
Independent One-Time Passwords

Aviel D. Rubin Bellcore

ABSTRACT: Existing one-time password (OTP)
schemes suffer several drawbacks. Token-based sys-
tems are expensive, while software-based schemes
rely on one-time passwords that are dependent on
each other.-There are disadvantages to authentication
schemes that rely on dependent OTPs. It is difficult
to replicate the authentication server without lowering
security. Also, current authentication schemes based
on dependent OTPs only authenticate the initial con-
nection; the remainder of the session is assumed to be
authenticated. Experience shows that connections can
be hijacked. A new scheme for generating one-time
passwords that are independent is presented. The in-
dependence property enables easy replication of the
authentication server and authentication that is persis-
tent for the lifetime of a connection. This mechanism
is also ideally suited for smart card a_pplications. Our
implementation and several applications are discussed.

@ 1996 Bellcore, Computing Systems, Vol. 9 . No. 1 . Winter 1996 15



l. Introduction

There are several ways to verify the identity of a user in a computer system. The

most common arc what they know, what they have, and who they are. The last

involves biometrics such as retinal scans and ûngerprints; these technologies

are not in widespread use. The other two techniques are more common. Users

may pfove their identity by knowing a password or possessing a tamper-resistant

token.
A reusable password is one that does not change for each authentication. The

same password travels across the network every time the user authenticates. These

passwords are vulnerable to eavesdropping on the network. To combat these, one-

time passwords (OTPs) were invented. These are passwords that are used exactly

once.

Computer crackers utllize enoûnous resources to obtain the information

necessary to impersonate other users. Sniffer programs that capture password

information from packets from well-known services such as telnet and ftp have

been found all over the Internet. In addition, studies have shown that users pick

poor pass"vords [Morris & Thompson 1979], and thus they are easy to attack

with dictionary search. Any system in wide-scale use, such as Kerberos lSteiner

et. al 19881, is especially vulnerable to this because the attack can take place

off-line. In most systems, as long as the compromise of a reusable password is

not detected, the imposter Qan assume all of the privileges of the unsuspecting

user.

Authentication Systems based on one-time passwords afe more secure than

ones that rely on reusable passwords. For example, remote access usually requires

the user to enter a password or pass phrase. This secret usually travels across in-

secure networks in the clear. In the case of one-time passwords, the danger of

eavesdropping is eliminated because once a password is used, it is no longer use-

ful. If a one-time password system is implemented properly, breaking it requires

sophisticated, active attacks that are beyond the abilities of most attackers, such as

play in the middle attacks.

t6 Aviel D. Rubin



The two best-known one-time passwords systems are S/KEYTM [Haller 1994]
and SecurIDTM. SiKEY is a software solution. SecurID is an expensive hardware
solution that requires a secure authentication server, and careful administration.
V/e will focus on softwa¡e solutions as they are much cheaper and easier to install.
S/KEY has the additional benefit that there are no secrets stored on the authentica-
tion server.

Given a set of OTPs, we say that they arc independent lf deriving any one
of them using all of the others is no easier than breaking a pseudo-random func-
tion. The one-time passwords in S/KEY are not independent. This causes several
security risks and poses limitations on how the system can be used. These are dis-
cussed in a later section.

This paper describes a technique for achieving independent one-time pass-

words. The method is compared to S/KEY, and their relative merits are evaluated.

2. Previous work

This section describes the two most popular authentication systems that use one-
time passwords. SecurID is a hardware solution, while S/KEY works entirely in
software.l

2.1. SecurID

SecurID is a one-time password system where physical tokens are used to authen-
ticate users. Each user possesses a card that displays a six digit number through a
glass display. The user also picks a PIN number. The card is about 3 millimeters
thick and is relatively fragile; it is not appropriate for a wallet or pants pocket.
The number on the card changes every n seconds, where n is a configurable quan-
tity, usually about 15 seconds. The algorithm used by the card is proprietary, but
it is known that each card contains a unique secret seed. A copy of each seed also
exists at the authentication server. The seed is used to generate the next number
that is displayed by the card.

There are several strategies for breaking SecurID. The product is sold on the
premise that these are infeasible. One way to defeat it is to break the secret algo-
rithm to predict the next number that will be displayed. In adclition, the attacker
must eavesdrop on a previous authentication to obtain the PIN, which is sent
in the clear each time. Another attack is the i'meet in the middle" attack. Here,

1. S/KEY is a trademark of Bellcore. SecurID is a trademark of Security Dynamics.

Independent One-Time Passwords 11



an attacker eavesdrops on an authentication session, records the one time pass-

word, and prevents the message from reaching the authentication Sefver. Then, he

uses the one time password, within the time window allowed by the card, to au-

thenticate himself. If the authentication server is replicated, then even if the real

authentication message is not blocked, preventing this attack requires significant

overhead fReiter 1995]. Active play in the middle attacks are very difficult to pre-

vent, and no authentication system in wide-spread use is immune to them.

2.2. S/KEY

This section briefly describes the S/KEY authentication system. Further details can

be found in the original paper [Haller 1994].

2.2.1. How S/KEY Works

Before using S/KEY for authentication, users perform an initialization step. A user

logs into a secure authentication server. The login must be local or over a secure

connection; a remote login here defeats the purpose of S/KEY. Then, he selects a

secret password and n, the number of one.time passwords to generate. The soft-

ware then applies n iterations of a one-way hash function,to the password. The

final result is stored on the authentication server, and the initialization is complete.

The authentication server keeps track of the number of times that each user

authenticates himself. The first time the user logs in with S/KEY, he is prompted

with the number n - l. The user types in his secret password on his local ma-

chine, and the software applies n - I iterations of the one-way hash function to

the password. The result is sent across the network to the authentication server.

The authentication server applies the hash function one time to this message. The

result is compared to the value that was stored earlier. If they match, then the au-

thentication is successful. The authentication server then replaces the stored value

with the new message that it receives and decrements the password count, n, to
prepare for the next authentication.

If the user does not have the S/KEY client software (for example, when using

a dumb terminal) or does not trust his machine, then there is another mode of
operation. Before leaving his trusted environment, the user generates and prints

a list of one-time passwords. This printout must be guarded very carefully. Then,

when the user authenticates, he simply uses his list to send the requested one-time

password to the authentication server.

Susceptibility to Off-line Dictionary Attack. The one-time passwords travel

across the network in the clear. Any eavesdropper can record them. If
the relationship among the OTPs is well-known (e.9. a hash function), a

18 Aviel D. Rubin



malicious user can apply the function to candidate passwords such that
if the result matches a one-time password, then the reusable password is
compromised. Thus, the security of such systems relies on users picking
good passwords-a very bad assumption. The next release of s/KEy will
place constraints on the passwords to make them more difficult to guess.

Danger of Reusable Password compromÍse. The secret password chosen by
the user is the key to all of the one-time passwords. This password must
be protected at all costs. There are many ways an inexperienced user may
accidentally send the password across the network. For example, if the
user performs authentication from a remote login shell, every keystroke
of his travels across the network, although he might not realize it. often,
in a unix/X-windows environment, users have windows open to different
machines in their network. Anything typed in a nonlocal window travels
across the network. In addition, malicious users can exploit weaknesses of
X-windows to read keystrokes on another machine. There is a program,
xkey, that has been widely distributed on the Internet, that accomplishes
just that. Authentication systems with OTPs that are seeded with reusable
passwords offer users poor protection from people on the local network
of the client. They are therefore not very suitable for a university or any
public environment.

Difficult to Maintain Muttipte Servers. It is often desirable to have more
than one authentication server for higher availability of the service. De-
pendent one-time password systems make it difficult to replicate the
authentication server (AS). Each AS must know the current one-time
password number. That is, if a user authenticates 10 times, then every
AS must know that 10 passwords have been used. Any time one AS is
out of sync with any of the others, the system is easy to defeat. For ex-
ample, say that AS-1 believes that there have been 10 authentications,
and AS-2 believes there have been 9. An eavesdropper who recorded the
last authentication to AS-1 can replay the one-time password to AS-2 and
authenticate successfully.

All of the shortcomings described in this section result from the dependency
of the one-time passwords on each other and on the reusable password of the user.
This paper presents a one-time password scheme that generates independent one-
time passwords for the users. Section 3.4 discusses how replication of the authen-
tication server is accomplished.

Independent One-Time Passwords 19



Hijacked Connections. In addition to the shortcomings listed above, there

is a weakness shared by most current authentication systems. After the

initial connection is authenticated, the remainder of the session remains

unchallenged. Therefore, any malicious intruder that can duplicate the

state of the authenticated client, while breaking off his connection, can

take over the session. Attacks such as these are alluded to by Bellovin

lBellovin 1989], and they are occurring more frequently lcert 1995].

3. A New Approach

This section presents an authentication scheme based on a new mechanism for

generating one-time passwords (OTPs) that are independent'

3. l. Pseudo-Random Functions

The new approach presented here is based on a class of functions called pseudo-

rand.om functions (PRFs). The notion of a PRF family was introduced by

[Goldreich et al. 1984]. A PRF takes an input and a key. The output is such that

for a random key, it is infeasible to distinguish between a PRF and a truly random

function with nonnegligible probability, given the function as a black box. It has

been suggested by [Bellare & Rogaway 1994) that [National Bureau of Standards

19771 is a good PRF.

3.2. Generating IndePendent OTPs

If OTPs are independent, then the authentication server must store them all indi-

vidually. This is an uffeasonable requirement for a.large system with many users.

However, if there is a way to generate all the passwords from a small amount of

information, then they cannot be independent. The technique described here uses

a pseudo-random function to generate OTPs from an initial secret key. Finding a

relationship between any two oTPs is equivalent to breaking the PRF.

Our implementation uses three iterations of DES (triple-DES) as the PRF.2

Our implementation utilizes this strength of triple-DES to produce independent

OTPs. For the remainder of the paper, we will assume that trþle-DES is a good

PRF.

2. We have also implemented the system with a keyed version of MD5 [Rivest 1992] because of export restric-

tions on triple-DES. In practice, any PRF will do.

20 Aviel D. Rubin



Before OTPs can be generated, a user must register with the authentication
server (AS). It is assumed that the AS has some means of authenticating the initial
registration.3 The AS maintains a table with certain information about each user,
including an identification number (ID) and a random key that is generated on his
behalf. This information, along with a couple of numbers, ,i and n, and some other
data are stored in the authenticatic¡n server's table. i, - 1 represents the number
of oTPs already used and n represents the total number of oTps for a user. n is
optional; it is included in our implementation for reasons that are explained later.
The following is a simplified table for 3 users.

ID# Secret Key
459332 da54f&cd703b75dc I
459I8I e0bf9bd6b0dfcee6 55
458932 b5b3c2c8d36bf2ab 1

500

500
450

user 459332 has never authenticated, and he may authenticate 500 times. on
the other hand, user 45918I has authenticated 54 times. The users are not aware
that a secret key has been assigned to them.

To calculate the i,th orP for a user, the authentication server computes:

X : f(Ku""r,i,)

where / is a suitable PRF and Kur", is the secret key associated with the user.
Thus, x is a function of the secret key of the user and the orp number, z. Any
change in the input will result in an xt that is unrelated to x. The AS then com-
putes:

OTp: g(X)

where g is a function that converts any shing of bits into a list of small, human-
readable passwords. In our implementation, we borrowed code from slKEy for
the function g. V/e used 3-DES for the function f . The secret key for each user is
I92 bits long and consists of three random DES keys. Thus,

x : D E S (D E S-t (D E S(i, KL"u), K?""",), K?",",)

This formula will produce a unique x for each value of i. Also, as long as the
secret keys for each user are different, the probability that it will produce the same
X for two users for the same value of z is negligible.

3. This process may take place offline or require that users go somewhere in person.

Independent One-Time Passwords 2l



3.3. Using the OTPs

This section discusses several applications of the one-time password scheme de-

scribed above.

3.3. l. Internet Billing

Our one-time password scheme is being used to authenticate users to a billing

server on the Internet. There are several serious considerations to any service

that is offered in such an insecure environment. It can be assumed that there is

eavesdropping on all communications, that workstations and user accounts may

be compromised, and that user keystrokes can be monitored- It is impossible to

store any long-term secret in such an environment. Therefore, any public-key jyi-
tem where the private key is stored in a password protected file (such as PGPTM

[Zimmerman 1992]) is inadequate.

In our billing system, the users register on the phone with a credit card. There

are various safeguards in place, and how this is achieved is not the subject of this

paper. The billing server (formerly the AS) generates 350 OTPs for the user by de-

fault, or more if requested. A booklet containing a numbered list of OTPs is sent

to the user by some trusted out of band mechanism.a When the user needs to au-

thenticate, he is prompted for OTP, k, which he looks up in the booklet. After the

OTP number k is entered, the billing server computes ¡he lcth OTP and compafes'

If they match, then authentication succeeds, otherwise it fails'

The scheme presented here is vulnerable to over the shoulder attacks. In a

public computer room at a university, it may be possible for someone to copy

passwords from the current page of a user's booklet while he is entering his OTP'

To counter this, the OTP numbers afe not requested sequentially. In fact, the OTPs

are guaranteed to be far apart in the booklet. This is accomplished as follows'

when the user registers, he is assigned a number, j,that such that z < i < n and

.i is relatively prime To n. j is also chosen to be closer to I than to r¿ if possible.

The billing server table from the previous example looks like this.

ID# Secret Key

459332 da54f8cd703b75dc

459181 e0bf9bd6b0dfcee6

458932 b5b3c2c8d3 6bf2ab

1

55

1

331
281
24r

500

500
450

4. E.g. registered mail.

PCP is a trademark of Phil Zimmerman.

Aviel D. Rubin22



To calculate the OTP number for the next authentication, the billing server
computes

k:'i*jmodn

k is always between r andn. Also, as i goes from 1 to n, k equals each value
between L and n exactly once. This results from the relative primality of j and n.
For example, the user 45918r will be prompted for passwords 2g1, 62,343, r24,
etc. There are 50 orPs on each page, so these orps wil appear on pages 6,2,7,
3, etc. Thus, it is unlikely that an intruder will be able to copy down an orp that
will be prompted for in the near future.

After user 459I8I enters OTP number 281, the authentication server computes

OT P;u : g(l (K+ss1s1, 281))

and checks to see if OTP;u matches what the user entered. orp number 62 is
calculated as

Of P¿2: g(f (K+sgßt,62)).

The corresponding value of k is used in the i,th orp calculation. After each suc-
cessful authentication, the value of ri is incremented until it reaches n. At that
point the user is removed from the table, and he must register again. Unsuccessful
authentication attempts are logged.

S/KEY can be used in this mode as well. A user prints out a list of OTPs and
uses them in the same manner as described above. However, due to the depen-
dence of the orPs on each other, they must be entered in the correct order. In
S/KEY, if a user accidentally enters the wrong oTp from his list, he compromises
all of the passwords between the one he enters and the correct one. Also, there is
no way to defend against over the shoulder attacks by jumping around the pass-
word list.

3.3.2. Limited Access

The scheme described above is especially useful when a company wishes to al-
low limited access to a business partner. For various reasons, one company may
wish to grant access to specific machines, services or files to several individuals
outside of their organization. To do this, a machine can be dedicated as a special
authentication server. Then, each of the privileged users is given a small list of
orPs. In this manner, a user can be allowed to log into a machine a maximum of
ten times. The one-time password technique described above allows for a flexible
authentication scheme.

Independent One -Time Pas swords 23



3.3.3. A Passive Anack

There is a passive attack on any authentication scheme where the user types in

an oTP manually [servita 1995]. We illustrate how an eavesdropper, Eve, can

use information from an active session to beat a legitimate user, Bob. Eve situ-

ates herself so that she can read any packet between Bob and the authentication

server. Assume that Bob must type in 6 short words from a known dictionary, and

thatBobtypesinthesewordsatnormaltypingspeed.SaythattheoTPisHoW
LOON CRY SOFT PAR MEND. Eve sets up several simultaneous authentica-

tion attempts to the authentication server. Immediately after Bob has typed HOW

LOON CRY SOFT PAR M, Eve automatically sends candidate oTPs to the au-

thentication server by trying all possible values for the last OTP word from the

dictionary. In all likelihóod, Eve will authenticate before Bob finishes typing the

oTP. This attack can be easily prevented by only allowing one authentication at-

tempt per user at a time.

3.4. Replication of the Authentication Server

As explained earlier, both S/KEY and SecurID are limited in their abilities to sup-

port multiple authentication sefvefs. However, using the independent one-time

passwordschemedescribedinthispaper,replicatingtheASiseasy.
The following example demonstrates how two authentication servers, ASr and

AS2, are used. The generalizatton to r¿ authentication servers is obvious' Say that

user 459181 registers with 500 OTPs. Half of the OTPs are used to authenticate

to AS1 and the other half are used for AS2. This is accomplished as follows' The

r¿ in the previous examples represents the maximum value of ¿, and the modu-

lus that determines the next oTP number. These two roles are now split into two

variables, n1 aÍrd nz. The former represents the maximum value of i for a user at

the AS, while the latter represents the modulus. AS1 stores the following for user

459181.

ID# Secret Key L

+Sq18t e0bf9bd6b0dfcee6 1 28t 250 500

AS2 stores the following for the s¿rme user:

ID# Secret Key

459181 e0bf9bd6bOdfcee6 251 28r 500 500

Thus, there are 500 oTPs associated with this user. 25O of these correspond

to each AS. Given the j value of 28|, AS1 will prompt for oTPs 28I, 62,343,

Aviel D. Rubin

n2ntJ

n2n1

24



124, etc. V/hen ,i reaches 250, the user will be removed from AS1's table. AS2
will prompt for 31 (2St * 281 mod 500),3I2,93,374, erc. As 281 and 500 are
relatively prime, no number appears in both lists. Given the oTP number and the
user key the actual OTP is easily computed by each AS. The user is given one list
without knowing which OTPs are associated with which AS.

3.5. Persistent Authentication with OTPy

Traditional authentication systems such as S/KEY and SecurID only authenti-
cate once per session. If the authentication succeeds, there is little to protect the
user from a hijacked connection. We implemented a prototype authentication sys-
tem that uses the OTP scheme described above for persistent authentication. That
is, authentication is repeated every t seconds, where ú is a configurable system
parameter. The persistent authentication is transparent to the user as long as the
connection is legitimate.

Unlike the Internet billing application above, persistent authentication requires
computing on the client side. This can only be achieved with a secure client ma-
chine or with a tamper resistant smart card (see Section 3.6). Our implementation
assumes a secure client machine; it was designed to map directly into a smart card
implementation. In our implementation, the authentication server has a table con-
taining user ID's, a secret key for each user (3 DES keys), and a number, z. These
are the same 3 data items in the earlier examples. However, for persistent authen-
tication, we also assume that each user is in possession of his secret key. These
keys must be distributed off-line. Ideall¡ they reside in a smart card.

For the initial authentication, the client software calculates the first orp,

9(f (K"".,,l))

and sends it to the AS. The AS performs the same calculation to verify the oTp.
'We 

use trþle-DES for the function, /, as before. Subsequent OTPs are gener-
ated by incrementing the number in the PRF. Next, the client forks a process that
sleeps, but wakes up every ú seconds and sends the next orP to the server. The
server sets a timer, and if the next OTP is not received in time, kills the connec-
tion.

If the OTP is received, and it is correct, then the server acknowledges it with
the next oTP. Thus, the client and the server mutually authenticate every ú sec-
onds, and two OTPs are used each time. If either side does not send the correct
orP at the right time, the connection is terminated. Thus, if an intruder hijacks
the connection, and he is not in possession of the user's secret key, his connection
is killed when the current time interval expires.

Independent One-Time Pas swords 25



3.6. Authentication with Smart Cards

The independent one-time password scheme described here is ideally suited for
smart card applications. As described in the previous section, each smart card

contains a secret key (3 DES keys, in our example). We assume that the tamper

resistant nature of smart cards means that there is no way to obtain any infor-

mation about the key without destroying it in the process. A virtually unlimited

number of OTPs can be computed on both the client and server side using a PRF,

such as triple-DES. The OTPs are independent, and thus, none of the shortcom-

ings associated with dependent OTPs applies. Many interesting applications can be

designed using smart catds, along with independent OTPs.

4. Conclusions

The independent OTP scheme described in this paper has been implemented' We

are currently using the authentication system described in Section 3.3.1 in our

billing servef. The advantages offered by the new technique for generating OTPs

are easy replication of the authentication server, persistent authentication for the

lifetime of a connection, and a natural mapping to smar.t card applications. The

calculation of each OTP requires one application of a pseudo-random function, as

opposed to the many iterations of S/KEY.

5. Acknowledgements

The author thanks Bill Aiello, R. Venkatesan, Milt Anderson, and Yacov Yacobi

for helpful comments on an early draft of this paper. The author also thanks Mike
Reitq Mihir Bellare, Stuart Haber, and Carlisle Adams for their advice.

26 Aviel D. Rubin



References

1. Mihir Bellare and Phillip Rogaway, Entity authentication and key distribution.
Douglas R. Stinson, editor, CRYPTO93, pages 232-249. Lecture Notes in Com-
puter Science No. 773, Springer, 1994.

2. Steve Bellovin, Security problems in the TCP/IP protocol suite, Computer Com-
munication Review, 19(2):3248, April 1989.

3. CERT, Cert advisory CA-95:01, January 1995.

4. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions, Proceedings of the 25th Annual Symposium on Foundations of Com-
puter Sciencø, pages 464479, 1984.

5. Neil Haller, The s/key(tm) one-time password system, Symposium on Network and
Distributed System Security, pages I 5 l-157, February 1994.

6. Robert Morris and Ken Thompson, Password security: A case history. CACM,
22(ll):594-597, November I97 9.

7. National Bureau of Standards, Data encryption standard, Federal Information
P ro c e s sin g Standards P ublic ation, | (46), 197 7 .

8. M. K. Reiter, The Rampart toolkit for building high-integrity services. K. P. Bir-
man, F. Mattem, and A. Schiper, editors, Theory and Practice in Distributed Sys-

tems (Lectwe Notes in Computer Science 938), Springer-Verlag, 1995. To appear.

9. R. Rivest, The md5 message digest algorithm, RFC 1321, Apnl1992.
10. Phil Servita, Personal communication, 1995.

ll. J. G. Steiner, B. C. Neuman, and J. I. Schiller, Kerberos: An authentication service
for open network systems, Usenix Conference Proceedings, pages l9l-202, Dallas,
Texas, February 1988.

12. P. Zimmerman, PGP User's Guide, December 4, 1992.

Independent One-Time Passwords 27


