
The Virtual Filesystem Interface
in 4.4BSDI

Marshall Kirk McKusick Consultant and Author

Berkeley, California

ABSTRACT: This paper describes the virtual filesys-
tem interface found in 4.4BSD. This interface is de-

signed around an object oriented virtual file node or
"vnode" data structure. The vnode structure is de-

scribed along with its method for dynamically expand-

ing its set of operations. These operations have been

divided into two groups: those to manage the hierarchi-
cal filesystem name space and those to manage the flat
filestore. The translation of pathnames is described, as

it requires a tight coupling between the virtual filesys-
tem layer and the underþing filesystems through which
the path traverses. This paper describes the filesystem
services that are exported from the vnode interface to
its clients, both local and remote. It also describes the

set of services provided by the vnode layer to its client
filesystems. The vnode interface has been generalized

to allow multiple filesystems to be stacked together.

After describing the stacking functionality, several

examples of stacking filesystems are shown.

t To appear in The Design and Implementation of the 4.4BSD Operating System, by Marshall Kirk McKusick,

et al., @1995 by Addison-Wesley Publishing Companf Inc. Reprinted with the permission of the publisher.

o 1995 The USENIX Association, Computing Systems, Vol. 8 ' No. 1 ' Winter 1995



4

I. The Virtual Filesystem Interface

In early UNIX systems, the file entries directly referenced the local filesystem
inode, see Figure I [Leffler et al. 1989]. This approach worked fine when there
was a single filesystem implementation. However, with the advent of multþle
filesystem types, the architecture had to be generalized. The new architecture had
to support import of filesystems from other machines including other machines
that were running different operating systems.

one alternative would have been to connect the multþle filesystems into
the system as different file types. However, this approach would have required
massive restructuring of the internals of the system, since current directories, ref-
erences to executables, and several other interfaces used inodes instead of file
entries as their point of reference. Thus, it was easier and more logical to add a
new object oriented layer to the system below the file entry and above the inode
as shown in Figure 2. This new layer was first implemented by Sun Microsys-
tems who called it the virtual node or vnode layer [Kleiman 1986]. Interfaces in
the system that had previously referred to local inodes were changed to ¡eference
generic vnodes. A vnode used by a local filesystem would refer to an inode. A
vnode used by a remote filesystem would refer to a protocol control block that

Figure 1. Old layout of kemel tables.

Marshall Kirk McKusick



Figure 2. New layout of kernel tables showing a local

filesystem.

described the location and naming information necessary to access the remote

file.

2 . Contents of a Vnode

The vnode is an extensible object oriented interface. It contains information that

is generically useful independent of the underlying filesystem object that it rcpre-

sents. The information stored in a vnode includes:

flags for locking the vnode and identifying generic attributes. An example

generic attribute is a flag to show that a vnode represents an object that is

the root of a fllesystem.

various refetence counts. These counts include the number of file entries

that reference the vnode for reading andf or writing, the number of file en-

tries that are open for writing that reference the vnode, and the number of
pages and buffers that are associated with the vnode.

a pointer to the mount structure describing the filesystem that contains the

object represented by the vnode.

. various information used to do file readahead.

a reference to state about special devices, sockets, fifos, and mount points.

a pointer to the set ofvnode operations defined for the object. These opera-

tions are described in Section 3.

4.4BSD Virtual F ilesystem Interface



' a pointer to private information needed for the underlying object. For the
local filesystem, this pointer will reference inodes; for NFS it will reference
an nfsnode.

' the type of the underlying object. The type information is not strictly neces-
sary, since a vnode client could always ask about the type of the underlying
object. However, since the type is often needed, the type of underlying
objects does not change, and it does take time to call through the vnode
interface, the object type is cached in the vnode.

. the list of clean and dirty buffers associated with the vnode. All valid
buffers in the system are identified by the vnode and logical block within
the object that the vnode represents. All the buffers that have been modi-
fied, but not yet written back are stored on the dirty buffer list. All buffers
that have not been modified, or have been written back since they were last
modified are stored on the clean list. By having all the dirty buffers grouped
onto a single list, the cost of doing an/sync system call to flush all the dirty
blocks associated with a file is proportional to the amount of dirty data. In
4.3BSD the cost was proportional to the smaller of the size of the file or
the size of the buffer pool. The list of clean buffers is used when a file is
deleted. Since the f,le wilt never be read again, the kernel can immediately
cancel any pending I/o on its dirty buffers, and reclaim all its clean and
dirty buffers and place them at the head of the buffer free list, ready for
immediate reuse.

. a count of the number of buffer write operations in progress. To speed the
flushing of dirty data, this operation is done by doing asynchronous writes
on all the dirty buffers at once. For local filesystems, this simultaneous
push causes all the buffers to be put into the disk queue so that they can be
sorted into an optimal order to minimize seeking. For remote filesystems,
this simultaneous push causes all the data to be presented to the network at
once so that it can maximize its throughput. System calls that cannot return
until the data is on stable store (such asfsync), can sleep on the count of
pending output operations waiting for it to reach zero.

The vnode itself is connected into several other structures within the kernel
(see Figure 3). Each mounted filesystem within the kernel is represented by a
generic mount structure that also includes a specific pointer to a filesystem specific
control block. All the vnodes associated with a mount point are linked together
on a list headed by the generic mount structure. Thus, when doing a sync sys-
tem call for a filesystem, the kernel can traverse this list to visit all the flles active
within that filesystem. Also shown in the figure are the lists of clean and dirty

Marshall Kirk McKusick



Figure 3. Vnode linkages. D-dirty buffer; C-clean buffer.

buffers associated with each vnode. Finally, there is a free list that links together

all the vnodes in the system that are not actively being used. The free list is used

when a filesystem needs to allocate a new vnode so that it can open a new file
(see Section 6).

3. Vnode Operations

Vnodes are designed as an object-oriented interface. Thus, they are manipulated

by passing requests to the underlying object through a set of defined operations.

Because of the many varied filesystems that are supported in 4.4BSD, the set

4.4BSD Virtual F ilesystem Interføce



of operations defined for vnodes is a large and extensible set. Unlike the origi-
nal Sun Microsystems vnode implementation,4.4BSD allows dynamic addition
of vnode operations at system boot time. As part of the booting process, each
filesystem registers the set of vnode operations that it is able to support. The ker-
nel then builds a table that lists the union of all operations supported by any of
the filesystems. From that table it builds an operations vector for each filesys-
tem. Supported operations are filled in with the entry point registered by the
fllesystem. Filesystems may opt to have unsupported operations filled in with
either a default routine (typically a routine to bypass the operation to the next
lower layer [see Section 7]) or to return the characteristic error "operation not sup-
ported."

ln 4.3BSD, the local filesystem code provided both the semantics of the hi-
erarchical filesystem naming and the details of the on-disk storage management.
These functions are only loosely related. To enable experimentation with other
disk storage techniques without having to reproduce the entire naming seman-
tics, 4.4BSD split the naming and storage code into separate modules. This split
is evident at the vnode layer where there are a set of operations defined for hier-
archical tlesystem operations and a separate set of operations defined for storage
of variable sized objects using a flat namespace. About sixty percent of the tradi-
tional Berkeley fast fllesystem (FFS) became the name space management and the
remaining forty percent became the code implementing the 4.4BSD on-disk file
storage.

The 4.4BSD kernel provides two different filestore managers: the traditional
FFS and a more recent addition, the log-structured filesystem (LFS). The FFS file-
store was designed on the assumption that buffer caches would be small and thus
that files would need to be read often. It spends great effort placing files likely to
be accessed together in the same general location on the disk. The LFS filestore
was designed for fast machines with large buffer caches. It assumes that writing
data to disk is the bottleneck, and tries to avoid seeking by writing all data to-
gether in the order that it was created. It assumes that active files will remain in
the buffer cache, so is little concerned with the time that it takes to retrieve files
from the filestore [Seltzer et al. 1993].

3.1 . Hierarchical Filesystem Management

The vnode operations defined for doing hierarchical filesystem operations are

shown in Figure 4. They are derived from the set of operators first defined in
the Sun Microsystems vnode implementation and have been augmented by ad-
ditional operators added by Berkeley.

Marshall Kirk McKusick



pathname searching

name creation

name change/deletion

attribute manipulation

object interpretation

process control

object management

lookup

create, mknod, link, symlink, mkdir

rename, remove, rmdir

access, getattr, setattr

open, readdir, readlink, mmap, close

advlock, ioctl, select

lock, unlock, inactive, reclaim, abortop

Figure 4. Hierarchical filesystem operations.

The most complex operator is the one for doing a name lookup; it is described

in Section 4.

There afe five operators for creating names. The operator to be used depends

on the type of object to be created. The create operatü creates regular files and

also is used by the networking code to create AF-LOCAL domain sockets. The

link operator creates additional names for existing objects. The symlink operatol

creates a symbolic link. The mknod operator creates block and character special

devices and fifos. The mkdir operator creates directories.

There are three operators defined to change or delete existing names. The

rename operator deletes a name for an object in one location and creates a new

name for the object in another location. The implementation of this operator is

complex when dealing with the movement of a directory from one part of the

filesystem tree to another. The remove operator removes a name. If the removed

name is the last reference to the object, the space associated with the underlying

object is reclaimed . The remove operator operates on all object types except direc-

tories; they are removed using the rmdir operatot.

Three operators are supplied for object attributes. The attributes are retrieved

from an object using the getattr operator; they are stored using the setattr opera-

tor. Access checks for a given user are provided by the access operator.

Five operators are provided for interpreting objects. The open and close oper-

ators have only peripheral use for regular files, but when used on special devices

are used to notify the appropriate device driver of device activation or shutdown.

The readdir operator converts the filesystem specitc format of a directory to the

standa¡d list of directory entries expected by an application. Note that the inter-

pretation of the contents of a directory are provided by the hierarchical code; the

flat filestore code considers a directory as just another object holding data. The

readlink operator retums the contents of a symbolic link. As with directories, the

flat filestore code considers a symbolic link as just another object holding data.

4.4BSD Virtual F ilesystem Interface



The mmap operator prepares an object to be mapped into the address space of a
process.

Three operators are provided to allow process control over objects.The select
operator allows a process to find out if an object is ready to be read or written.
The ioctl operator passes control requests to a special device. The advlock opera-
tor allows a process to acquire or release an advisory lock on an object. None of
these operators operates on the representation of the object in the filestore. They
are simply using the object for naming or directing the desired operation.

There are five operations for management of the objects. The inactive and
reclaim operators are discussed in Section 6. The lock and unlock operators al-
low the vnode clients to provide hints to the code implementing operations on
the underlying objects. Stateless filesystem such as NFS ignore these hints. How-
ever, stateful ûlesystems can use them to avoid doing extra work. For example,
aî open system call requesting that a new file be created requires two steps. First
a lookup call is done to see if the file already exists. Before starting the lookup, a

lock request is done on the directory being searched. While scanning through the
directory checking for the name, the lookup code also identifies a location within
the directory that contains enough space to hold the new name. If the lookup re-
turns successfully (meaning that the name does not already exist), the open code
verifies that the user has permission to create the file. If the user is not eligible
to create the new file, then the abortop operator is called to release any resources
held in reserve. Otherwise the create operation is called. If the filesystem is state-
ful and has been able to lock the directory then it can simply create the name in
the previously identified space since it knows that no other processes will have
had access to the directory. Once the name is created, an unlock request is made
on the directory. If the filesystem is stateless, then it cannot lock the directory, so

the create operator must rescan the directory to find space and to verify that the
name has not shown since the lookup.

3.2. Filestore Management

The vnode operations defrned for doing the datastore filesystem operations are

shown in Figure 5. There are fewer of these operators and they are semantically
simpler than those used for managing the namespace.

There are two operators for allocating and freeing objects. The valloc operator
creates a new object. The identity of the object is a number returned by the opera-
tor. The mapping of this number to a name is the responsibility of the namespace
code. An object is freed by the ufree operator. The object to be freed is identified
only by its number.

Marshall Kirk McKusick10



object creatiorVdeletion

attribute update

object read/write

change in space allocation

valloc, vfree

update

vget, blkatoff, read, write, fsync

truncate

Figure 5. Datastore filesystem operations.

The attributes of an object are changed by the update operator. This layer
does no interpretation of these atffibutes, they are simply fixed-size auxiliary data

stored outside the main data area of the object. They are typically used to store file
attributes such as the owner, group, permissions, etc.

There are five operators for manipulating existing objects. The vget operator

retrieves an existing object from the frlestore. The object is identified by its num-

ber, and must have been previously created by valloc. The read operator copies

data from an object to a user specifled location. The blkatoff operator is similar to
the read operator except that it simply retums a pointer to a kernel memory buffer
with the requested data instead of copying it. This operator is designed to increase

the efficiency of operations where the namespace code is going to interpret the

contents of an object (i.e., directories) instead ofjust returning it to a user process.

The write operator copies data from a user specified location to an object. The

fsync operator requests that all data associated with the object be moved to stable

storage (usually by writing it all to disk).
The final datastore operation is truncate. This operation changes the amount of

space associated with an object. Despite its name, it may be used to both increase

and decrease the size of an object.

4. Pathname Translation

The translation of a pathname requires a series of interactions between the vnode

interface and the underlying filesystems. The pathname translation process pro-

ceeds as follows:

1. The pathname to be translated is copied in from the user process or, for a
remote filesystem request, is extracted from the network buffer.

2. The starting point of the pathname is determined as either the root directory
or the current directory. The vnode for the appropriate directory becomes

the lookup directory used in the next step.

4.48 SD Virtual F ilesy stem Interface 11



3. The vnode layer calls the filesystem specific lookup operation passing it the

remaining components of the pathname and the curent lookup directory.

Typically, the underlying filesystem will search the lookup directory for the

next component of the pathname and retum the resulting vnode (or an error

if the name does not exist).

4.lf an error is returned, the top level returns the error. If the pathname has

been exhausted, the pathname lookup is done and the returned vnode is

the result of the lookup. If the pathname has not been exhausted, and the

retumed vnode is not a directory, then the vnode layer returns the "not a

directory" error. If there are no elrors, the top layer checks to see if the re-

turned directory has another filesystem mounted on top of it. If it does, then

the tookup directory becomes the mounted fllesystem, otherwise the lookup

directory becomes the vnode returned by the lower layer. The lookup then

iterates with step 3.

While it may seem a bit inefficient to call through the vnode interface for

each pathname component, it is usually necessary to do so. The reason is that the

underlying filesystem does not know which directories are being used as mount

points. Since a mount point will redirect the lookup to a new filesystem, it is im-

portant that the current filesystem not proceed past a mounted directory. While

it might be possible for a local filesystem to be knowledgeable about which di-

rectories are mount points, it is nearly impossible for the server of an exported

filesystem to know the mount points being used within that filesystem by all

its clients. Consequentl¡ the conservative approach of traversing only a single

pathname component per lookup call is used. There are a few instances where a

filesystem will know that there are no further mount points in the remaining path,

and will traveße the resf of the pathname. An example is crossing into a portal,

described in Section 7.3.

5. Exported Filesystem Services

The vnode interface provides a set of services that are made available from all the

filesystems supported under the interface. The first of these is the ability to support

the update of generic mount options. These options include:

noexec do not execute any files on the filesystem. This option is often used

when a server exports binaries for a different architecture that cannot

be executed on the server itself. The kernel will even refuse to

12 Marshall Kirk McKusick



execute shell scripts; to run a shell script, its interpreter must be

invoked explicitly.
nosuid do not honor the set-user-id or set-group-id flags for any executables

on the filesystem. This option is useful when mounting a filesystem
of unknown origin.

nodev do not allow any special devices on the filesystem to be opened.

This option is often used when a server exports device directories
for a different architecture. The values of the major/minor numbers

are nonsensical on the server.

Together, these options allow reasonably secure mounting of untrusted or for-
eign filesystems. It is not necessary to unmount and remount the filesystem to
change these flags; they may be changed while a filesystem is mounted. Addition-
ally a filesystem that is mounted read-only can be upgraded to allow writing. Con-

versely, a filesystem that allows writing may be downgraded to read-only provided
no files are open for modiflcation. The filesystem may be forcibly downgraded to

read-only by requesting that any files open for writing have their access revoked.

Another service exported from the vnode interface is the ability to get infor-
mation about a mounted filesystem. The statfs system call returns a buffer that
gives the number of used and free disk blocks and inodes along with the filesys-
tem mount point, and the device, location, or program from which the filesystem

is mounted. The getfsstat system call retums information about all the mounted

filesystems. This interface avoids the need to track the set of mounted filesystems

outside the kemel as is done in many other UNIX variants.

6. F ilesystem Independent S ervices

The vnode interface not only supplies an object oriented interface to the underly-
ing filesystems, but also provides a set of management routines that can be used

by the client filesystems. These facilities are described in this section.
'When 

the last file entry reference to a file is closed, the usage count on the

vnode drops to zero and the vnode interface calls the inactive vnode operation.

The inactive call notifies the underlying filesystem that the file is no longer be-

ing used. The filesystem is permitted to keep the file on its hash chains so that it
can be reactivated quickly (i.e., without doing disk or network ll0) 1f the file is
reopened.

In addition to calling the inactive vnode operation when the reference count
drops to zero,lhe vnode is placed on a system wide free list. Unlike most ven-

dors' implementation of vnodes that have a fixed number of vnodes allocated

4.48 SD Virtual F ilesy stem I nterføce 13



to each filesystem type, the 4.4BSD kernel keeps a single system-wide collec-

tion of vnodes. When an application opens a file that does not currently have an

in-memory vnode, the client filesystem calls the getnewvnodeQ routine to allo-

cate a new one. The getnewvnode) routine removes the least recently used vnode

from the front of the free list, and calls the reclaim operation to notify the filesys-

tem currently using the vnode that it is about to be reused.Tlte reclaim operation

writes back any dirty data associated with the underlying object, removes the un-

derlying object from any lists that it is on (such as hash lists used to look it up),

and frees up pny auxiliary storage that was being used by the object. The vnode is

then returned for use by the new client filesystem.

The benefit of having a single global vnode table is that the kernel memory

dedicated to vnodes is used more efficiently. Consider a system that is willing to

dedicate memory for 1000 vnodes. If the system supports ten filesystem types,

then each filesystem type will get 100 vnodes. If most of the activity moves to

a single filesystem (e.g., during the compilation of a kernel located in a local

filesystem), all the active flles will have to be kept in the 100 vnodes dedicated

to that filesystem while the other 900 vnodes sit idle. In a 4.4BSD system, all

1000 vnodes could be used for the active filesystem, allowing a much bigger set

of files to be cached in memory. If the center of activity moved to another frlesys-

tem (e.g., compiling a progtam on an NFS mounted filesystem), the vnodes would

migrate from the previously active local filesystem over to the NFS filesystem.

Here too, there would be a much larger set of cached files than if only 100 vnodes

were available using a partitioned set of vnodes.

The reclaím operation is really a disassociation of the underlying filesystem

object from the vnode itself. This ability combined with the ability to associate

new objects with the vnode provides functionality with usefulness that goes far

beyond simply allowing vnodes to be moved from one filesystem to another. By

replacing an existing object with an object from the dead frlesystem-a filesystem

in which all operations except close fail-the kernel can provide a revocation

of the object. Internally this revocation of an object is provided by the vgone)

routine.
The revocation service is used for session management to revoke all refer-

ences to the controlling terminal when the session leader exits. This revocation

works as follows. All open descriptors within the session reference the vnode for

the special device representing the session terminal. When vgone) is called on

this vnode, the underlying special device is detached from the vnode and replaced

with the dead filesystem. Any further operations on the vnode will result in errors

since the open descriptors no longer reference the terminal. Eventually, all the pro-

cesses will exit and close their descriptors causing the reference count to drop to

zero. The inactive routine for the dead filesystem, recognizing that it will never be

Marshall Kirk McKusickt4



possible to get a reference to the vnode again, returns the vnode to the front of the
free list for immediate reuse.

The revocation service is also used to allow forcible unmounting of filesys-
tems. If an active vnode is found when attempting to unmount a filesystem, the
kernel simply calls the vgone) routine to disassociate it from the filesystem ob-
ject. Processes with open files or current directories within the filesystem find that
they have simply vanished, as if someone had done a remove operation on them.
It is also possible to downgrade a mounted filesystem from read-write to read-
only. Instead of revoking access on every active file within the filesystem, only
those files with a non-zero number of references for writing are revoked.

Finally, the ability to revoke objects is exported to processes through fhe re-
vofre system call. This system call can be used to ensure controlled access to a de-
vice such as a pseudo-terminal port. First the ownership of the device is changed
to the desired use¡ then the device name is revoked to eliminate any interlopers
that already had it open. once revoked, only the new owner of the device is able
to open it.

6.1. The Name Cache

Name cache management is another service that is provided by the vnode man-
agement routines. The interface provides a facility to add a name and its core-
sponding vnode, lookup a name to get the corresponding vnode, and to delete a
specific name from the cache. In addition to providing a facility for deleting spe-
cific names, the interface also provides an efficient way to invalidate all names
that reference a specific vnode. Directory vnodes can have many names that refer-
ence them, notably the .. entries in all their immediate descendents. The revocation
of all names for a vnode could be done by scanning the entire name table looking
for references to the vnode in question. This approach would be slow given that
the name table may store thousands of names. Instead, each vnode is given a cø-
pability-a32-bit number guaranteed to be unique. when all the numbers have
been exhausted, all outstanding capabilities are purged, and numbering restarts
from scratch. Purging is possible, as all capabilities are easily found in kernel
memory and only needs to be done if the machine remains running for nearly a
year. when an entry is made in the name table, the current value of the vnode's
capability is copied to the associated name entry. A vnode's capability is invali-
dated each time it is reused by getnewvnode) or when specifically requested by
a client (e.g., when a frle is being renamed) by assigning a new capability to the
vnode. when a name is found during a cached lookup, the capability assigned to
the name is compared with that of the vnode. If they match, the lookup is success-
ful; if they do not match, the cache entry is freed and failure is returned.

4.4BSD Virtual Filesystem Interføce 15



The cache management routines also allow for negative cacheing. If a name

is looked up in a directory and is not found, that name can be entered in the cache

along with a null pointer for its corresponding vnode. If the name is later looked

up, it will be found in the name table, and thus the kernel can avoid scanning the

entire directory to determine that the name is not there. If a directory is modified,

then potentially one or more of the negative entries may be wrong. So when the

directory is modified, all the negative names for that directory must be invalidated

by assigning the directory vnode a new capability. Negative cacheing provides

a significant improvement because of path searching in command shells. When

executing a command, ffiffiy shells will look at each path in tum looking for the

executable. Commonly run executables will be searched for repeatedly in directo-

ries in which they do not exist. Negative cacheing speeds these searches.

An obscure but tricky issue has to do with detecting and properly handling

special device aliases. Special devices and fifos are hybrid objects. Their naming

and attributes (such as owner, time stamps, and permissions) are maintained by

the fllesystem in which they reside. However, their operations (such as read and

write) are maintained by the kernel on which they are being used. Since a special

device is identified solely by its major and minor number, it is possible for two or

more instances of the same device to appeil within the filesystem namespace, pos-

sibly in different filesystems. Each of these different names has its own vnode and

underlying object, yet all these vnodes must be treated as one from the perspec-

tive of identifying blocks in the buffer cache and in other places where the vnode

and logical block number are used as a key. To ensure that the set ofvnodes are

treated as a single vnode, the vnode layer provides a routine checkalias) that is

called each time a new special device vnode comes into existence. This routine

looks for other instances of the device, and if found links them together so that

they can be treated as one.

7. Stackable Filesystems

The early vnode interface was simply an object-oriented interface to an underlying

filesystem. As the demand grew for new filesystem features, it became desirable

to find ways of providing them without having to modify the existing and stable

filesystem code. One approach is to provide a mechanism for stacking several

filesystems on top of each other [Rosenthal 1990]. The stacking ideas were refined

and implemented in the 4.4BSD system [Heidemann and Popek 1994]. The bot-

tom of a vnode stack tends to be a disk-based filesystem, while the layers used

above it are typically things that transform their arguments and pass them on to a

lower layer.

16 Marshall Kirk McKusick



In all UNIX systems, the mount command causes a disk-based filesystem
to take a special device as a source and map it into a mount point in the ex-
isting filesystem. When a fllesystem is mounted on a directory the previous

contents of the directory are hidden; only the contents of the root of the newly
mounted filesystem are visible. To most users, the effect of the series of mount
commands done at system startup is the creation of a single seamless filesystem
tree.

Stacking also uses the mount command to create new layers. Ttre mount com-
mand pushes a new layer onto a vnode stack; an unmount command removes a

layer. Like the mounting of a filesystem, a vnode stack is visible to all processes

running on the system. The mount command identifies the underlying layer in the

stack, creates the new layer, and attaches it into the filesystem namespace. The
new layer can be attached to the same place as the old layer (covering it up), or
to a different place in the tree (allowing both layers to be visible). An example is
shown in the next section.

If layers are attached to different places in the namespace, then the same file
will be visible in multiple places. Access to the file under the name of the new
layer's namespace will go to the new layer, while access under the old layer's
namespace will go only to the old layer.

When a file access (like open, read, stat, or close) occurs to a vnode in the

stack, that vnode has several options:

. Do the requested operations and return a result.

. Pass the operation without change to the next lower vnode on the stack.

When the operation returns from the lower vnode, it may further interpret
the result, or simply return the result it received.

. Modify the operands provided with the request, then pass it to the next
lower vnode. When the operation retums from the lower vnode, it may
further interpret the result, or simply return the result it received.

If an operation is passed to the bottom of the stack without any layer taking action
on it, then the interface will return the error "operation not supported."

Vnode interfaces released before 4.4BSD implemented vnode operations as

indirect function calls. The requirements that intermediate stack layers bypass

operations to lower layers and that new operations can be added into the sys-

tem at boot time means that this approach no longer works. Filesystems must
be able to bypass operations that may not have been defined at the time that the
filesystem was implemented. In addition to passing through the function, it must
also pass through the parameters of the function which are of unknown type and

number.

4.48 SD Virtual F ilesystem Interfac e I7



To resolve these two problems in a clean and portable way, the arguments to

a vnode operation and the operation name Íìre placed into an argument structure.

This argument structure is then passed as a single parameter to the vnode opera-

tion. Thus, all calls on a vnode operation will always have exactly one parameter

which is the pointer to its argument structure. If the vnode operation is one that

is supported by the filesystem, then it will know what the arguments are and how

to interpret them. If it is an unknown vnode operation, then the generic bypass

routine can call the same operation in the next lower layer passing it the same ar-

gument structure that it received. In addition, the first argument of every operation

is a pointer to the vnode operation description. This description provides a bypass

routine information about the operation, including its name and the location of
its parameters. An example access check call and its implementation for the UFS

filesystem are shown in Figure 6. Note that the vop-access-args structure is nor-

mally declared in a header file, but is declared at the function site to simplify the

example.

7.1. Simple Fílesystem Layers

The simplest filesystem layer is nullfs.It does no transformations on its arguments,

simply passing through all requests that it receives and returning all results that it
gets back. While it provides no useful functionality if it is simply stacked on top

of an existing vnode, it can be used to provide a loopback filesystem by mounting

its source vnode at some other location in the filesystem tree than its source. The

code for nullfs is also an excellent starting point for designers that want to build
their own filesystem layers. Examples that could be built include a compression

layer or an encryption layer.

A sample vnode stack is shown in Figure 7. It shows a local filesystem on the

bottom of the stack that is being exported from /local via an NFS layer. Clients

within the administrative domain of the server can directly import the /local
fllesystem since they are all presumed to use a common mapping of user-ids to

user names.

The umapfs filesystem works much like the nullfs filesystem in that it provides

a view of the file tree rooted at the /local fllesystem on the /export mount point.

In addition to providing a copy of the /locat filesystem at the /export mount

point, it transforms the credentials of each system call made to files within the

/export filesystem. The transformation is done using a mapping that was provided

as part of the mount system call that created the umapfs layen
The /export filesystem can be exported to clients from an outside adminis-

trative domain that uses different user-ids and group-ids. When an NFS request

comes in for the /export filesystem, the umapfs layer modifies the credential from

Marshall Kirk McKusick18



/*
* Check for read pernission on file t trrp".
*/

if (error = V0P-ACCESS(vp, VREAD, cred, p))
return (error);

/*
* Check access pernission for a file.
*/

int
ufs-access (ap)

struct vop-access-args {
struct vnodeop-desc *a-desc t /* operation description *,/
struct vnode *a-vp; /* t¡].e to be checked */
int a-node t /* access node sought *,/
struct ucred *a-cred; ,/,r user askÍng for pernission */
struct proc *a-p; /* associated process, it any ,*/

Ì *ap;
{

if (pernission granted)
return (1);

return (0);

Ì

Figure 6. Call to and function header for "access" vnode

operation.

the foreign client by mapping the ids used on the foreign client to the correspond-

ing ids used on the local system. The requested operation with the modified cre-

dential is passed down to the lower layer corresponding to the /local filesystem,

where it is processed identically to a local request. When the result is returned to
the mapping layer, any returned credentials are inversely mapped to convert them

from the local ids to the outside ids, and this result is sent back as the NFS response.

There are three benefits to this approach:

1. There is no computational cost of mapping imposed on the local clients.

2. There are no changes required to the local filesystem code or the NFS code

to support mapping.

4.4BSD Virtual Filesystem Interface L9



Figure 7. Stackable Vnodes.

3. Each outside domain can have its own mapping. Domains with simple map-

pings consume small amounts of memory and run quickly; domains with

large and complex mappings can be supported without impacting the per-

formance of the simpler environments.

Vnode stacking is an effective approach to add filing extensions such as the

umapfs service.

7.2. The Union Mount FilesYstem

The union filesystem is another example of a middle filesystem layer. Like the

nutlfs it does not store data, it just provides a name space transformation. It is
loosely modelled on the work on the 3-D filesystem [Korn and Krell 1989], the

work on the Translucent tlesystem [Hendricks 1990], and the work on the Au-

tomounter [Pendry and Williams 1994]. The union filesystem takes an existing

filesystem and transparently overlays it on another filesystem. Unlike most other

filesystems, a union mount does not cover up the directory on which it is mounted.

Instead, it shows the logical merger of both directories and allows both directory

trees to be simultaneously accessible.

A small example of a union mount stack is shown in Figure 8. Here, the bot-

tom layer ofthe stack is the src frlesystem that includes the source for the shell

program. Being a simple program, it contains only one source and one header file.

The upper layer that has been union mounted on top of src initially contains just

the src directory. When the user changes directory into shell, a directory of the

same name is created in the top layer. Directories in the top layer that correspond

to directories in the lower layer are only created as they are encountered while

traversing around the top layer. If the user were to run a recursive traversal of the

tree rooted at the top of the union mount location, the result would be a complete

Marshall Kirk McKusick20



/usr/src /usr/src

appears

as

Figure 8. A union mounted filesystem.

tree of directories matching the underlying fllesystem. In our example, the user

now types make in the shell directory. The sh executable is created in the upper

layer of the union stack. To the user, a directory listing shows the sources and

executable all apparently together as shown on the right of Figure 8.

All filesystem layers except the top one are treated as if they were read-only.

If a file residing in a lower layer is opened for reading, a descriptor is returned for
that file. If a file residing in a lower layer is opened for writing, the kernel first
copies the file to the top layer, then retums a descriptor referencing the copy of
the file. The result is that there are two copies of the file: the original unmodified
copy in the lower layer, and the modified copy of the frle in the upper layer. When

the user does a directory listing, any duplicate names in the lower layer are sup-

pressed. When a file is opened, a descriptor for the file in the uppermost layer in
which the name appears is retumed. Thus, once a file has been copied to the top

layer, instances of the file in lower layers become inaccessible.

The tricky part of the union filesystem is handling the removal of files that

reside in a lower layer. Since the lower layers may not be modified, the only way

to remove a file is to hide it by creating awhiteoul directory entry in the top layer.

A whiteout is an entry in a directory that has no corresponding file; it is distin-
guished by having an inode number of one. If a whiteout is found while searching

for a name, the lookup is stopped and the "no such file or directory" error is re-

turned. Thus, the file with the same name in a lower layer appears to have been

removed. If a file is removed from the top laye¡ it is only necessary to create a

whiteout entry for it if there is a file with the same name in the lower level that

would reappear.

When a process creates a file with the same name as a whiteout entry, the

whiteout entry is replaced with a regular name that references the new ûle. Since

the new file is being created in the top layer, it will mask out any files with the

same name in a lower layer. V/hen doing a directory listing, whiteout entries and

the files that they mask are usually not shown. However, there is an option that

causes them to appear.

One feature that has long been missing in UNIX systems is the ability to re-

cover files after they have been deleted. For the union filesystem, file recovery
can be trivially implemented simply by removing the whiteout entry to expose

4.48 SD Virtual F ilesystem Interface 2l



the underlying file. The LFS filesystem also has the ability to recover deleted files

since it never overwrites previously written data. Deleted versions of files are not
reclaimed until the filesystem becomes nearly full and the LFS garbage collector

runs. Files can be recovered (for filesystems that provide file recovery) using a

special option to the remove command or by using the undelete system call.

When removing a directory whose name appears in a lower layer, a whiteout

entry is created just as it would be for a file. However, if the user later attempts

to create a directory with the same name as the previously deleted directory, the

union filesystem must treat it specially to avoid having the previous contents

from the lower layer directory reappear. When creating a directory that replaces

a whiteout entry, the union filesystem sets a flag in the directory metadata to show

that this directory should be feated specially. When a directory scan is done, the

kernel returns information about only the top level directory; it suppresses the list
of files from the directories of the same name in the lower layers.

The union filesystem can be used for mariy purposes:

. Allowing several different architectures to build from a common source

base. The source pool is NFS mounted onto each of several machines.

On each host machine a local filesystem is union mounted on top of the

imported source tree. As the build proceeds, the binaries appear in the lo-
cal filesystem that is layered above the source tree. This not only avoids

contaminating the source pool with different binaries, but also speeds the

compilation since most of the filesystem traffic is being done on the local

filesystem.

. Allows compilation of sources on read-only media such as CD-ROMs. A
local f,lesystem is union mounted above the CD-ROM sources. It is then

possible to change into directories on the CD-ROM and have the appear-

ance of being able to edit and compile in that directory.

. Creation of a private source directory. The user creates a source directory
in their own work area, then union mounts the system sources undemeath

it. This feature is possible because the restrictions on the mount command

have been relaxed. Any user can do a mount if they own the directory on

which the mount is being done and they have appropriate access permis-

sions on the device or directory being mounted (read permission is required

for a read-only mount, read-write permission is required for a read-write

mount). Only the user that did the mount or the superuser can unmount a

filesystem.

Additional information about the union filesystem is available in the V/inter

1995 Usenix Proceedings [Pendry and McKusick 1995].

Marshall Kirk McKusick22



7.3. Other Filesystems

There are several other filesystems included as part of 4.4BSD. The portal filesys-
tem mounts a process onto a directory in the file tree. When using a pathname that
traverses the location of the portal, the remainder of the path is passed to the pro-
cess mounted at that point. The process interprets the path in whatever way it sees

fit, then returns a descriptor to the calling process. This descrþtor may be for a
socket connected to the portal process. If so, further operations on the descriptor
will be passed to the portal process for it to interpret. Altematively, the descriptor
may be for a file elsewhere in the filesystem.

Consider a portal process mounted on /dialout used to manage a bank of
dialout modems. When a process wanted to connect to an outside number,
it would open /dialout/1510555121219600 to specify that it wanred ro dial
1-510-555-1212 at 9600 baud. The portal process would get the final two path-
name components. Using the last component it would determine that it should find
an unused 9600 baud modem. It would use the other component as the number to
which to place the call. It would then write an accounting record for future billing,
and retum the descriptor for the modem to the process.

There are several filesystems that are designed to provide a convenient inter-
face to kernel information. The procfs filesystem is normally mounted at f proc
and provides a view of the running processes in the system. Its primary use is for
debugging, but it also provides a convenient interface for collecting information
about the processes in the system. A directory listing of /proc produces a numeric
list of all the processes in the system. Each process entry is itself a directory that
contains:

ctl a file to control the process allowing it to be stopped,

continued, and signalled.
file the executable for the process.

mem the virtual memory of the process.

regs the registers for the process.

status a text file containing information about the process.

The fdesc filesystem is normally mounted on ldev lfd, and provides a list of all
the active file descrþtors for the currently running process. An example where this
is useful is specifying to an application that it should read input from its standard
input. Here you can use the pathname lùev lfdlù instead of having to come up
with a special convention like using the name - to tell the application to read from
its standard input.

4.4BSD Virtual F ilesystem I nterface 23



Ttre kernfs filesystem is normally mounted on /kern and contains files that

have various information about the system. It includes things like the hostname,

time of da¡ version of the system, etc.

Finally there is the cd9660 filesystem. It allows 150-9660 compliant filesys-

tems, with or without Rock Ridge extensions, to be mounted. The 150-9660

filesystem format is most commonly used on CD-ROMs.

24 Marshall Kirk McKusick



References

l. J. S. Heidemann, G. J. Popek, File-System Development with Stackable Layers,
ACM Transactions on Computer Systems l2(l)(February 1994), 58-89.

2. D. Hendricks, A Filesystem for Soft'ware Development, USENIX Association Con-
ference Proceedings, June 1990, 333-340.

3. S. R. Kleiman, Vnodes: An Architecture for Multiple File System Tlpes in Sun
UNIX, USENIX Association Conference Proceedings, June 1986, 238-247.

4. D. Kom, E. Krell, The 3-D File System, USENIX Association Conference pro-
ceedings, June 1989, 147-156.

5. S. Leffler, M. McKusick, M. Karels, J. Quarterman, in The Design and Imple-
mentation of the 4.3BSD UNIX Operating System, Addison-lVesley Publishing
Company, Reading, MA, January 1989, 205, ISBN 0-201-06196- 1.

6. J. Pendry, M. McKusick, Union mounts in 4.4BSD-Lite, USENIX Association
C onference Proceedings, January 1995.

7. J. Pendry, N. Williams, AMD - The 4.4BSD Automounter Reference Manual, in
4.4BSD System Manager's Manual, O'Reilly & Associates, Inc., Sebastopol, CA,
1994, l3:l-57.

8. D. Rosenthal, Evolving the Vnode Interface, USENIX Association Conference
Proceedings, June 1990, 107-118.

9. M. Seltzer, K. Bostic, M. K. McKusick, C. Staelin, An Implementation of a Log-
Structured File System for UNIX, USENIX Association Conference Proceedings,
January 1993,307-326.

4.4BSD Virtual Filesystem Interface 25


