EIA device
described earlier. Call setup and shutdown are achieved by writing text strings
to the control file associated with the device; information is sent and received by
reading and writing the data file. The structure and semantics of the devices are
common to all networks. Other than a file name substitution, therefore, the same
procedure makes a call using TCP over Ethernet as URP over Datakit [Fraser
19801.

This example illustrates the structure of the TCP device:

7" 1s -Ip /net/tcp
d-r-xr-xr-x I 0 bootes bootes 0 Feb 23 20:20 O

d-r-xr-xr-x I 0 bootes bootes 0 Feb 23 20:20 7

--rw-rw-rür- I 0 bootes bootes 0 Feb 23 20:20 clone
% :-s -t-p /net/tcp/O
--ri^r-rw---- I 0 rob bootes 0 Feb 23 20:20 ctl

--:T_:T____ i 3 ::i :::::: 3 i:i 3132',;3 iiï""
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 local
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 remote
--r--r--r-- I 0 bootes bootes 0 Feb 23 20:20 status
"/"

The top directory /net/tcp, contains a cl-one file and a set of subdirectories
numbered 0 to n. Each subdirectory corresponds to a TCP/IP connection. opening
crone reserves an unused connection and opens its control file. Reading the con-
trol file returns the textual connection number, so the user process can construct
the full name of the newly allocated connection directory. The local, remote,
and status files are diagnostic; for example, remote contains the address (for
TCP, the IP address and port number) of the remote side.

A call is initiated by writing a connect message with a network-specific ad-
dress as its argument; for example, to open a Telnet session (port 23) to a remote
machine with IP address 135.104.9.52, the string is:

Plan 9 from Bell Labs 243

connect 135. 104. 9.52123

The write to the control file blocks until the connection is established; if the des-

tination is unreachable, the write returns an effor. Once the connection is estab-

lished, the telnet application reads and writes the data file to talk to the remote

Telnet daemon. On the other end, the Telnet daemon would start by writing

announce 23

to its control file to indicate its willingness to receive calls to this port. Such a

daemon is called a listener in Plan 9.

A uniform structure for network devices cannot hide all the details of ad-

dressing and communication for dissimilar networks. For example, Datakit uses

textual, hierarchical addresses unlike IP's 32-bit addresses, so an application given

a control file must still know what network it represents. Rather than make ev-

ery application know the addressing of every network, Plan t hides these details

in a connection server, called cs. Cs is a file system mounted in a known place.

It supplies a single control file that an application uses to discover how to con-

nect to a host. The application writes the symbolic address and service name for

the connection it wishes to make, for example net !kremvax !telnet, and reads

back the name of the clone flle to open and the address to present to it, for ex-

ample /net/tcp/clone 111 .I23.L72.94123.If there are multiple networks

between the machines, cs presents a list of possible networks and addresses to be

tried in sequence; it uses heuristics to decide the order. For instance, it presents the

highest-bandwidth choice first.

A single library function called dial- talks to cs to establish the connection.

An application that uses dial needs no changes, not even recompilation, to adapt

to new networks; the interface to cs hides the details.

The uniform structure for networks in Plan 9 makes the import command all

that is needed to construct gateways.

13. Kernel Structure for Networks

The kernel plumbing used to build Plan 9 communications channels is called

streams fRitchie 1984; Presotto 1990]. A stream is a bidirectional channel con-

necting a physical or pseudo-device to a user process. The user process inserts

and removes data at one end of the stream; a kernel process acting on behalf of
a device operates at the other end. A stream comprises a linear list of processing

modules. Each module has both an upstream (toward the process) and downstream

(toward the device) put routine. Calling the put routine of the module on either

244 Rob Pike et al.

end of the stream inserts data into the stream. Each module calls the succeeding
one to send data up or down the stream. Like UNIX streams [Ritchie 1984], Plan
9 streams can be dynamically configured.

14. The IL Protocol

The 9P protocol must run above a reliable transport protocol with delimited mes-
sages. 9P has no mechanism to recover from transmission errors and the system
assumes that each read from a communication channel will return a single 9P
message; it does not parse the data stream to discover message boundaries. Pipes
and some network protocols already have these properties but the standard IP pro-
tocols do not. TCP does not delimit messages, while UDP [Postel 1980] does not
provide reliable in-order delivery.

V/e designed a new protocol, called IL (Internet Link), to transmit 9P mes-
sages over IP. It is a connection-based protocol that provides reliable transmission
of sequenced messages between machines. Since a process can have only a single
outstanding 9P request, there is no need for flow control in IL. Like TCP, IL has

adaptive timeouts: it scales acknowledgement and retransmission times to match
the network speed. This allows the protocol to perform well both on the Internet
and on local Ethernets. Also, IL does no blind retransmission, to avoid adding
to the congestion of busy networks. Full details are in another paper [Presotto &
Winterbottom 19951.

In Plan 9, the implementation of IL is smaller and faster than TCP. IL is our
main Internet transport protocol.

15. Overview of Authentication

Authentication establishes the identity of a user accessing a resource. The user
requesting the resource is called the client and the user granting access to the re-
source is called the server. This is usually done under the auspices of a 9P attach
message. A user may be a client in one authentication exchange and a server in
another. Servers always act on behalf of some user, either a normal client or some
administrative entity, so authentication is defined to be between users, not ma-
chines.

Each Plan 9 user has an associated DES INBS 1977] authentication key; the
user's identity is verified by the ability to encrypt and decrypt special messages

Plan 9.from BelI Labs 245

called challenges. Since knowledge of a user's key gives access to that user's re-

sources, the Plan 9 authentication protocols never transmit a message containing a

cleartext key.

Authentication is bilateral: at the end of the authentication exchange, each side

is convinced of the other's identity. Every machine begins the exchange with a

DES key in memory. In the case of CPU and file servers, the key, user name, and

domain name for the server are read from permanent storage, usually non-volatile

RAM. In the case of terminals, the key is derived from a password typed by the

user at boot time. A special machine, known as the authentication server, main-

tains a database of keys for all users in its administrative domain and participates

in the authentication protocols.

The authentication protocol is as follows: after exchanging challenges, one

party contacts the authentication server to create permission-granting tickets en-

crypted with each party's secret key and containing a new conversation key. Each

party decrypts its own ticket and uses the conversation key to encrypt the other

party's challenge.

This structure is somewhat like Kerberos [Miller et al 1987], but avoids its

reliance on synchronized clocks. Also unlike Kerberos, Plan 9 authentication sup-

ports a 'speaks for' relation [Lampson et al. 1991] that enables one user to have

the authority of another; this is how a CPU server runs processes on behalf of its
clients.

Plan 9's authentication structure builds secure services rather than depending

on firewalls. Whereas firewalls require special code for every service penetrating

the wall, the Plan 9 approach permits authentication to be done in a single place-
9P-for all services. For example, the cpu command works securely across the

Internet.

I 6. Authenticating External Connections

The regular Plan 9 authentication protocol is not suitable for text-based services

such as Telnet or FTP. In such cases, Plan 9 users authenticate with a hand-held

DES calculator known as an authenticator. (We use a product manufactured

by Digital Pathways, Inc., called the SecureNet Key.) The authenticator holds

a key for the user, distinct from the user's normal authentication key. The user

is identified to the authenticator by a 4-digit PIN. A correct PIN enables the

authenticator for a challenge/response exchange with the server. Since a correct

challenge/response exchange is valid only once and keys are never sent over the

network, this procedure is not susceptible to replay attacks, yet is compatible with
protocols like Telnet and FTP.

246 Rob Pike et al.

17. Special Users

Plan t has no super-user. Each server is responsible for maintaining its own se-

curity, usually permitting access only from the console, which is protected by a
password. For example, file servers have a unique administrative user called adn,
with special privileges that apply only to commands typed at the server's physical
console. These privileges concern the day-to-day maintenance of the serve¡ such
as adding new users and configuring disks and networks. The privileges do not
include the ability to modify, examine, or change the permissions of any files. If a
file is read-protected by a user, only that user may grant access to others.

CPU servers have an equivalent user name that allows administrative access to
resources on that server such as the control files of user processes. Such permis-
sion is necessary, for example, to kill rogue processes, but does not extend beyond
that server. on the other hand, by means of a key held in protected non-volatile
RAM, the identity of the administrative user is proven to the authentication server.
This allows the CPU server to authenticate remote users, both for access to the
server itself and when the CPU server is acting as a proxy on their behalf.

Finally, a special user called none has no password and is always allowed
to connect; anyone may claim to be none. None has restricted permissions; for
example, it is not allowed to examine dump files and can read only world-readable
files.

The idea behind none is analogous to the anonymous user in FTP services.
On Plan 9, guest FTP servers are further confined within a special restricted name
space. It disconnects guest users from system programs, such as the contents of
/bin, but makes it possible to make local files available to guests by binding them
explicitly into the space. A restricted name space is more secure than the usual
technique of exporting an ad hoc directory tree; the result is a kind of cage around
untrusted users. Of course, vigilance is still required; although Plan 9 makes it
easy to construct a secure system, it does not guarantee one.

I B. The CPU Command and Proxied Authentication

when a call is made to a cPU server for a user, say Peter, the intent is that Peter
wishes to run processes with his own authority. To implement this property, the
CPU server does the following when the call is received. First, the listener forks
off a process to handle the call. This process changes to the user none to avoid
giving away permissions if it is compromised. It then performs the authentication
protocol to verify that the calling user really is Peter, and to prove to Peter that the

Plan 9 from Bell Labs 241

machine is itself trustworthy. Finall¡ it reattaches to all relevant file servers using

the authentication protocol to identify itself as Peter. In this case, the CPU server

is a client of the file server and performs the client portion of the authentication

exchange on behalf of Peter. The authentication server will give the process tickets

to accomplish this only if the CPU server's administrative user name is allowed to

speak for Peter.

The speaks for relation [Lawson et al. l99ll is kept in a table on the authen-

tication server. To simplify the management of users computing in different au-

thentication domains, it also contains mappings between user names in different

domains, for example saying that user rtm in one domain is the same person as

user rtmorris in another.

19. File Permissions

One of the advantages of constructing services as flle systems is that the solutions

to ownership and permission problems fall out naturally. As in UNIX, each file

or directory has separate read, write, and execute/search permissions for the flle's

owner, the frle's group, and anyone else. The idea of group is unusual: any user

name is potentially a group name. A group is just a user with a list of other users

in the group. Conventions make the distinction: most people have user names

without group members, while groups have long lists of attached names. For

example, the sys group traditionally has all the system prograÍìmers, and sys-

tem files are accessible by group sys. Consider the following two lines of a user

database stored on a server:

pjw:Piw:
sys : : pjw, ken,philw,Presotto

The first establishes user pjw as a regular user. The second establishes user sys

as a group and lists four users who are members of that group. The empty colon-

separated field is space for a user to be named as the group leader.If a group

has a leader, that user has special permissions for the group, such as freedom to

change the group permissions of files in that group. If no leader is specified, each

member of the group is considered equal, as if each were the leader. In our exam-

ple, only pjw can add members to his group, but all of sys's members are equal

partners in that group.

Regular files are owned by the user that creates them. The group name is in-

herited from the directory holding the new file. Device frles are treated specially:

the kernel may arrange the ownership and permissions of a file appropriate to the

user accessing the file.

248 Rob Pike er al.

A good example of the generality this offers is process files, which are owned
and read-protected by the owner of the process. If the owner wants to let someone
else access the memory of a process, for example to let the author of a program
debug a broken image, the standard chmod command applied to the process files
does the job.

Another unusual application of file permissions is the dump file system, which
is not only served by the same file server as the original data, but represented by
the same user database. Files in the dump are therefore given identical protection
as files in the regular flle system; if a file is owned by pj" and read-protected,
once it is in the dump flle system it is still owned by pjo¡ and read-protected.
Also, since the dump file system is immutable, the flle cannot be changed; it is
read-protected forever. Drawbacks are that if the flle is readable but should have
been read-protected, it is readable forever, and that user names are hard to re-use.

20. Pedormance

As a simple measure of the performance of the Plan 9 kernel, we compared the
time to do some simple operations on Plan 9 and on sGI's IRIX Release 5.3 run-
ning on an SGI Challenge M with a 100MHz MIPS R4400 and a l-megabyre
secondary cache. The test program was written in Alef, compiled with the same
compiler, and run on identical hardware, so the only variables are the operating
system and libraries.

The program tests the time to do a context switch (rendezvous on Plan 9,
blockproc on IRIX); a trivial system call rfork(0) and nap(O); and lightweight
fork rf ork(RFPROC) and sproc (PR-SFDS IPR-SADDR). It also measures the time
to send a byte on a pipe from one process to another and the throughput on a pipe
between two processes. The results appear in Table 2.

Table 2. Performance comparison.

Test Plan 9 IRIX

Context switch
System call
Light fork
Pipe latency
Pipe bandwidth

39 p,s

6ps
1300 ¡rs

110 ps

11678 KB/s

150 ps

36 ¡,r,s

2200 ¡L"s

200 p,s

14545 KB/s

Plan 9 from Bell l¡tbs 249

Although the Plan 9 times are not spectacular, they show that the kernel is

competitive with commercial systems.

21. Discussion

Plan t has a relatively conventional kernel; the system's novelty lies in the pieces

outside the kernel and the way they interact. When building Plan 9, we considered

all aspects of the system together, solving problems where the solution fit best.

Sometimes the solution spanned many components. An example is the problem

of heterogeneous instruction architectures, which is addressed by the compilers
(different sufflxes for object files; object code independent of compiling machine),

the environment ($cputype and $objtype), the name space (binding in /bin),
and other components. Sometimes many issues could be solved in a single place.

The best example is 9P, which centralizes naming, access, and authentication. 9P

is really the core of the system; it is fair to say that the Plan 9 kernel is primarily a

9P multiplexer.
Plan 9's focus on files and naming is central to its expressiveness. Particularly

in distributed computing, the way things are named has profound influence on the

system [Needham 1989]. The combination of local name spaces and global con-

ventions to interconnect networked resources avoids the difficulty of maintaining

a global uniform name space, while naming everything like a flle makes the sys-

tem easy to understand, even for novices. Consider the dump file system, which

is trivial to use for anyone familiar with hierarchical flle systems. At a deeper

level, building all the resources above a single uniform lnterface makes interoper-

ability easy. Once a resource exports a 9P interface, it can combine transparently

with any other part of the system to build unusual applications; the details are hid-

den. This may sound object-oriented, but there are distinctions. First, 9P defines

a fixed set of 'methods'; it is not an extensible protocol. More important, files are

well-defined and well-understood and come prepackaged with familiar methods of
access, protection, naming, and networking. Objects, despite their generality, do

not come with these attributes deflned. By reducing 'object' to 'file', Plan 9 gets

some technology for free.

Nonetheless, it is possible to push the idea of file-based computing too far.

Converting every resource in the system into a file system is a kind of metaphor,

and metaphors can be abused. A good example of restraint is /proc, which is

only a view of a process, not a representation. To run processes, the usual f ork
and exec calls are still necessary, rather than doing something like

cp /bin/ date /proc/ clonelmen

250 Rob Pike er al.

The problem with such examples is that they require the server to do things not
under its control. The ability to assign meaning to a command like this does not
imply the meaning will fall naturally out of the structure of answering the 9P re-
quests it generates. As a related example, Plan 9 does not put machines' network
names in the file name space. The network interfaces provide a very different
model of naming, because using open, create, read., and r¿rite on such files
would not offer a suitable place to encode all the details of call setup for an arbi-
trary network. This does not mean that the network interface cannot be file-like,
just that it must have a more tightly defined structure.

Plan t has only one official RPC mechanism, integrated with 9p. compared to
systems with more general RPC, this has disadvantages: a fult RPC call must be
implemented as a write followed by a read, which is twice as many operations;
and the peculiar form of the RPC can be clumsy. For example, the implementa-
tion of /dev/bitult, which has a special RPClike layer implemented above 9P,

can share none of the code for marshalling 9P messages and requires the server
to hold state after some write calls to return information to the client's subse-
quent read. On the other hand, the Plan 9 arrangement is simple and general
and (with some awkwardness) avoids the need for stub compilers or indeed any
language-level support. Clumsiness like that in /d,ev/bitblt is rare in practice,
and never prohibitive. Moreover, /dev/bitblt is itself an example where the ex-
tra overhead is minor, since the great majority of calls to the device are r.rrites
with no following read. Finally, and perhaps most impoftant, it is easy to write
a 9P server. The code to drive the protocol is only about 500 lines and is usually
adapted from an existing server rather than being written from scratch. This is
so easy to do that we have never been compelled to write support code such as a
library to drive 9P, although such a library might make the job even easier.

What would we do differently next time? Some elements of the implemen-
tation are unsatisfactory. Using streams to implement network interfaces in the
kernel allows protocols to be connected together dynamically, for example to at-
tach the same TTY driver to TCP, URP, and IL connections, but Plan 9 makes
no use of this configurability. (It was exploited, however, in the research UNIX
system for which streams were invented.) Replacing streams by static I/o queues
would simplify the code and make it faster.

Although the main Plan 9 kernel is portable across many machines, the file
server is implemented separately. This has caused several problems: drivers that
must be written twice, bugs that must be fixed twice, and weaker portability of the
file system code. The solution is easy: the file server kernel should be maintained
as a variant of the regular operating system, with no user processes and special
compiled-in kernel processes to implement file service. Another improvement to
the file system would be a change of internal structure. The woRM jukebox is

Plan 9 from Bell lnbs 251

the least reliable piece of the hardware, but because it holds the directory structure

of the file system, it must be present in order to serve files. The system could be

restructured so the V/ORM is a backup device only, with the file system proper

residing on magnetic disks. This would require no change to the external interface.

Although Plan t has per-process name spaces, it has no mechanism to give the

description of a process's name space to another process except by direct inheri-

tance. The cpu command, for example, cannot in general reproduce the terminal's

name space; it can only re-interpret the user's login profile and make substitu-

tions for things like the name of the binary directory to load. This misses any local

modifications made before running cpu. It should instead be possible to capture

the terminal's name space and transmit its description to a remote process.

Despite these problems, Plan 9 works well. It has matured into the system that

supports our research, rather than being the subject of the research itself. Exper-

imental new work includes developing interfaces to faster networks, flle caching

in the client kernel, encapsulating and exporting name spaces, and the ability to
re-establish the client state after a server crash. Attention is now focusing on using

the system to build distributed applications.

One reason for Plan 9's success is that we use it for our daily work, not just

as a research tool. Active use forces us to address shortcomings as they arise and

to adapt the system to solve our problems. Through this process, Plan t has be-

come a comfortable, productive programming environment, as well as a vehicle

for further systems research.

252 Rob Pike er al.

References

l. American National Standard for Information Systems-Prograrnming Language C,
American National Standards Institute, Inc., New York, 1990.

2. AT&T Bell Laboratones, UNIX Time-Sharing System Programmer's Manual, Re-
search Version, Eighth Edition, Volume 7, Murray Hill, NJ, 1985.

3. AT&T Bell Laboratones, Plan 9 Programmer's Manual, Volumes I and 2, Murray
Hill, NJ, 1995.

4. DARPA, RFC793, Transmission Control Protocol, DARPA Internet Program Pro-
tocol Specification, September I 98 1

5. Tom Duff, Rc-A Shell for Plan 9 and UNIX systems, Proc. of the Summer 1990
UKUUG Conf.,London, July, 1990, pp. 2l-33.

6. A. G. Fraser, Datakit-A Modular Network for Synchronous and Asynchronous
Traffic, Proc. Int. Conf. on Commun., June 1980, Boston, MA.

'l . IEEE, Information Technology-Portable Operating System Interface (POSX)
Part l: System Application Program Interface (API) tC Languagel, New York,
1990.

8. ISO/IEC DIS 10646-1:1993 Information îechnology-Universal Multiple-Octet
Coded Character Set (UCS)-Part I: Architecture and Basic Multilingual Plane.

9. T.J. Killian, Processes as Files, USENIX Summer 1984 Conf. Proc., Jlune 1984,
Salt Lake City, UT.

10. Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber, Authenti-
cation in Distributed Systems: Theory and Practice, Proc. l3th ACM Symp. on Op.
Sys. Princ., Asilomar, 1991, pp. 165-182.

11. S.P. Miller, B.C. Neumann, J. I. Schiller, and J.H. Saltzer, Kerberos Authentica-
tion and Authorization System, Massachusetts Institute of Technology, 1987.

12. National Bureau of Standards (U.S.), Federal Information Processing Standard 46,
National Technical Information Service, Springfield, VA, 1977.

13. R. Needham, Names, Distributed systems, S. Mullender, ed., Addison ÏV'esley,
1989

14. R. M. Needham and A. J. Herbert, The Cambridge Distributed Computing System,
Addison-Wesley, London, 1982

15. B. Clifford Neuman, The Prospero File System, USENIX File Systems Workshop
Proc., Ann Arbor,1992, pp. 13-28.

16. John Ousterhout, Andrew Cherenson, Fred Douglis, Mike Nelson, and Brent
rù/elch, The Sprite Network Operating System, IEEE Computer,2l(2),23-38,
Feb. 1988.

17. Rob Pike, The Text Editor san, Software-Practice and Experience, Nov 1987,
l7(11), pp. 813*845.

18. Rob Pike, 8t12, the Plan 9 Window System, USENIX Summer Conf. Proc.,
Nashville, June, 1991, pp. 257-265.

Plan 9 from Bell Labs 253

19. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbot-
tom, The Use of Name Spaces in Plan 9, Op. Sys. Rev., Vol.27, No.2, Aptil
1993, pp. 72J6.

20. Rob Pike and Ken Thompson, Hello rù/orld or KaÀr¡pépa Kóope or ¡.lt¿åt*ü4È ,

USENIX Winter Conf. Proc., San Diego, 1993, pp. 43-50.

21. Rob Pike, Acme: A User Interface for Programmers, USEN/X Proc. of the Winter
1994 Conf., San Francisco, CA.

22. Rob Pike, How to Use the Plan 9 C Compiler, Plan 9 Programmer's Manual,

Volume 2, Nl&T Bell Laboratories, Munay Hill, NJ, 1995.

23. J. Postel, RFC768, User Datagram Protocol, DARPA Internet Program Protocol

Specification, August 1980.

24. Dave Presotto, Multiprocessor Streams for Plan 9, UKUUG Summer 1990 Conf.

Proc., Ju,ly 1990, pp. 11-19.

25. Dave Presotto and Phil Winterbottom, The Organization of Networks in Plan 9,

USENIX Proc. of the Winter 1993 Conf., San Diego, CA, pp. 43-50.

26. Dave Presotto and Phil Vy'interbottom, The IL Protocol, Plan 9 Programmer's

Manual, Volume 2, ÆI&T Bell Laboratories, Munay Hill, NJ, 1995.

21 . Herman Chung-Hwa Fiao, The Jade File System, (Ph. D. Dissertation), Dept. of
Comp. Sci, University of Arizona, TR 91-18.

28. D. M. Ritchie, A Stream Input-Output System, AT&T Bell Laboratories Technical

Journal, 63(8), October, 1984.

29. Robert W. Scheifler and Jim Gettys, The X Window System, ACM Trans. on

Graph, 5(2), pp.19-109, 1986.

30. Howard Trickey, APE-The ANSI/POSX Environment, PIan 9 Programmer's
Manual, Volume 2, Æf&T Bell Laboratories, Murray Hill, NJ, 1995.

31. The Unicode Standard, Worldwide Character Encoding, Version 1.0, Volume l,
The Unicode Consortium, Addison Vy'esley, New York, 1991.

32. Brent Vy'elch, A Comparison of Three Distributed File System Architectures:
Vnode, Sprite, and Plan 9, Computing Systems,'7(2), pp. 175-199, Spring, 1994.

33. Phil Winterbottom, Alef Language Reference Manual, Plan 9 Programmer's Man'
uaL Volume 2, Nf &'f Bell Laboratories, Murray Hill, NJ, 1995.

34. File System Safe UCS Transþrmation Format (FSS-UTF), X/Open Preliminary
Speciflcation,1993.ISO designation is ISO/IEC JTC1/SC2/!VG2 N 1036, dated

1994-08-01.

254 Rob Pike er al.

