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ABSTRACT: Mernory-based messaging, passing mes-
sages between programs through a shared memory
segment, is a recognized technique for efficient com-
munication that takes direct advantage of memory
system performance. However, the conventional oper-
ating system and hardware support for this approach
is inefflcient, especially in large-scale multiprocessor
systems.

This paper describes interface, software and hard-
ware optimizations for memory-based messaging that
efficiently exploit the basic mechanisms of the memory
system to provide superior communication perfor-
mance. We describe the overall model of optimized
memory-based messaging, its implementation in an
operating system kernel and hardware support for
this approach in a scalable multiprocessor architec-
ture. The optimizations include address-valued signals,
message-oriented memory consistency and automatic
signaling on write. Performance evaluations show these
extensions provide a three-to-five-fold improvement
in communication performance over a comparable
software-only implementation.
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I. Introduction

The performance of operating system communication facilities significantly in-

fluences the performance and modularity of the system and its applications. In
essence, the slower the communication, the slower the applications that rely sig-

nifrcantly on coÍtmunications. Moreover, slow communication increases the cost

of modularity, leading to less modular systems and applications. Despite increas-

ing processor and memory system performance, several trends suggest continuing

importance to interprocess communication performance.

First, parallel applications require high-performance coîìmunication to exploit

relatively fine grain tasking to achieve a high degree of parallelism. For example,

many parallel programs are structured in a work queue model in which threads

allocate work from a shared work queue. It is more efficient in terms of memory

traffic for the processors to communicate by messages with a processor running an

allocator than to trap the code and data associated with the allocator into its cache

and then execute the allocator itself, incurring the delay and memory overload of
shared memory consistency. (The requesting processor is unlikely to have been

the last to execute this allocator.) Fast messaging minimizes the overhead for this

work allocation.
Second, many new applications require high inpuloutput performance, placing

demands on communication system facilities. For example, moving video from

a network interface to a multimedia application and then onto a display requires

more coÍtmunication bandwidth than conventional approaches have been designed

to provide. With gigabit networks, direct video input, disk striping [Patterson et

al. 19881, cylinder caching, and solid-state disks improving the VO device perfor-

mance, the internal communication system can become a significant overhead.

Third, in a system structured as a micro-kernel with protected user-level

servers, an efflcient communication system allows access to system services

and implementation of those system services without a significant performance

penalty. For example, an application file open operation may access a directory

service, a file server, and a caching service, thus incurring the cost of several

protected inter-address space communications rather than a single kernel trap as

with a conventional monolithic kernel. The modular and protected structure of the
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micro-kernel approach seems particularly benefrcial for large-scale systems, where
it is not acceptable to have a single error in "the operating system" bring down the
whole machine.

Most of the work on IPC and RPC systems has focused on the copy model
of communication. The data to be communicated is passed to a message-passing

facility that logically copies the data to the recipient(s). The copy model provides
safe and simple semantics. However, the cost of data copying is significant in
many systems [Fitzgerald 1986; Hansen 1,973; Schroeder & Burrows 1989], espe-

cially for larger data units and with caching architectures. Copying produces poor
cache behavior [Torrellas et al. 1990] with a performance penalty that increases

with the increasing ratio of processor speed to average memory access time. This
cost can be reduced, to some degree, by providing virtual memory system support
to remap data, rather than copy it, and by providing a copy-on-write mechanism to
preserve copy semantics (e.g., Accent and Mach [Accetta et al. 1986]). However,
the cost of remapping data in multiprocessor systems, as an alternative to copy-
ing, is greater than in uniprocessors [Black et al. 1989; Rosenburg 1989] because
of the need to update or invalidate the TLB or page table in each processor. This
optimization also forces communication into page-sized units.

As an alternative to this copy model, memory-based messaging uses a shared
memory communication area between processes, as illustrated in Figure 1. A
shared memory segment is created to act as a communication channel, the source
and destination processes bind this segment into their respective address spaces,

messages are written to this segment, and messages are read from this segment
after some form of notiûcation at the destination(s). Because the sending and
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receiving processes have direct access to the shared memory segment, the number

of copies is reduced typically by a factor of two over the copy model primitives.

For example, in an RPC system, the caller can marshal its call parameters directly
into the shared memory segment and the callee can marshal these parameters di-
rectly out of the shared memory segment, eliminating the extra copies both into
and out of a message buffer that arises with the copy model.

This approach has been used by a variety of commercial applications using

the shared memory mapping facilities in Unix System V [Bach 1986].1 It has also

been used in some research systems, including the Berkeley DASH project [Tzou
& Anderson 19911 and URPC [Bershad 1990].

Nevertheless, the performance of memory-based messaging is an is-

sue for several reasons.First, notifying receivers of message arrival can be

expensive because of the need to lock, queue and intemrpt at the receiv-

ing processor(s). Second, the cost of accessing data in a shared memory be-

tween processors increases with the size of the memory system particularly

because of cost of maintaining coherency in larger-scale shared memory

systems. These overheads are significant even in small-scale parallel sys-

tems because of the increased ratio of processor speed to memory access

time.
This paper describes optimized memory-based messaging which extends the

basic memory-based messaging model with three key optimizations. We present

these optimizations, their implementation in a combination of software and hard-

ware in an operating system kernel and multiprocessor hardware system we have

developed, and measurements of the performance of this system. Vy'e also include

the results of analysis and simulation to predict the beneflts of this approach for
future machines, which are expected to have larger numbers of faster processors,

larger memory systems and faster interconnection mechanisms.

The next section presents the memory-based messaging optimizations and

the relevant details of their software and hardware implementationin an ex-

tended version of the V distributed System [Cheriton 1988.7] and the ParaDiGM

multiprocessor [Cheriton 1991]. Section 3 describes our RPC implementa-

tion. Section 4 presents our measurements of this configuration. Section 5 de-

scribes the results of our analysis and simulation to determine the benefits of
optimized memory-based messaging on some possible future computer sys-

tems. Section 6 describes previous research we see as relevant to this work. We

close with a sufnmary of the work, our conclusions, and some indication of fu-

ture work.

1. Unix is a tradema¡k of Unix System Laboratories.
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2. Optimized Memory-Based M e ssaging

Optimized memory-based messaging incorporates with three key optimizations
over the basic mechanism shown in Figure I namely:

. Address-valued signals

. Message-oriented memory consistency

. Automatic signal-on-write

Address-valued signals provide efficient, low-latency notification of message
reception at the receiver(s). Message-oriented memory consistency reduces the
transmission cost of message data through the memory system from sender to
receiver(s). Automatic signal-on-write minimizes the sender cost of generating
the signal. The following subsections describe these reflnements and their imple-
mentation in detail. We show that these optimizations provide a simple and fast
implementation, especially for scalable multiprocessor architectures.

2. I. Address-Valued Signaling

An address-valued signal is a signal that transmits a single virtual address from
the signaling thread to one or more receiving threads, delivering the signal to a
signal handler function with a single parameter, the address value. This facility
contrasts to Unix signals and typical hardware intemrpts, which do not allow a

value to be transmitted. It also contrasts with conventional messaging that sup-
ports large, variable-sized data transfer with attendant complexity and performance
costs.

The transmitted address value is translated before delivery from the virtual
address provided by the signaling thread to the corresponding virtual address in
the address space of the receiving thread, as illustrated in Figure 2. As shown in
this figure, a signal specifying a virtual address in the shared memory region2
is mapped to the corresponding offset in the shared segment. The signal is then
delivered to each receiver with the virtual address mapping to this offset in the
shared segment. More simply defined, the virtual address delivered to a receiver
points to the same location in the shared segment (as mapped into the receiver's
address space) as the virtual address specified by the signaling thread does in its
address space.

2. A, region refers to a range of a virtual address space.
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Figure 2. Address-valued Signaling for Notification.

In the current and expected use of memory-based messaging, a thread sending

a message writes the message data into a free area of the message region asso-

ciated with the destination thread(s) and then signals using the virtual address of
this free area. The signal handler in each recipient is called with the (translated)

address of this message, and the signal handler uses this address to access the new

message and deliver it to the application. Protocols and conventions required be-

tween processes to set up shared segments, manage the allocation and release of
message areas in the shared segment and define the actual message representation

are discussed further in Section 3.

2. 1. l. Kernel Interface

The following kernel calls support address-valued signals in our system.

. SignalHandler(char *vaddr, int vaddrSize, void (*sigFunction)
(charr,vaddr) ) ; Specify the signal-handling procedure sigFunction on

the address range specified by vaddr and vaddrSize.

. Signal(char *vaddr); Generate an address-valued signal for the speci-

fied address.

. Time Sigl'fait (time t) ; Delay a thread until a signal arrives or until the

requested time interval ú has passed. The amount of time remaining from
the requested time is returned.

The signal procedure specified for a given region is executed by a designated

thread associated with this enabled region. This is normally the thread that set

the signal handler by calling SignalHandler. As in other systems such as Unix

that employ software signal mechanisms, this thread can either wait explicitly
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for signals using Sigllait or simply receive signals as asynchronous procedure
calls during its execution. The timeout parameter for SigtJait efficiently supports
the common case of a thread waiting for a signal or a timeout period, whichever
comes first.

With appropriate hardware support, described in Section 2.I.2, a signal can
be generated directly by writing a memory location, normally as part of writing
a message into the message segment. The Signat call is used in the absence of
this hardware support. It is also used when a signal is to be sent without writing
a message, given that the signal mechanism can be used as a general notification
mechanism for shared data structures.

A thread can have signal handlers enabled on several different regions simul-
taneously. Multiple threads in the same address space can have separate signal
handlers on the same region, with signals being delivered concurrently to their
respective threads. Signals to the same thread are delivered in FIFO order, rather
than stacking the signals to provide a LIFO ordering. To date, FIFO delivery and
non-blocking synchronization techniques in our implementation have obviated
the need for enabling and disabling signals during signal handling as is common
practice in Unix.

Address-valued signals have no associated priority but are executed with the
priority of the thread that executes the signal handler. Threads with different prior-
ities can enable signal handlers on regions of memory so that each memory region
represents a different signal priority. Supporting separate signal priorities would
require a set of buffers, one for each priority, and a mechanism to communicate
the signal's priority to the memory system hardware. Given the complex logic
and the redundancy with thread priority, the cost of providing prioritized signaling
appears unjustified.

2.1.2. Implementation

Address-valued signaling is implemented in software as an extension of conven-
tional modern virtual memory facilities supporting mapped files and shared seg-
ments. In particular, a memory region descriptor records the signal function and
thread for the signal handler on that region, if any. The mapping of the signal
physical address to virtual address(es) and thread(s) uses the standard inverse page
mapping data structures required in the virtual memory system. Our implementa-
tion also includes as an optimizaÍion a fast hash table that maps physical addresses
to virtual addresses and signal handlers.

The kernel Signal operation first translates the virtual address to a physical
address. In our implementation, it uses the fast virtual to physical mapping func-
tion supporting TLB fault handling required by the virtual memory mechanism.
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It then attempts to map the physical address to a virtual address and signal han-

dler using the fast hash table. If that fails, the physical address is then mapped to

a page descriptor which identifies the segment, which then maps to zeto or more

regions each with a signal function and thread for the signaler handler, if non-null.

(If there is a single signal thread for this address, it loads this mapping to the hash

table if it is not already present.)

Delivery of the signal is similar to Unix signal delivery when the thread is

not executing a signal handler. The kernel saves the thread context, creates a stack

frame to call the signal handler function associated with the signaled memory re-

gion, and passes the translated signal address as the parameter. On return from

the signal handler, the thread resumes without reentering the kernel. Trapping to

the kernel after the signal handler f,nishes is avoided by storing the thread context

in user-accessible memory and setting up the thread stack to retum to a run-time

library function that restores the thread context. This optimizatton is compati-

ble with all the processors supported by our system, including the MIPS R3000

and the Motorola 68040. If a thread is already executing a signal handler at the

time of signal deliver¡ the signal is queued in a signal FIFO page associated with

the thread or dropped if this area is full. The signal delivery code is similar to

that used to implement our emulator signals [Cheriton et al. 1990] and exception-

handling.
In a multiprocessor system, if some of the threads to be signaled are assigned

to other processors, the signaling processor must intemrpt these other processors

and pass the physical address to each of these processors. A typical implementa-

tion entails a message queue structure per processor with single-word messages,

synchronized for multiprocessor access, plus a hardware interprocessor intemrpt

facility. This implementation is feasible in small-scale systems but has a signifi-

cant cost in large-scale systems because of memory contention. A simple hardware

extension of the conventional intemrpt system can support address-valued signals

efficiently, as described next.

2. 1.3. Hardware SuPPort

In our extended intemrpt system, each processor has a FIFO that stores mem-

ory addresses representing signals delivered to this processor but not yet pro-

cessed. The signal address is transmitted over each interprocessor bus as a spe-

cial signal bus transaction including the physical signal address and control

lines specifying the affected processors. When a processor receives a signal bus

transaction and is one of the processors selected by the control lines, its bus

interface stores the address in the processor's FIFO buffer and intemrpts the

processor. In our current implementation, each FIFO buffer has 128 entries so

signal loss is very unlikely, but not impossible. When a processor receives the
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signal intemrpt, it takes the next physical address from its FIFO buffer, trans-
lates it to each virtual address that maps to this physical address, and delivers
the signal to each thread associated with this signal region that is assigned to this
pfocessor.

In our prototype implementation in the ParaDiGM system, the memory sys-
tem determines the signaled processors from a (cache) directory indexed by the
physical address as part of the automatic signal-on-write facility, as described in
Section 2.3. However, a simple hardware interface would be a control register that
the software could write with physical address and processor bitset that would
generate the signal bus transaction.

Our implementation requires no modifications to the processor chip if
self. However, in an extended implementation, the time to deliver a signal to a
thread could be further reduced by using a reverse TLB integrated into a pro-
cessor specifically designed to support memory-based messaging. The reverse

TLB (RTLB) would provide translation from a physical address to a signal pro-
gram counter (PC), virtual address, and priority. (The priority could be stored
in the low-order bits of the virtual address to avoid having a separate field
in the RTLB.) If a physical address did not match any of the RTLB entries,
the RTLB would provide a fixed value for the signal PC and pass through the
physical address as the virtual address value. On a signal intemrpt, the proces-
sor would read the intemrpt PC, virtual address, and priority from a reverse
TLB. In the intemrpt mode specified by the priority, it would then branch to
the specified intemrpt PC with the virtual address in a register. (One level of
priority would designate user mode.) The operating system software would
load the RTLB on each thread context switch when the new thread had sig-
nals defined.3 Based on our experience to date, we believe that a 4-8 entry
RTLB would perform well. Thus, with this extension, a signal handler would
be called in user space with no operating system intervention, at least in the ex-
pected case. Therefore, the time from the point a signal is generated to the ex-
ecution of the user-deflned signal handler code would be less than 7 processor
cycles.

The extended design appears feasible even for RISC processor design for
several reasons. First, current RISC processors already perform similar actions
on intemrpts, exceptions, and resets: they read an address to branch to, set the
intemrpt priorit¡ and set a cause register (as in the R4000 architecture). This
extension simply requires these values to come from the RTLB, rather than

3. This mechanism would not handle the case of a signal that was enabled on more than one thread executing
on the same processor. For this case, the standard kemel signal handler would be invoked, using the software
mechanism described earlier.
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some fixed intemrpt vector. Second, the RTLB is small and could use a sim-

ilar design to those used with standard on-chip TLBs. Thus, putting it on the

processor chip is only a matter of chip real estate. If processor chip real estate

is tight, the RTLB could be integrated with the FIFO mechanism at the cost of
having to fransfer more from the FIFO to the processor on an intemrpt. Finally,

this mechanism could replace the conventional interrupt and exception mecha-

nism, especially if the RTLB is integrated in the processor chip. For example,

with a R4000-like architecture revised along these lines, the cause register would

be replaced by a "signal address register" and, on exception, the exception type

could be encoded in well-known values placed in this register by the exception

mechanism. This extension simply generalizes ad hoc techniques in the inter-

rupt mechanisms of RISC processors and does not add significant additional

control logic or any new registers. It appears like an attractive direction for pro-

cessor chip design if the memory-based messaging approach of this paper become

popular.

2.1.4. Advantages

Address-valued signaling provides a simple efficient notification mechanism for
memory-based messaging. The translated signal address provides a direct, imme-

diate, and asynchronous message speciflcation to the recipient(s), allowing each

recipient to immediately locate the message within the segment. In particular, the

same signal handler procedure can be used for several different segments and still
immediately locate the signaled message using the supplied virtual address. The

application can also have different signal handlers bound to different memory re-

gions. The particular signal handler is selected automatically based on the region

of memory in which the signal occurs.

Address-valued signals can be used for other purposes than memory-based

messaging. For example, a thread can notify other threads of a change to some

object in a shared memory segment that the threads are all accessing. This change

notification is a common facility in various object-oriented programming frame-

works and can benefit from the operating system support in a multiple address

space or multi-processor implementation.

In contrast to our scheme, conventional Unix signals provide no ability to pass

such a parameter and thus require the recipient to either search or query for the

message or be tied to some fixed convention on the location of the next message

with the signal handler specially coded for each segment to known that location.

For example, a familiar approach in Unix is to map all asynchronous VO to the

same signal (SIGI0) and then use a sefect operation, with the resulting extra
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system call and overhead, in the signal handler to determine the flle or device on

which to act.4

Address-valued signaling is also significantly more efflcient than the Unix
System V nsgsnd and msgrcv system calls and conventional message primitives
of the various message-based operating systems, as shown in Section 4.

Address-valued signaling allows an efficient, scalable hardware implemen-
tation providing minimal processor and memory system overhead in large-scale

multiprocessor systems. The FIFO buffer eliminates the need for software de-

livery of the address values and for synchronized software queues to hold those

addresses. Shared memory message queues and their associated locks cause signif-
icant memory system overhead in larger scale systems because of the potentially
high memory contention on the queue data structures. In particular, two or more

processors in widely separated portions of the memory system contending for a
shared queue can produce thrashing of the cache line(s) holding the queue lock
and data.

Finally, implementation of address-valued signaling is relatively simple, both
in hardware and software. The implementation takes advantage of the conven-

tional virtual memory mapping hardware and software data structures to de-

liver signals to the appropriate signal handler within the desired thread. Because

address-valued signal delivery is integrated with the memory system, there is no

need for a separate mapping, queuing, and protection mechanism, as arises with
conventional message-based operating systems and the Unix System V message

facilities.
The additional hardware to support address-valued signaling is a small per-

centage of the overall hardware cost (less than l%o in our implementation), and

arguably close to zero cost in large configurations. In fact, the most significant
hardware component, a per-processor FIFO buffer to store signal values, is re-
quired for interprocessor and device intemrpts on large-scale systems in any case

because the conventional dedicated bus line from intemrpter to intemrptee is not
feasible. The FIFO buffer stores the intemrpt, allowing the sending processor or
device to send the intemrpt across the interconnection network and not hold a
connection.S Storing a single address, rather than the entire message, costs essen-

tially the same as storing a potentially smaller value such as processor identifier
or device identifier. We note that all device intemrpts in our system are handled

as address-valued signals, unifying and simplifying the hardware and OS software

Address-valued signals can easily subsume Unix signals by designating a unique set of virtual memory ad-
dresses that map to standard Unix signal numbers.

A separate synchronization bus has been used in small-scale multiprocessors, such as the SGI Power Series,
but this approach appears to be even more expensive.

4.

5.
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around this one general mechanism and avoiding the conventional ad hoc tech-
niques used with devices.

2.2. Message-Oriented Memory Consistency

Message-oriented memory consistency is a consistency mode for a memory seg-

ment in which the reader of the segment is only guaranteed to see the last write
to this memory after it has received an address-valued signal corresponding to
that write. If a signal is lost, the receiver is not guaranteed to see the update at all.
Moreover, the message can be overwritten by a subsequent message in the FIFO
buffer before the receiver reads it.

These semantics match those of a network receive buffer. A thread can only
expect a new packet to be available after an intemrpt from the interface, not at the

time it is written. Also, if a packet is not received, or is received in a comrpted
form, or is overwritten, the data is not available at all. (Section 3 describes our
techniques for detecting and recovering from these errors.)

2.2. I. Kernel Interface

Message-oriented memory consistency is specified as a property of a segment at

the time of its creation using the CreateSegment system call in the extended V
kernel.

. Segment xCreateSeg&ent(int attributes, int mode, int flags,
int *error) ; Create a segment that, assuming the node parameter is

set to MESSAGE-C0NSISTENCY, uses message-oriented consistency. On

a machine that provides hardware support for this model, this informa-
tion is stored in the cache directory. The f lags parameter can be set to
CACHE-LINE or PAGE to indicate the unit on which to signal, and thus the

unit of message consistency. If it is set to CACHE-LINE, an address-valued

signal is generated when the sending thread writes the end of a cache line,
otherwise at the end of a page.

The CreateSegnent operation is roughly equivalent to the Unix System V
shnget or the BSD Unix open system calls. These segments are also similar to
BSD Unix mmap'ed open files.

Memory segments with message-oriented memory consistency are intended

to be used unidirectionally as part of memory-based messaging. One thread binds
the segment as writable and others bind it as read-only. Consequently, there is
generally a single writer for a set of addresses within the segment. However, a
shared channel may also have multiple writers, just like a CB radio channel. For
example, clients may use a well-known channel to multicast to locate a server.
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2.2.2. Implementation

The basic software implementation of message-oriented consistency is to tag the

pages in a segment in MESSAGE-C0NSISTENCY mode as non-coherent and use

cache flush and invalidate instructions to flush the message data after writing it
and invalidate cache lines at the point of reception of the signal. For example, the

PowerPC [May et al. 1994] processor provides a page-granularity tag that can in-

dicate whether memory coherency is required or not. It also provides unprivileged

instructions for flushing and invalidating the processor cache on a cache line ba-

sis. Another example of this kind of instruction can be found on the MIPS R4000

processor. The CACHE control instruction [Heinrich 1993] can be executed from

user mode to push a specified cache line from the first-level cache. Unfortunately,

the MC68040 used in our prototype implementation only provides cache control

instructions that operate in privileged mode using physical addresses. This short-

coming limits the performance because message area invalidation requires kernel

involvement.

2.2.3. Memory System Support

Message-oriented consistency support in the memory system allows it to prop-

agate the message data to the lower-levels of the memory system as well as

other peer-level caches without incurring the overhead of conventional memory

coherency protocol. (rWith no coherency attheL?level and lower, a flush of mes-

sage data mightjust force the data into the sending processor's associated second

level cache and yet not make it visible to other portions of the memory system.)

In our ParaDiGM prototype, the memory system architecture uses the hierar-

chical cache structure shown in Figure 3 to implement a scalable shared memory.

Each cache line unit has a cache directory entry containing a 3-bit mode and vari-

ous other tag bits describing its state, as shown in Figure 4.

To efûciently support message-oriented consistency, the mode (M M M) freld

encodes a special message mode in addition to the conventional shared, private

and invalid states of an ownership-based consistency protocol. The tag bits include

a set of P¿ bits, one per processor sharing the cache. These bits are required in the

conventional shared state to indicate the processors with copies of the cache line.

In message mode, the P¿ bits indicate the caches that need to be informed when

this cache line data is updated. The G or "global" bit indicates the next lower

level of the memory hierarchy should be modified when this cache line is modi-

fied. The lower level maintains its own directory and further propagates the signal

to other clusters of processors, as indicated by its tags.

When a segment is specited as in MESSAGE-C0NSISTENCY mode, the software

ensures that each cache line that is loaded with a cache block from a page in this
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segment is set in message mode. In our prototype, the second-level cache miss
handler extracts this information from thirdlevel cache tags which are set from
page frame and segment information maintained by the operating system.

When a processor flushes Ll data back to a cache line in the second level
cache that is in message mode, the cache controller then generates signals to all
caches indicated by the P¿ bits as (potential) recipients. If the G bit is set, the
cache line is written through to the L3 cache which then similarly signals each
L2 cache above it that is marked as a potential receiver by the P¿ bits in the as-

sociated L3 cache tags. Each signaled cache either invalidates the corresponding
cache line or else reloads this cache line if it is present in the signaled cache. Con-
sequently, when a receiving processor invalidates this cache line in its Ll cache
and then reads this cache line after receiving the signal, it is assured of reading the
updated message data.

In our prototype, the message mode did not increase the cost per cache di-
rectory entry because there were extra code values available beyond those used
by the conventional shared memory states. In the worst-case, it would require an
extra bit per cache directory entry, still a small percentage space overhead. The
implementation also requires extra logic in the cache controller to handle message
mode. However, this logic is relatively simple because message mode simply en-
tails actions already performed by the cache controller as part of implementing the
shared memory consistency protocol and does not introduce new types of actions.
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2.2.4. Advantages

Message-oriented memory consistency reduces the number of bus transactions
required to send a message compared to conventional memory consistency. The
processor simply flushes an update down the memory system and allows the up-
date to propagate through the memory system to other caches. In contrast, with
conventional consistency, the sender of a message has to invalidate the corre-
sponding cache line in each receiver processor's cache before writing the message

and a receiver would, on reference to the new message, generate a cache miss that
would have to acquire shared ownership of the cache line as well as the cache data

from the sending cache. The bus transactions for a message transfer from sending
to receiving processor for conventional coherency and for message-oriented con-
sistency are illustrated in Figure 5. The conventional memory coherency protocol
incurs extra bus transactions and exffa roundtrip delays because of the request-
response nature of this protocol whereas message-oriented consistency uses the

'þush" model of communication where data is sent without being requested.

Moreover, message-oriented consistency minimizes the interference between
source and destination processors. The sending processor is not delayed to gain

exclusive ownership ofthe cache line and the receiving processors are not de-

layed by cache line flushes to provide consistent data. In contrast to other relaxed
memory consistency models such as Stanford's DASH release consistency [Ghara-
chorloo et al. 1989], message-oriented consistency reduces the base number of bus

transactions and invalidations required, rather than just reordering them or allow-
ing them to execute asynchronously.

The message-oriented memory consistency semantics also allow a simple net-
work implementation of a shared channel segment between two or more network
nodes. In particular, an update generated at one node can be simply transmitted
as a datagram to the set of nodes that also bind the affected shared segment. As
a separate project, we have built and used a 256 megabit per second ûber optic
network that implements this transfer behavior between multiprocessor nodes. The
best-efforts, but unreliable update semantics of message-oriented consistency ob-
viates the complexity of handling retransmission, timeout, and error reporting at

the memory level. A large-scale multiprocessor configuration can similarly afford
to discard such bus and interconnection network traffic under load or error condi-
tions without violating the consistency semantics. Section 3 describes techniques
for building reliable communication on top of this best-efforts communication
support.

With hardware support for direct cache-to-cache transfer, the source proces-
sor's cache could directly transfer the cache line toward the recipient processors'
caches, thereby providing data transfer and notification in a single bus transaction
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f . invalidate receiver copy
2. acknowledge
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4. flush sender copy
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Figure 5. Reduced Memory Traffic

Memory Consistency.

Message-Oriented Consistency

l. deliver message

for Message-Oriented

when the processors are on the same bus. This mechanism avoids the cache line

transfer that normally follows the bus transaction to deliver the signal (causing

invalidation and rereading of the cache line from the next level of memory or

cache). This direct cache-to-cache delivery would reduce the latency and reduce

the number of bus transactions to deliver the message. However, delivering the

message directly into the first-level cache of a processor has several disadvantages.

First, a message, especially a large one, can cause replacement interference with
other cache lines in the cache, degrading the performance of the processor overall,

especially if it does not handle the message immediately. This delivery method

can also stall the processor by contending with the processor for access to the Ll
cache during message delivery. Finally, direct transfer into the cache complicates

the cache controller logic signiûcantly.

The direct transfer into the L1 cache does not provide much benefit because

the time required to trap in the message from the second-level cache is mini-

mal. However, direct transfer between two networked nodes is used (with our

network interconnection scheme) because of the high cost of a callback to get the

data after receiving a signal. It is a cost-performance trade-off to decide between

invalidation and direct "eaget'' transfer for the intermediate levels of cache inter-

connection.
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As a further advantage of message-oriented consistency, its "push" model of
update allows the signal notification to be piggybacked on the data transfer and

update notification rather than requiring a separate signal bus transaction across

the memory hierarchy, what we call automatic signal-on-write. This facility is
described next.

2.3. Automatic Signal-on-Write

With automatic signal-on-write support, the signal is generated automatically by
the action of the sending thread writing the message data. The sending thread then
does not need to call the kernel Signa1 operation.

2.3.1. Implementation

Automatic signal-on-write is implemented as a relatively minor extension of the

L2 and L3 cache controllers. If a writeback or flush operation is to a cache line in
message mode, the cache controller generates a signal bus transaction on its inter-
processor bus after allowing the write to complete. The signal bus transaction is
straightforward to generate because the physical address is provided as part of the

flush operation and the P¿ bits in the associated cache tags indicate the L1 caches

and processors to signal. If an L2 cache confroller receives an update to a cache

line in message mode or a notification of this update from the L3layer, it similarly
generates a signal bus transaction, propagating the signal to the processors using
this cache.

In our implementation, there is both a signaling and a non-signaling message-

oriented memory mode for cache lines, with only the former causing an intemrpt.
Using this mechanism, the signal-on-write can be programmed to occur only on
the last cache line of a page (or any other multiple of the cache line), rather than

strictly on each cache line.
The signal is always propagated down to the L3 level if necessary because the

L3 entry corresponding to the flushed cache line is necessarily present because of
the inclusion property: any line at Ll has the corresponding line loaded atL2 and
L3.If aL2 cache controller signaled by the L3 controller does not hold the cache

line corresponding to the physical address, the L2 cache controller signals all the

processors. When a processor receives a signal on an address for which it has no
signal threads, it clears its P¿ bit for that cache line so it does not receive further
signals on this line while this cache line is present at the L2level. When none

of the P¿ bits for a cache line are set in a second level cache, the P¿ bit for this
L2 cache is cleared at the L3 level. If only one of the Pi bits are set on a cache

line at the L3 level, the G bit is cleared for that cache line in that oneL2 cache,
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eliminating the notification going to theL2level. Migrating a signal thread from
one processor to another means updating the cache tags to ensure delivery of the

right signals to the new processor running this thread.

This design ensures that signals are always delivered to the per-processor sig-

nal FIFOs yet processors are not loaded with excessive numbers of signals that

they do not want to receive (because they can shut off signals on a particular

address after receiving a first extraneous one). However, processors do receive

extraneous signal intemrpts occasionally.

V/ith this f,nal optimization and transfer of cache data as well as notification
down and back up the memory hierarchy, the update traffrc matches in behavior

and efficiency that of a specialized communication facility except it uses the mem-

ory busses rather than separate communication lines.

2.3.2. Advantages

Automatic signal-on-write reduces the overhead on a sending processor when no

local thread is to receive the signal. In fact, in the case ofthe signal only being

delivered to threads on other processors, the sending processor incurs no overhead

for signaling the message beyond the operations required to flush the message.

Reduced sender overhead, in turn, shortens the latency of message delivery.

In the absence of this facility, the sending thread must explicitly execute a kernel

call, map the signal virtual address to a physical address, and then presumably

access hardware facilities to generate the signal, or at least some interprocessor in-
terrupt. In our experience, providing kernellevel access to the cache controller to

explicitly generate a signal is more expensive in hardware than simply providing
the logic in the cache controller itself to detect and act on flushes cache lines in
message mode.

Automatic signal-on-write also allows the channel segment to specify the unit
of signaling, transparentþ to the sending thread. For example, a receiver can pass

the sender a channel that signals on every cache line or every page, depending

on the receiver's choice. Without automatic signal-on-write, the sender needs to

explicitly signal and thus needs to be coded explicitly for each signaling behavior,

perhaps switching between different behaviors based on the channel type.

Optimized memory-based messaging was implemented in the ParaDiGM hard-

ware and in an extended version of the V kernel. The memory-based messaging

support replaced the previous kernel message support for RPC, resulting in sig-

nificant performance improvement (see Section 4). This replacement also reduced

the lines of code in our kernel by l5Vo and provided support for signals, which
were not supported in our original system. The hardware support for memory-
based messaging in ParaDiGM added approximately 67o to the logic of the cache

controller. On a commercial machine, we estimate that the additional logic would
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easily fit within the cache controller ASIC and therefore would not increase man-

ufacturing costs. Finally, the 128-entry FIFO buffer per processor added 67o to

the per-processor cost, totaling from l2vo to 21,Vo of the CPU board costs [Hen-
nessy & Patterson 19901. The extra logic constituted less than l%o of the hardware

cost for a complete four-processor board. Moreover, this hardware is needed in
any case for large-scale intemrpt support. Overall, we conclude that this approach

reduces hardware costs compared to the multiple ad hoc interprocessor schemes

used in many current systems.

The next section describes the user-level library implementing RPC in replace-

ment for the previous kernel support.

3. Remote Procedure Call Implementation

The remote procedure call (RPC) facility provides an easy-to-use application in-
terface to the raw memory-based messaging facility, which is fundamentally a

difficult interface for applications to use directly for several reasons. First, sig-

nals can be lost so the client of the raw interface has to implement a reliable error

controVrecovery mechanism or else not require reliable signal delivery. Second,

partially written messages can be received because an involuntary cache write-
back can cause the L2 cache to perceive that the processor is sending the message.

This situation can also arise with multi-cache line messages. Finally, as a conse-

quence of signal and data loss, duplicate messages can be sent as well. To deal

with these difficulties, the RPC system incorporates standard transport protocol

techniques similar to, for example, TCP and an ONC RPC implementation on top

of UDP.

The remote procedure call facility including the transport facilities is imple-

mented on top of memory-based messaging in an application-linked run-time
library. This approach contrasts with a kernel implementation as in V lCheri-
ton 1988.81 and Amoeba [Tanenbaum et al. 1990], and the separate network server

implementation as in Mach [Accetta et al. 1986].

In overview of the RPC structure, there is a unidirectional memory-based mes-

saging channel segment from the client to the server and a similar unidirectional

return channel from seryer to client. To call the server, the client writes a message

containing the RPC parameters and stub identiflcation to the ssrver's incoming

channel segment and sends an address-valued signal to the server. Upon receiv-

ing the signal, the server processes the message by unmarshaling the atguments

onto a stack, calling the appropriate procedure, as in a conventional implementa-

tion, writing the return values as a message on the return channel and signaling
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the client. The client then receives the signal indicating the response has been sent

and unmarshals the response.

Currently in our prototype, the client establishes these channels with the server

by contacting the server using a well-known shared channel segment associated

with the server, similar to the well-known multicast addresses used in previous

systems. On this first contact, the client provides request and response channel

segments to which the server then binds, speciffing a memory region and an RPC

signal handler.

To ensure reliable delivery of RPC call and return messages, a checksum is

used on the message to ensure that all portions of the message were received.

Using "integrated layer processing" [Clark & Tennenhouse 1990], the check-

sum calculation cost is not significant when integrated with the data copy. The

data copy is required as part of marshaling and unmarshaling parameters at ei-

ther end of the channel segment. For instance, a checksum calculation with
the copy operation on a 25 MHz DecStation 5000/200 adds 8Vo to the copy

time. A message that fails the checksum is normally discarded, as in con-

ventional transport protocols. The unmarshaling copy operation also prevents

the received parameters from being overwritten while the receiver is process-

ing the call. That is, because the call parameters have been moved from the

message segment îrea, a. subsequent overwriting message cannot affect the

call processing. In fact, the checksum is calculated as part of the unmarshal-

ing copy so that it can safely detect an overwrite of the message during the

unmarshaling.

Lost or dropped messages are detected and handled by an asynchronous timer

thread. The timer thread simply reviews the set of outstanding calls periodically

and requests retransmissions if there has not been a response or acknowledgment

within the timeout period. Because the timer thread operates asynchronously and

independentþ of the message sending, the normal case of sending a call and get-

ting a response when the packets are not lost operates without the timer overhead

required in conventional fransport protocols.

The messages ate sequenced by writing each successive message to the next

location in the message channel following the previous one, wrapping to the be-

ginning of the channel region after hitting the end of the channel segment. Each

channel wrap increments a wrap count that is used as the base for the checksum

calculation so if a receiver is out of synchronization with the sender, it sees the

messages as comrpted because the checksum fails.

Using a full transport protocol for local (or inter-address space) calls is a

novel and contentious aspect of our approach. There is the obvious concern that

this approach unnecessarily degrades local communication performance. How-
ever, it is the preferred approach with memory-based messaging for several
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reasons. First, the cost of the transport-level mechanism is not significant in the

local case. The cost of a simple checksum calculation such as used with TCP
is dominated by the memory access time to the data. By integrating this cal-
culation with the marshaling and demarshaling, as described earlier, the cost is

hidden by the memory access latencies of the copy operation, at least on modern

RISC processors. Moreover, for small messages, the checksum cost is insignif-
icant compared to the other remote procedure call run-time overheads, such

as scheduling the executing thread for the procedure. The frequency oflarge
messages for which the copy and checksum time is significant is reduced by
memory-mapping most of the UO activity. In fact, the large messages that are

not subsumed by the memory-mapped VO approach are predominantly com-
munication with a network file server, for which the checksum overhead is

required, as in conventional systems. Moreover, bulk flows like video do not re-

quire the same degree of reliable delivery and thus can be transmitted without
checksums.

The other significant transport mechanism, timeout for retransmission, exe-

cutes asynchronously to the call and return processing so, in the normal no-loss

case, the overhead is a small frxed percentage of the processor time. This cost

can be made arbitrarily low by increasing the timeout parameter. That is, with a

timeout of? seconds and processing cost P seconds, the processing overhead is

PT per second. V/ith signal loss extremely rare in the expected case, the cost in
system performance is dominated by the time to timeout and retransmit.6

Second, implementing reliable transport for local calls allows the RPC run-
time library to use the same mechanism for local and remote calls, avoiding the

overhead and complexity of checking whether a channel is local or remote on

each call. Channel segments appear the same to the software outside the kernel
whether they connect within a machine or span multiple machines. Moreover, be-

cause a channel can be rebound during its lifetime so that its endpoint is remote

rather than local, the RPC mechanism would need to either check with the ker-
nel on each call or be reliably notified of the rebinding if it did not incorporate

reliable ffansport always as we have done. The former would incur a significant
overhead, estimated to be comparable to the 8 percent overhead we measure for
the checksum calculation on the common "small" RPCs, obviating the benefit of
discriminating between local and remote segments. The latter approach requires

additional code complexity in the RPC mechanism.

Finally, providing software support for reliable delivery allows the hardware

in large-scale multiprocessors to be much simpler. For example, in our hardware

6. To deal with the potential of dropped signals from devices, our device drivers pedodically check the device
interface for activity rather than requiring the device ha¡dware to retransmit.
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implementation, signals can be lost because of a local FIFO buffer overflow, al-

though this is unlikely. Preventing overflows in hardware would require some

form of flow control. Flow control is difficult to do across a large-scale intercon-

nection network, and is virtually impossible with multicast communication. A

signif,cant source of cost and complexity in (for example) the CM-5 communica-

tion network is the hardware to ensure reliable message delivery. Moreover, even

in such hardware schemes, there is still a software overhead to check for over-

flow conditions. Therefore, providing a full transport mechanism in the local case

reduces the requirements and cost of the hardware, and allows an application to

tolerate more hardware faults.

The remote procedure and transport mechanism is implemented in our system

as a C++ class library executing in the application address space, and is well-

structured for specializing for particular applications, including those that do not

require full reliability. A basic channel mechanism in the class library supports

a raw form of communication and does not impose the transpofr level overhead

for this type of traffic. For instance, a channel segment is well-suited for real-time

multicast datagram traffic like raw video because data units are being rapidly up-

dated by the source, and the occasional dropped cache line unit or lost signal does

not significantly affect the quality of the resulting picture. Note that dropped cache

line updates do not put the data out of sequence in any sense because each cache

line is specifically addressed with its local address within the channel segment.

Derived classes of the basic channel class provide the reliable transport mecha-

nisms described above.

There are three issues we continue to work in this RPC implementation. First,

large messages generate a signal intemrpt on each cache line unit of data, causing

extra overhead compared to a single signal intemrpt at the end of a message. A

means of indicating the last cache line of message data as part of the flush oper-

ation appears to eliminate this overhead. The channel knows the beginning of the

message from the state maint¿ined by the channel'

Second, there is a need to select the channel region size as part of setting up

the memory-based messaging channels for RPC. Logically, the channel region size

is effectiveþ the flow control window size. However, our current implementa-

tion does not allow the transmission of a call or return message that is larger than

the region size. This limitation is analogous to the size limit imposed by simple

RpC prorocols used over UDR where the limit is the 64 kilobyte limit of UDP/IP

packets. Allowing larger call and return messages would introduce the potential of

the caller or the callee being blocked indeûnitely by flow control in the middle of

transmission, just as can occur with large RPCs over TCP. Finall¡ memory-based

messaging is essentially connection-oriented in nature, incurring the overhead

of setting up and tearing down connections, contrasting with the datagram and
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dynamic binding of many other IPC systems. We have been experimenting with
techniques for sharing channels for low-perfonnance communication and only

creating separate channels for performance-critical cases. Happily, the primary

resource used by a channel is virtual memory which can be paged out when not

being used just like other portions of virtual memory. With a virtual memory sys-

tem capable of handling very large programs, the limit on number of channels is

purely the limit on the amount of virtual memory which should be very large, so

channel teardown is almost never required.

In summary, the best-efforts reliability of our memory-based messaging sup-

port allows better performance with scale at a lower hardware cost, transfers the

complexity of ensuring reliable communication (when needed) from hardware to

software and avoids having separate mechanisms in the application space for local

and remote communication. The next section provides some performance measure-

ments of our implementation.

4. P erformance Evaluation

The performance of optimized memory-based messaging was evaluated using an

extended version of the V distributed system [Cheriton 1988.7] and the ParaDiGM

multiprocessor [Cheriton et al. 1991]. The specifrc conflguration is an 8-processor

shared memory multiprocessor configuration consisting of two multiprocessor

modules each containing four Motorola (25 Mhz) 68040 processors sharing an

L2 cache that supports our optimizations. As in Figure 3, multiple multipro-

cessor boards share an L3 cache, where the consistency is controlled by kernel

software. Although this hardware that we designed and implemented is not the

fastest available at this time, we argue that the logical design is applicable to much

faster processors, and a faster processor would not significantly reduce the benefits

of our optimizations (see Section 5).

4.1. Hardware Performance Benertts

To evaluate the benefits of the hardware optimizations, we developed a software-

only implementation of memory-based messaging as a basis for comparison. In
this implementation, the sender traps to the kernel, and uses a queue and inter-

processor intemrpt to notify the receiver of the signal.

Table 1 compares this software-only version with our optimized messaging

implementation, listing the execution times (and MC68040 instruction counts) of
various kernel and user-level components for these two implementations. These
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Component Software-Only Hardware-Supported

Time Instr. Time Instr.

sender system call
virtual-to-physical mapping

determine receiving processors

insert in kernel queue

generate intemrpt
get physical address from FIFO
remove from kernel queue

physical-to-virtual mapping

invalidate Ll cache lines

check if kernel is receiver

signal function scheduling
retum to user code

user-level state save/restore

aJ
õJ

4

6

1

6

1

t
6

4
1

I3
T6

23

55

4

45

9

7

4

37

25

11

2

1

1

1

6

4

1

11

9

7

4

37

25

11

Total

Table 1. Hardware-Supported vs. Software-Only Implementa-

tions (Time in psecs)

measurements show that using all three hardware optimizations provide a factor
of two reduction in kernel overhead even in a small-scale system. This reduction
is achieved by hardware support that eliminates the instructions required to de-

liver the signal value to the appropriate processor. The cost of message delivery
from the signaled processor to specitc threads would be reduced significantly in
the common case using a reverse TLB and user-mode signal trapping. (See Sec-

tion 2.1.3)

Section 5 shows that even greater benefit can be expected for future larger-

scale systems, because message delivery using the shared data structures of the

software-only implementation becomes more expensive with a larger-scale shared

memory system.

4.2. Remote Procedure Call Measurements

Table 2 provides a breakdown of the components of the RPC implementation us-

ing optimized memory-based messaging, not including the memory-based mes-

saging costs detailed in Table 1. The majority of the time is spent on marshaling

and demarshaling. The mapping between object and channel, and vice versa, is the

other major component.
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Component RequeslReply Time
map from object to channel
marshal 32-bytes

trigger signal

map from channel to object

unmarshal 32-bytes

1

2

1

1

2

Total

Table 2. RPC Component Timings (psecs)

System Call Execution Time

Create Segment

Bind Memory Region
Enable Signal
Disable Signal

Unbind Memory Region

Release Segment

582
320
249

231.

243

636

Table 3. Setup Cost Timings (psecs)

The total latency of a32-byte RPC between two processors sharing anL2
cache is 47 p,secs. This performance is 2.6 times faster than the software-only
version of memory-based messaging RPC, which takes 124 psecs.

A 32-byte RPC between processors, on separate L2 caches, sharing an

L3 cache takes 127 ¡rsecs ("Opt. MBM (L3)" in Table 4). The corresponding
software-only RPC takes 1860 psecs. (Both L3 times are somewhat inflated
because of the partially-optimized software L3 cache consistency support in the
cuffent implementation. )

These measurements do not include the costs of creating and destroying the
channel segments and binding them into the memory of the respective address

spaces, as required before RPCs can be executed. In our object-oriented RPC
implementation, the setup is performed as part of creating a local proxy object.
Table 3 provides the basic setup and tear-down costs. Summing the execution time
column (omitting disable signal because it is subsumed by unbinding the memory
region), connecting to a new object and then disconnecting can take 2030 ¡.r,secs.
Thus, a signiflcant number of RPCs need to be performed over a channel to amor-
tize this overhead to a small percentage. In earlier measurements of V [Cheriton
& Williamson 19871, we observed a high degree of persistence in communication
between clients and servers, and a small number of such pairings. Thus, we expect
this setup overhead to be acceptable, if not insignificant, when amortized over the
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System Null RPC Send, Recv

32bytes
Send lKB Processor MIPS

Opt. MBM (L2)
opt. MBM (L3)
Soft MBM (L2)
Soft MBM (L3)
Mach 3.0

V System

URPC
LRPC

44

t20
12t

1857

95

469 (est.)

93

r25

47

127

r24
1860

98 (est.)

472

899 (est.)

131 (est.)

215
502 (est.)

268
12580

268 (est.)

794

608 (est.)

640

68040 15

68040 15

68040 15

68040 15

DEC 3100 1.4.3

68040 15

Firefly 3

Firefly 3

Table 4. Comparative RPC Timings (¡^r,secs)

typical number of RPCs that use a channel segment during its lifetime. However,

the setup time should definitely be factored into the RPC time for applications

with many short-lived connections.

4.3. Comparison with Previous Systems

For comparison, Table 4 shows published RPC times for previous message-based

operating systems. These measurements indicate that optimized memory-based

messaging RPC (labeled "Opt. MBM (L2)") is clearly faster than the original V
system. The V performance suffers from several factors. First, the V copy model

of messaging imposes a copying overhead that is not present with memory-based

messaging. Second, there are many "on-the-fly" actions performed on each RPC

because there is no connection setup prior to sending a V message. These actions

are eliminated by the connection setup with memory-based messaging. Finally, the

V messaging requires a context switch during the RPC.

The optimized memory-based messaging is also faster than Mach 3.0 (based

on our estimates from published figures for the 32-byte and l-þlobyte messages).

Mach 3.0 has a connection-oriented model based on ports but still suffers from
copy cost and context switching overhead.

The URPC and LRPC systems appear to be the most competitive with opti-

mized memory-based messaging mechanism. In fact, if one purely scales based on

rough MIPS ratings, one might conclude that URPC system is faster. However, we

believe there are several considerations that still favor optimized memory-based

messaging. First, the published URPC time can only be achieved when the server

constantly polls client message channels and manages to flnd a client message

immediately after the client queues it. This polling mechanism does not appear
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practical in real systems where a server would have a large number of clients.
Moreover, the time to locate the particular requesting client would be larger even
if polling was used with a busy server. Second, both LRPC and URPC reduce
the number of copy operations by using parameters directly from the shared seg-

ment, eliminating the unmarshal step. However, this technique relies on using the
VAX's separate argument stack, a mechanism not supported by modern RISC pro-
cessors. Finally, the overhead of URPC shared memory references to control the
server's queue would make URPC substantially slower than our optimized mes-
saging for calls between most pairs of processors in a large-scale multiprocessor
system because of the memory coherency cost. The LRPC and URPC measure-

ments were done on the VAX-based Firefly multiprocessor on which a reference
to a write-shared datum incurs essentially the same cost as a private memory ref-
erence because ofthe write-broadcast update protocol and the slow processors

relative to the memory system. However, a similar reference on a machine like
ParaDiGM, DASH [Gharachorloo et al. 1989], KSR-I and numerous forthcoming
architectures from Cray, Convex, and others would cost approximately 100 cy-
cles or more, assuming the referenced data was last updated by another processor.

Besides increasing the latency, these shared memory references also impose an ex-
tra load (not present in optimized memory-based messaging) on critical resources

such as memory busses.

These measurements show that optimized memory-based messaging is com-
petitive with the fast RPC implementations of other systems. Moreover, memory-
based messaging also provides data streaming between address spaces at memory
system performance, a facility not directly supported by the other communication
approaches. The next section shows that these benefits are even more significant
for future (large-scale) system configurations.

5. Benefits in Future Systems

The performance benefits for optimized memory-based messaging were estimated
for future larger and faster machines using a simple simulation. This simulation in-
corporates a cost model, based on the factors we have identified in our implemen-
tation, with the actual costs scaled for the expected hardware parameters. Using
this simulation, a software-only implementation of memory-based messaging was
compared with configurations introducing each hardware enhancement. The case

measured is a message of 32 bytes, a cache line, sent to another processor, where
a null signal function is executed. In the simulations without hardware support,
address-valued signaling was performed using a software-controlled global queue

to hold the virtual address of the message. Similarly, conventional shared-memory
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consistency using a write-invalidate was assumed in place of message-oriented

consistency. Without hardware support for automatic signaling on write, the model

assumes that, after the message write, the sender traps to the kernel to execute the

Signal system call. (It could also generate the call after trapping on a reference to

a write-protected memory location, a technique used to emulate automatic signal

on write.)
For these simulations, we measured our Ll fill time to be l.l2 ¡.æecs for a 32-

byte cache line. An estimated hardware-supported L2 frIl time is 3.36 psecs. A
single hop across our frber optic link transfer 32 bytes is 6.1 psecs.

Figure 6 shows the speedup of a message transfer for optimized memory-

based messaging compared to a software-only implementation as a function of the

distance traveled by the message. The values of 2 and 3 on the x-axis correspond

to a message delivered through anL2 cache and L3 cache respectively. The values

of 4, 5, and 6 correspond to one, two and three hops across a fiber optic link.
The speedup is more significant for processors widely separated in the mem-

ory system because the transfer is dominated by the cost of the bus/network trans-

actions. Address-valued signaling and message-oriented consistency reduce the

number of such transactions compared to conventional shared memory techniques,

as was illustrated in Figure 5. Note that the number of transactions in a conven-

tional system on the L3 bus and network is effectively twice that of the L2 level

because of the use of split-transaction protocols in the lower cache levels. Thus,

the savings from message-oriented consistency are greater for these levels than the

L2level, both in reduced transactions as well as reduced latency.
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Figure 7. Speedup of 32-byte cache line transfer vs. processor

speed (through shared L2 cache).

The message transfer speedup between processors local to anL2 cache results

from the reduced software overheads of address-valued signaling and automatic-

signal-on-write. The benefit of the message-oriented consistency is reduced by the

relatively high speed of the L2 bus in this case.

Approximately 79Vo of the speedup of a message transfer through anL2 cache

and 567o of the speedup through 3 hops of the fiber optic link is attributable to

hardware support for address-valued signaling. Message-oriented consistency ac-

counts for 6Vo of the speedup of anL2 transfer and 377o through 3 flber optic

links. Automatic signal-on-write support accounts for l57o of the speedup of an

L2 transfer and l%o through the 3 fiber optic links.

Figure 7 shows the benefits of the optimizations as a function of the proces-

sor speed. The processor speed is normalized to the speed of the 68040. A faster

processor is assumed to use a corespondingly faster L2 bus. The base or 68040

L2 bus transfer time in this simulation is one 3}-byte cache line in 0.3 psecs. A
3}-byte message is assumed to transfer over a flber optic link in 2 psecs.

The increase in speedup with increasing processor speed in Figure 7 shows

that faster processors simply emphasize the memory system latencies, even with

a high-speed L2 bus. At higher processor speeds, the costs of the software op-

erations, such as physical to virtual address mapping, diminish, affecting both

implementations equally but leaving the relative speedup unchanged.

Figure 8 shows the speedup for a 32-byte message transfer as a function of
processor speed over a frber optic link. This frgure shows that the memory system

overhead is again more apparent with faster processors. While faster processors
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Figure 8. Speedup of 32-byte cache line transfer vs. processor

speed (fiber optic link).

allow faster message transfers, these gains are limited by the latencies of a large-
scale memory system. Optimized memory-based messaging minimizes the actions
required of the memory system, thereby providing scaling with increasing proces-

sor speed.

Overall, our simulation of larger and faster architectures suggests that opti-
mized memory-based messaging provides even greater benefits on these future
machines because it optimizes for the bottleneck resources, namely the mem-
ory system and its supporting interconnect. Moreover, optimized memory-based
messaging obviates the need for conventional interprocessor intemrpts, separate

message mechanisms and even VO subsystem hardware if the VO devices were
designed to interface to the memory-based messaging system.

6. RelatedWork

The original architectural support for optimized memory-based messaging was

described by Cheriton et al. [Cheriton et al. 1989] in a design that was refined
and implemented as the ParaDiGM architecture [Cheriton et al. 1991].'While the
basic design has remained largely the same, a number of refinements were made

as part of the ParaDiGM implementation and measurements. As an example, we
discovered that it was faster to invalidate a received cache line in software than to
have the cache controller perform this task.
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The basic memory-based message model is similar to that used in the Berke-

ley DASH project [Tzou & Anderson l99ll, URPC [Bershad 1990], and many

commercial systems using shared memory for communication between processes.

Our contribution has been the refinement of the signaling and consistency support

and an efficient hardware and software implementation that further optimizes this

communication model.

The signaling mechanism has some similarity to the signal mechanism in
Unix. However, the extension to address-valued signaling provides a translated

address optimized for messaging while providing a mechanism sufficient to im-
plement Unix signals. That is, a well-known range of memory addresses could be

allocated for Unix signals, with an address for each Unix signal number.

An altemative approach to our memory-based messaging approach is to pro-

vide a separate hardware communication facility. For example, the Alewife mul-
tiprocessor design lChaiken et al. 1991; Ikanz et al. 1992J provides messaging

support directly into the processor. The network interface supporting messaging is

connected to the processor using the coprocessor interface on the SPARC-I pro-

cessor. The network interface supports a DMA engine, a sliding message buffer
window and specialized coprocessor instructions. Because this design allows

messages to ffansfer directly from and to the processor using the co-processor

interface and thus bypass the memory system, it should in principle be faster than

our approach (no measurements of Alewife were available at the time of writ-
ing). However, the Alewife approach depends on the existence of a co-processor

or similar interface devoted to messaging. Very few processors have such an in-
terface. Moreover, with the limits on chip pin count being an issue, it is more

performance-effective to use these pins for wider access to memory than dedicat-

ing them to only communication support.

More generally, we see our approach of integrating messaging support into the

memory system as directly benefiting from each improvement in memory system

performance, rather than contending with the memory system for pin count and

design cycles. This is in line with the key focus of computer architects. That is,

the cost of moving data between a source and a recipient is primarily limited by
the cost of writing the data to the shared segment and reading the data back in the

receiver process. The mainstream computer architecture community emphasizes

optimizing the memory system rather than the communication facilities for sev-

eral (good) reasons. First, memory is well recognized as the primary bottleneck to

the performance of fast RISC processors. Most applications make far greater de-

mands on the memory system than on the communication facilities so it is better

to use the chip real-estate for larger on-chip caches that special-purpose communi-

cation support. Second, most systems are small in scale so there is limited market

for machines that really require specialized communication support. In fact, for
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the foreseeable future, the number of multiprocessors will almost certainly re-
main vanishingly small compared to the number of uniprocessor systems. Finally,
most processor designers avoid less-proven and less standardized features, if for
no other reason than to minimize design time. With the cost, reliability and time-
to-market issues strongly driving this market, hardware and operating systems

designers are expected to remain focused on basic memory system performance
and are unlikely to have resources left for effort that purely improves communica-
tion performance.

The other general alternative approach is a pure software implementation of
interprocess communication. Most previous performance work here has focused
on reducing the cost as close as possible to the raw copy cost (e.g., V lCheri-
ton 1988.81, Amoeba [Tanenbaum et al. 1990] and Taos [Schroeder & Bur-
rows 19891) and to reduce the copy cost itself (e.g., Mach [Accetta 1986] and
URPC [Bershad 1990]). Mach uses the copy model of IPC and optimizes it us-
ing memory mapping techniques, whereas the memory-based messaging approach
takes the memory mapping model and extends it for efficient communication.
We believe that the cache and interconnection structure of modern computer
memory systems makes the copy model of messaging inadequate, especially for
high-performance communication applications such as multi-media, simulation and
high-performan ce U O. Optimized memory-based messaging, as one alternative,
provides better and more scalable performance even without hardware support.

Memnet [Delp 1988] is another system that provides a memory model of com-
munication. However, it also uses special and separate communication hardware,
using a consistency mechanism to drive network transmissions to provide the il-
lusion of a memory module shared by all the machines on the network. This
approach duplicates the memory system, at least for a shared memory multipro-
cessor, in a specialized communication subsystem and then makes it look like
memory. Thus, Memnet is the opposite to our approach, both in terms of model
and mechanism, of integrating the communication into the memory system.

A number of other systems provide a memory interface to communication fa-
cilities. However, these systems are of a signiûcantly different genre. For example,
the Xerox Alto, the original SUN workstation, the CM-5, and many other systems
provide a location in memory to read and write to receive and transmit network
data. However, this approach is generally just providing a memory port to a sep-
atate conventional communication mechanism which is not really integrated with
the memory system. In particular, each write operation to the communication in-
terface requires an uncached write operation over the interconnecting bus, rather
than using the cache line block transfer unit, as we have used.
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7. Conclusions

Optimized memory-based messaging is an interprocess communication facility that

is simple to use (through the RPC interface), inexpensive to implement in soft-

ware and hardware, and significantly faster than the interprocess communication
support provided by conventional operating systems and hardware. It appears that

its advantages may be even more significant in large-scale multiprocessor systems

expected in the future.

The approach of providing communication in terms of the memory system

has simplified both the hardware and the software. The software implementation
largely consists of extensions to the basic virtual memory mechanisms already

provided by the operating system kernel. For example, the signaling mecha-

nism uses the same data structures to map to recipients of a signal as the virtual
memory system uses for mapping addresses and the same signal delivery used

for virtual access signals (similar to SIGSEG) in Unix. V/ith our operating sys-

tem kernel, this approach is the only communication and VO facility provided,
thus eliminating the buffering, queuing, synchronization and mapping code and

data structures used in most message-based operating system micro-kernels. These

benefits were realized even more strongly in the V++ Cache Kernel [Cheriton &
Duda 19941 which we developed subsequent to the work reported here.

The hardware support is a simple, low-cost extension to the directory-based

memory caches that are increasingly common with shared memory multiprocessor
machines. The three reûnements of address-valued signaling, message-oriented

consistency and automatic signal-on-write complement each other to further sim-

plify the hardware and improve performance. Based on our implementation, we

estimate the additional hardware support costs to be less than l.Vo of a multipro-
cessor board as used in ParaDiGM and even less of the overall system cost. Thus,

the hardware support is affordable even for small-scale multiprocessors where the

performance benefits are the least. Moreover, the address-valued signaling pro-
vides a unified model for an intemrpt system supplanting the specialized facilities
for device intemrpting, interprocessor intemrpts, and hardware communication
facilities that are present on some systems.

Our measurements of our software/trardware system show performance that

compares favorably with other high-performance interprocess coÍrmunication
facilities. Using simple performance models, we have estimated that hardware-

supported memory-based messages would offer approximately a three-to-five fold
improvement in performance for basic communication operations on moderate to

large-scale multiprocessor systems.
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The memory-based messaging model exports an interface that allows an ef-
ficient remote procedure call implemented outside the kernel that supports both
local and over-the-network communication. It can also be used with specialized
communication software to support high-performance real-time communication
for video and graphics where the reliability and structure of RPC are not needed.
The address-valued signaling mechanism can also be used as an object notification
mechanism between threads and address spaces independent of the messaging use.

As part of on-going work, we are addressing several issues. First, we are ex-
perimenting with different schemes for efficiently mapping the RPC mechanism
onto memory-based messaging to allow specialization of RPCs for particular sit-
uations [Zelesko & Cheriton 1996]. For example, we are experimenting with a
non-blocking RPC with no return value, optimized for some distributed simula-
tions. More generally, we would like to use the memory-based messaging facility
for less sffuctured communication as well, such as video and audio channels. Sec-

ond, we are also investigating the issues of moving large amounts of data using
optimized memory-based messaging. In our prototype, the receiving processors
take an intemrpt on every cache line. A means is required for the sending thread
to indicate the last cache line that is part of a message and have the signal mech-
anism only deliver an intemrpt on this last cache line. Finally, we are continuing
to develop network hardware and channel management software to extend the
memory-based messaging over network links with non-trivial topologies. This
hardware would also benefit from a "last cache line of message" indication, so it
could transmit a sequence of cache line flushes as single packet, reducing the per-
packet overhead compared to sending each cache line as a separate packet, as we
currently do. Sending larger packets would also make this networking technology
compatible with different cache line sizes, allowing its use across more hardware
platforms.

Overall, based on our experience to date, optimized memory-based messaging
appears to be a promising approach for achieving cost-effective high-performance
communication in future systems. The central theme of our work is the integra-
tion of communication support with the memory system model and mechanism.
This approach reduces the specialized system primitives and complexity of con-
ventional approaches to communication and provides performance gains in com-
munication by capitalizing on the well-motivated drive to improve memory system
performance. From our experience to date, we judge this approach as superior to
approaches that provide communication as a separate mechanism.
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