
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Filterfresh: Hot Replication of Java RMI Server Objects

Arash Baratloo, New York University;
P. Emerald Chung, Yennun Huang, Sampath Rangarajan, and Shalini Yajnik,

Lucent Technologies, Bell Laboratories



Filterfresh: Hot Replication of Java RMI Server Objects

Arash Baratloo� P. Emerald Chung Yennun Huang

Sampath Rangarajan Shalini Yajniky

Department of Computer Science Lucent Technologies Bell Laboratories

New York University, 251 Mercer Street 600 Mountain Avenue

New York, NY 10012 Murray Hill, NJ 07974

Abstract

This paper presents the design and im-

plementation of a Java package called Fil-

terfresh for building replicated fault-tolerant

servers. Maintaining the correctness and in-

tegrity of replicated servers is supported by a

GroupManager object instantiated with each

replica to form a logical group. The Group

Managers use a Group Membership algorithm

to maintain a consistent group view and a Re-

liable Multicast mechanism to communicate

with other GroupManagers. We then demon-

strate how Filterfresh can be integrated into

the Java RMI facilities. First we use the

GroupManager class to construct a fault-

tolerant RMI registry called FT Registry|a

group of replicated RMI registry servers. Sec-

ond, we describe our implementation of the

FT Unicast|a client-side mechanism that

tolerates and masks server failures below the

stub layer, transparent to the client. We also

present initial performance results, and dis-

cuss how general purpose RMI servers can

be made highly available using the Filterfresh

package.

1 Introduction

Distributed object technologies have be-

come popular in developing distributed ap-

plications. Among these, object technologies

�baratloo@cs.nyu.edu. This work was done while

the author was a summer intern at Bell Laboratories.
yemerald,yen,sampath,shalini@research.bell-

labs.com.

such as CORBA [17], DCOM [4], and Java

Remote Method Invocation (RMI) [22, 20]

are the most popular. Although these middle-

ware platforms ease the development of dis-

tributed applications, they do not directly

improve the reliability of these applications.

As a result, application developers have to

implement their own mechanisms to improve

the reliability and availability of their applica-

tions. The task of developing fault tolerance

techniques for distributed object paradigms

is often tedious and error-prone. Therefore,

there is a great need to develop a generic,

portable and reusable tool that enhances the

reliability and availability of distributed ob-

jects.

In this paper we focus on using Java RMI

to implement reliable objects. In Java RMI,

an application consists of client and server ob-

jects. A client invokes a server's method using

the server's object reference. To make its ob-

ject reference available to clients, a server reg-

isters a tuple containing its object reference

and a string name with a name-server called

RMI registry. This operation is called bind-

ing. Given a string name, clients can get the

remote reference of a server registered under

that name by contacting the RMI registry.

This operation is called the lookup. There

could be many registries running in a net-

work, but, registry data sets among di�erent

registries are not shared or replicated. There-

fore, a client must have a priori knowledge of

hosts running RMI registries. From the fault

tolerance point of view, the current registry

implementation is a single point of failure for

RMI applications. For example, if one reg-

istry fails all of its data is lost and clients can-

not get object references of servers running at



that site anymore. As a result, even though

the servers are still alive they may not be ac-

cessible. This problem becomes even more

complicated when we make servers migrat-

able which forces them to re-register after a

migration. Therefore, to make it possible for

clients to �nd servers running on remote hosts

unknown to them, and to make RMI applica-

tions fault tolerant, it is necessary to enhance

the registry mechanism.

One way of improving the registry mecha-

nism is to replicate its data sets among all

nodes. Clients can then query any node

on a network to get a server's object refer-

ence without the need of identifying the right

registry �rst. To achieve this, we adopted

the hot replication scheme, i.e., updates to

any node are reliably propagated to all other

nodes, and changes are made consistently on

all sites. This approach ensures that the reg-

istry data sets are strongly synchronized.

We use the virtual synchrony model [3] to

implement FT Registry, our group of repli-

cated RMI registry servers. Virtual syn-

chrony and its underlying process group op-

erations are provided by toolkits such as

Isis [3] and Transis [6], in Java middle-ware

systems such as iBus [15], and in operat-

ing systems such as Amoeba [11] for build-

ing fault-tolerant applications. Based on

the success of such systems, same mecha-

nisms are used in Orbix+ISIS [9] and Elec-

tra [13] for adding fault-tolerance to CORBA,

in the work proposed by [1] for adding fault-

tolerance to other Object-Oriented systems,

and in systems such as [12, 14] in provid-

ing fault-tolerant distributed Name Servers.

Our challenge here is to integrate such mech-

anisms into the Java RMI system with mini-

mal changes while staying 100% Pure Java.

Our FT Registry, in addition to being able

to tolerate failures itself, provides the build-

ing block for fault-tolerant RMI application

servers. For example, a crashed server can

be restarted on a di�erent node and it can

register with another FT Registry. Since the

server's reincarnation (i.e., the new registra-

tion) is propagated to all nodes, any client

on the network can lookup the server's new

object reference. This does not solve all the

problems however. In the mean time, clients

client
application

server stub

Transport layer

server
application

server skeleton

remote reference
layer (RRL)

remote reference
layer (RRL)

Figure 1: RMI architecture

holding the old object reference may invoke

remote operations which will fail. To recover

from such a failure, we provide FT Unicast.

The FT Unicast object works below the stub

layer and gets a valid object reference and

retries the invocation whenever a server fail-

ure is detected, thus making the server mi-

gration and fail-over transparent to client ap-

plications.

In the next Section, we describe the Java

RMI architecture. Section 3 provides an

overview of the FT Registry and FT Uni-

cast fault-tolerance mechanisms. Section 4

describes the GroupManager class that is used

to manage the group of replicated RMI reg-

istries. Sections 5 and 6 describe implementa-

tion details of the two fault-tolerance mech-

anisms and give initial performance results.

Section 7 describes how the GroupManager

can be used to provide fault-tolerance to gen-

eral Java application servers through replica-

tion. Conclusions are presented in Section 8.

2 RMI Architecture

We briey describe the Java RMI architec-

ture in SUN's JDK1.1 reference implemen-

tations. In a nutshell, Java RMI enables

an object (client) to invoke methods of cer-

tain interfaces implemented by another ob-

ject (server) running on a di�erent Java Vir-

tual Machine either on the same host or on a

di�erent host.

The RMI architecture consists of three lay-

ers as shown in Figure 1: the stub/skeleton

layer, the remote reference layer (RRL) and

the transport layer [22]. On the server side,



for an interface to be invoked remotely, it

has to be derived from the Remote class.

The object that implements this interface

may derive from the UnicastRemoteObject

class of the RMI package. The current

UnicastRemoteObject uses TCP for low-

level transport.

The rmic complier takes a server object im-

plementation and generates two class de�ni-

tions, a stub object for the client and a skele-

ton object for the server.

On the server side, when the server

object is created, the constructor of

UnicastRemoteObject performs an

exportObject(). Inside exportObject(),

an UnicastServerRef object is instantiated

and exported. It creates a live reference

object (the transport layer) which contains

an IP address, a TCP port number and an

Object ID. It also creates the skeleton and

the stub at the server side. Then a mapping

from the Object ID to the stub and skeleton

is registered in an object table residing in the

transport layer.

On the client side, the application obtains

a reference to the server object from RMI reg-

istry or from other objects. If the client does

not have the stub code in the local host, the

stub is dynamically loaded from the server

side. The stub is a layer between the appli-

cation and the lower layers of the RMI mech-

anism. The main function of the stub is the

marshaling/unmarshaling of requests and re-

sults and passing them between the client and

the Remote Reference Layer. The client stub

contains a RemoteRef object. The RemoteRef

object encapsulates the transport layer un-

derneath. The transport layer gets the live

reference of the server object and establishes

the connection to the server side. The client

stub calls invoke() method in RemoteRef

to make the call to the remote site. Once

the call gets to the server side endpoint, the

server side transport checks the object table

and maps the Object ID to the corresponding

skeleton to dispatch the request. The skele-

ton unmarshals the parameters from the re-

quest and then makes the up-call to the ob-

ject. The results are marshaled by the skele-

ton and passed back to the client side.

RMI registry is a simple name server pro-

vided by the RMI package. A server object

registers a name using the bind() method

call. The registry keeps a name to remote

object mapping. It listens at a well-known

port, typically, 1099. Any client can get a

reference of a remote object by name via the

lookup() method call.

3 Overview of FT Registry and

FT Unicast Fault-Tolerance

Mechanisms

Filterfresh is a Java package for building

highly-available servers in presence of pro-

cesses crashes and network failures. In apply-

ing Filterfresh to Java RMI, we have imple-

mented a Fault-Tolerant Registry (FT Reg-

istry) service. This service is then used to

mask server failures in RMI client/server ap-

plications at the client side, completely trans-

parent to the client (FT Unicast).

3.1 Replicated RMI Registry - FT
Registry

RMI registry with the \local registry" re-

quirement where application servers can bind

services only with the registry local to the

server machine, is too restrictive for failure re-

covery. This also restricts the dynamic migra-

tion of servers from one machine to another

since there is no standard method for clients

to �nd the location of application servers. We

can eliminate the problem of the registry be-

ing a single point of failure and the problem

of locating application servers by replicating

the registry and distributing the replicas over

di�erent machines on the network. Thus, we

provide a replicated RMI registry on a net-

work, and manage the replicas to maintain

consistent data sets. We also perform failure

detection of the RMI registry replicas and if

the registry replicas are manually restarted,

enable them to transfer state from one of the

available replicas and synchronize their state.

The main problem then is to keep all repli-

cas of the registry servers synchronized in



ft registry

rmi registry

group mgr

ft registry

rmi registry

group mgr

server

b
in

d

mult icast

Figure 2: Server binds with the FT Registry

spite of process failures and network failures.

It is well known that the process group ap-

proach tolerates these failures. A solution

based on the process group approach would

provide the following.

1. Allow the replicas of the registry server

to form a group.

2. Let each of the replicas maintain a con-

sistent view of the group; i.e, let them be

aware of who is in the group and who is

not, in a consistent way.

3. Let the replicas propagate updates

through a group multicast primitive (this

is performed through a GroupManager

class explained below); for example, if a

server object binds with one of the reg-

istry replicas, this will be reliably prop-

agated to other replicas so that they can

update their data set to reect this event.

4. Provide for total order on the messages

that are used to propagate updates so

that data sets are updated, by all repli-

cas, in the same global sequence and

hence in a consistent way; for example,

if a server A binds with one of the reg-

istry replicas while another registry B

joins the group of registry objects, we

guarantee that the two events will be ob-

served in the same order by all replicas.

This ensures that either (1) the data set

transferred to B is the image before A's

registration followed by the registration

event, or (2) the data set transferred to

B is the image after A's registration.

The server group is managed by imple-

menting a Group Membership algorithm. We

ft registry

rmi registry

group mgr

ft registry

rmi registry

group mgr

client

lo
o

k
u

p

Figure 3: Client looks-up the FT Registry

provide a Java GroupManager class that im-

plements the group membership algorithm

using a Reliable Multicast primitive. The

GroupManager object is instantiated in each

replica of the RMI registry server as shown in

Figure 2. The group managers used by the

di�erent replicas of the RMI registry form

a process group. The GroupManager object

supports the following operations.

1. Group creation: When a registry server

is instantiated for the �rst time, its group

manager creates a group with this as the

only member.

2. Join: When another server replica is in-

stantiated, its group manager joins the

group by �rst transferring state from an

existing replica, and then updating the

group view (before any other operation

can take place). This ensures uniform

view and consistent states among repli-

cated registries.

3. Leave: A server replica is allowed to leave

the group.

4. Failure detection: The group managers

ping other group managers periodically

and if they detect a failure perform a

change of view for the group.

5. Reliable multicast: Guarantee that mes-

sages directed to all group members are

atomic and totally ordered across all

replicas. The group managers them-

selves multicast the above group op-

erations (such as join), and FT Reg-

istry servers multicast registry opera-

tions (such as bind) using the reliable

multicast provided by the GroupManager

class.



FT Registry
client
stub

R R L

transport

R R L

skel
server

transport

R R L

skel
server

R R L

skel
server

Ouch!

Figure 4: Application server failure detected

on a remote method call

FT Registry
client
stub

R R L

transport

R R L

skel
server

R R L

skel
server

"reverse" lookup

t ransport

Figure 5: Stub does a reverse lookup on the

FT Registry

Figures 2 and 3 show examples of how the

GroupManager object is used by the FT reg-

istry. We adopt the write-all-read-one seman-

tics. In Figure 2 when an application server

binds with the local RMI registry, this in-

formation is updated locally as well as reli-

ably multicast to all other group managers

so that they can update their RMI Registry

replicas. Figure 3 shows a client performing

a lookup operation. In this case, the lookup

is performed locally and is not multicast to

the other group managers.

The GroupManager implementation is de-

scribed in Section 4 and the FT Registry im-

plementation using the GroupManager is de-

scribed in Section 5.

3.2 Transparent Client-Side Fault-

Tolerance - FT Unicast

FT Registry allows multiple application

servers providing the same service and run-

ning on di�erent hosts to register under the

same name. Thus, RMI clients observe the

same interface using our fault-tolerant ser-

vices as with standard RMI servers, however,

we use this feature to mask server failures

completely transparent to clients.

We accomplish masking of server failures

as follows. In a standard client/server RMI

applications, a client �rst gets a remote ref-

erence of a server object, typically by a name

lookup from the registry server. When the

client makes a method call on a non-faulty

application server, the stub uses this remote

reference to contact the server. On the other

hand if the application server has failed, an

exception is raised. Now consider a set of

replicated application servers registered with

a group of FT Registry servers under the same

name. If the application server has failed, the

raised exception is caught at the remote refer-

ence layer as shown in Figure 4. The remote

reference layer performs a reverse lookup

at any of the registries using the stale refer-

ence to the faulty application server, as shown

in Figure 5. The FT registry returns the name

of the faulty application server. This name

is used to make a normal lookup to get a

fresh reference to an available replica of the

server object. The method invocation is re-

tried with the new server and the results are

returned to the client. This provides an illu-

sion of a valid object reference to the client.

The client is unaware of the actions that the

remote reference layer takes between the time

it makes a remote method invocation to the

time it receives the results.

The FT Unicast implementation is ex-

plained in more detail in Section 6. In the

next section we describe the GroupManager

class implementation.

4 Implementation of the

GroupManager

The process group approach is at the

heart of our system in providing fault tol-

erant services. The process group function-

ality is provided by the java GroupManager



class. To achieve fault-tolerance, any object,

such as the RMI Registry, can instantiate a

GroupManager object and use its services. In

the rest of the section, we will refer to objects

that instantiate and use the services of the

GroupManager as clients. The GroupManager

class ensures atomic and totally ordered group

operations in presence of crash failures. The

atomicity assures that that an event is either

seen by all group members or none. The to-

tal ordering assures that all group members

observe the events in the same relative order.

The protocol assumes an unreliable point-

to-point message delivery. The communica-

tion is implemented with UDP [19]. UDP

datagrams are unreliable, and hence, appro-

priate mechanisms such as acknowledgement,

retries, and timeouts are provided at a higher

level to ensure correct group operations. We

chose UDP as opposed to other protocols,

such as TCP, for three reasons. First, a

connection-less protocol is less rigid and can

tolerate transient network outages. Second,

since our system had to incorporate appro-

priate high-level mechanisms for communica-

tion and processes failures, any bu�ering and

retransmission by the communication layer

would have been redundant. And �nally be-

cause UDP is faster. In retrospect, and as

the experiments will show, the performance

gained by using UDP did not have a large

impact on the overall system performance.

A GroupManager object runs its own

thread of control. Client-to-GroupManager

interactions such as multicast, are done

through method invocations. On the other

hand, GroupManager-to-client interactions,

such as GroupManager informing a client ap-

plication of receipt of a multicast message, are

done through asynchronous call-back func-

tions. Through our initial experiments with

building fault-tolerant systems such as the

FT Registry, we have found that call-backs

work well in integrating group membership

services into object oriented systems. We

are considering other models for future imple-

mentation, in particular, the new event model

introduced in Java version 1.1.

4.1 Group Operations

The GroupManager class implements the

following �ve basic operations: group cre-

ation, join, leave, reliable multicast, and re-

set group view. We describe each operation

in turn.

Group Creation: A GroupManager object

can create a new group at any time by invok-

ing the public method createNewGroup().

This invocation results in creation of a new

group having the GroupManager object as its

only member. Once it has become a group

member, the GroupManager object can be

queried for other group members, the leader

of the group (described below), and it can

multicast messages to all members.

Join: A GroupManager object that does

not already belong to a group can join

an existing group. The public method

joinExistingGroup() takes a host name

and a port number (of any one of the

group members) as parameters. Once

joinExistingGroup() is called, the control

is passed to the GroupManager object and

the calling thread blocks. The GroupManager

provides the atomicity and the total order-

ing of the join operation by using the group

reliable multicast operation (as described be-

low). Once the original group members re-

ceive the join event, the state of one of the

original members is transferred to the join-

ing member. In our implementation we have

found that object serialization is a convenient

mechanism to implement state-transfer. Af-

ter the state of the new member is brought

up to date, the calling thread is unblocked.

Leave: The leave operation is implemented

by the public method leave(). Its imple-

mentation is analogous to the join operation

in blocking the calling thread, multicasting

the leave event, and unblocking the calling

thread when the multicast succeeds.

Reliable Multicast: In every process

group there is a distinguished member called



the group leader. The group leader runs the

same code as other members, and interacts

with the client application the same way, the

only di�erence is that it has more responsibil-

ity. If the group leader crashes, or if another

member suspects it of crashing, the group can

elect any other member to function as the new

leader.

When a client application invokes

the createNewGroup() method of an

GroupManager object, it results in the

creation of a new group. The GroupManager

object is the only member of this group, and

by default, it becomes the group leader.

A GroupManager object exports a public

method called multicast() that can be in-

voked to send an atomic and totally ordered

multicast message to all the group members.

When a client invokes the multicast(),

the message is passed to the GroupManager

thread and the calling thread blocks. The

GroupManager stores a copy of the message

in a local bu�er, then forwards it to the

group leader and waits for an acknowledge-

ment of the operation's success before un-

blocking the calling thread. This message

is not guaranteed to reach the group leader

since UDP datagrams are unreliable. For

this purpose, the GroupManager sets up a

timer and resends the message to the group

leader if the timer expires before receiving the

acknowledgement. When the group leader

receives the message, it increments a mes-

sage sequence number and sends the message

along with the sequence number to all group

members. The sequence number serves to

ensure duplicate messages are handled prop-

erly. Once the group leader receives the ac-

knowledgements, it noti�es the object that

initiated the multicast that the operation has

succeeded. On the other hand, if the group

leader fails to receive the acknowledgements

after a set number of retries and within a

given timeout period, it initiates a reset group

view operation to recover from potential fail-

ures.1

1In practice, we observed that system performance

is very sensitive to the timeout period and the num-

ber of retries. If the numbers are set too high, the

system takes a long time to detect failures or to re-

send dropped message. For numbers that are set too

low, it causes the system to send excessive messages

and to initiate failure recovery too often.

From the above discussion, we see that ev-

ery group operation is issued from the same

process, namely the group leader, and opera-

tions are carried out one at a time. Therefore,

in the absent of process crashes, every group

operation is atomic and group members ob-

serve the events in the same order.

The multicast protocol that we imple-

mented can be categorized as ack-based since

messages require explicit acknowledgement.

See [2, 10, 16, 11] for other protocols that are

not ack-based but provide the same seman-

tics.

Reset Group View: Informally, a group

view refers to the list of group members that

a GroupManager object knows about, along

with the unique id of each member, the iden-

tity of the group leader, and a view incarna-

tion number. The view incarnation number is

a counter that is incremented with each view

change. The view incarnation number is in-

cluded in every message and it serves to en-

sure that a message directed to an old group

will not be accepted by a new group.

Reset group view refers to a member ini-

tiating failure detection and wanting to re-

establish the group view. This operation

is generally used to recover from failures,

that is, after one GroupManager suspects an-

other of failure. However, a client applica-

tion can, at any time, initiate a reset group

view operation by invoking the public method

resetView(). Once a GroupManager object

enters a reset view mode it blocks all other

operations until a new view is installed.

Our reset view protocol is based on [11].

It runs in two phases. The �rst phase of the

protocol determines a new group view, i.e.

establishes which members are non-faulty and

chooses the group leader; the second phase of

the protocol brings the members up-to-date,

and then installs the view determined in the

�rst phase.

In the �rst phase, any GroupManager that

invokes the resetView() method becomes

a coordinator. Thus, there may be more

than one coordinator at a given time running

the �rst phase. A coordinator invites other



0

10

20

30

40

50

60

70

T
i
m
e
 
(
m
s
e
c
)

1 512 1024

Message size (bytes)

local RMI

remote RMI

multicast-1

multicast-2

multicast-4

multicast-8

Figure 6: Performance of group multicast operation. The x-axis denotes the message size and

the communication method. The y-axis represents time in milliseconds.

members to create a new view by sending a

request view change. A non-faulty mem-

ber that is not a coordinator accepts the in-

vitation by responding with ok view change

message. A coordinator accepts the invita-

tion of another coordinator only if the invit-

ing coordinator has a larger id number. Once

a coordinator has received ok view change

messages from a majority of group members,

it continues to the second phase. If a coordi-

nator is not able to successfully invite enough

members within a timeout period, it repeats

the �rst phase again. If a non-coordinator has

not installed a new view within a timeout pe-

riod, it becomes a coordinator and starts the

�rst phase. Because it is required for a co-

ordinator to successfully invite a majority of

old group members, at most one coordinator

could reach the second phase.

In the second phase, the coordinator �rst

makes sure that every member has the latest

message, i.e., the message with the largest se-

quence number. It then creates a view with

the new members, the new group leader (it-

self), and the new incarnation number. The

view is then sent to every member to install.

The second phase completes when the coordi-

nator receives an acknowledgement from ev-

ery new member. If the coordinator does not

receive all acknowledgements within a speci-

�ed time, it repeats the �rst phase again.

Notice that the process of constructing a

new group view will block until enough sur-

viving group members can be found. It is

well known that it is impossible to have a

deterministic, correct and terminating algo-

rithm to achieve consensus [7] in the presence

of even a single failure and to build reliable

failure detectors [5]. In the presence of these

negative results, this protocol guarantees cor-

rectness if and when it terminates|that is,

it will block until a consistent state can be

constructed. Speci�cally, this protocol guar-

antees that if it terminates (1) all surviving

members have a consistent group view, and

(2) all the members in the new group view

successfully receive all the messages sent by

any member of the original group view before

the failure.

4.2 Experiments

Here we present initial performance results

for our reliable group multicast implementa-

tion. Experiments were conducted using up

to 8 PentiumPro/200 machines connected by

a Fast Ethernet hub. We used JDK1.1.1 run-

ning on Linux RedHat 4.0, and compiled with



optimization turned on. Reported times are

elapsed times, and hence account for all over-

heads.

We measured the elapsed time for a group

multicast operation to complete as measured

from the invocation of the multicast until the

invocation thread unblocked. This includes

the time for the client to forward the mes-

sage to the group leader, the group leader to

reliably multicast the message, and then for

the group leader to acknowledge the success

of the multicast to the initiating client. We

timed the operation for groups of size 1, 2, 4

and 8, and messages of size 1, 512 and 1024

bytes. With the exception of the group of size

one, the multicast was initiated from an ar-

bitrary member other than the group leader.

We also measured the time for sending equiv-

alent size messages using a single Java RMI.

The results are shown in Figure 6.

Our �rst observation is a counter-intuitive

one. We found that RMI is faster across two

remote machine than on single host. We con-

tribute this to the ine�ciency of the Java

runtime system we used|the faster intra-

machine communication could not compen-

sate for the shortage of resources. We were

also surprised by the ine�ciency of multi-

casts to groups of size one. When a group

consists of only one object, there are mes-

sage processing times, but there are no mes-

sage transmissions. Multicasts took approx-

imately 12 milliseconds. We attribute some

of this to ine�cient Java threads implemen-

tation under Linux. For example, we found

that threads blocked on user inputs are never

preempted|the work around seemed to have

been expensive. Furthermore, we used object

serialization for constructing low-level control

messages, and as reported in [8], there is a

high overhead associated with object serial-

ization due to ine�cient bu�ering and copy-

ing of the data. Considering that we sacri-

�ced e�ciency for simplicity in choosing the

multicast algorithm, the GroupManager class

shows reasonable scalability. For example, in

increasing the group size from 1 to 8, we ob-

served an average slowdown of 5.

5 Implementation of FT Registry

The GroupManager described in the last

section is used to build the FT Registry. In

Java RMI terminology, a registry is a remote

object that provides a basic name server func-

tionality. The Registry interface and the

LocateRegistry classes provide this func-

tionality. Two methods provided by the RMI

registry are of special interest to us: bind()

| to map a remote (server) object to a string

(service name), and lookup() | to get a re-

mote object associated with a string. The

rmiregistry provided in JDK1.1 is a shell-

script command that invokes RegistryImpl,

an implementation of the Registry interface.

5.1 Replication Approach

A limiting factor of the existing RMI sys-

tem is that the RegistryImpl successfully

binds an object only if it is local to its ma-

chine. This introduces two problems in build-

ing client/server systems based on Java RMI.

First, a client must have a priori knowledge of

the host running the registry and the server.

Second, the RMI registry becomes a single

point of failure.

We address both problems by providing

a replicated registry service, and by main-

taining a consistent state among all replicas

through the state machine approach [18]. Our

implementation consists of the FTRegistry

interface, and LocateFTRegistry and

FTRegistryImpl classes. We also extends

the standard interface by introducing the

multiBind() method. The multiBind()

method is a mechanism for multiple replicas

to register under the same name. When this

happens, the lookup()method returns an ar-

bitrary object at random. This means that by

replicating critical services, their loads will

also be dispersed without client awareness,

and without any e�ort on the part of the pro-

grammer.

Our FTRegistryImpl class is a replicated

implementation of FTRegistry, replicated in

the sense that instances of this class form

and maintain a logical group for the du-



ration of their existence. By default, the

�rst FTRegistryImpl object forms a single-

ton process group. Other replicas perform

a group-join and a state-transfer, in which

the state of the new member is brought up-to

date, before becoming functional. The man-

agement and the communication among the

group members are provided by embedded

GroupManager objects.

A FTRegistryImpl object is composed

of two logical layers: the RMI registry

and group manager layers. The registry

layer contains the actual data structures

for object name-reference mappings. It is

through private methods implemented at this

layer that mappings can be added, removed

and queried. The public methods such

as lookup(), bind() and multiBind() are

wrappers. When such methods are invoked,

depending on whether the operation alters

the state of the registry map, they are either

passed up to the registry level to execute the

corresponding private methods on the local

data, or passed down to the group manager

layers to multicast to all replicas.

To ensure consistent states across all

FTRegistryImpl objects, operations that al-

ter the registry map must be executed by

all replicas. For illustration purposes, con-

sider the case when a server object invokes

the bind() operation of a FTRegistryImpl

running on its local host. This is depicted in

Figure 2. The group manager inspects the

method and determines that the execution

will result in modi�cation to the registry map.

Since the operation needs to be executed by

every replica, the group manager sends the

event to others using the GroupManager's

group multicast. This ensures that the maps

of all registry replicas contain the same infor-

mation at all times.

The hot replication of registry maps has

two clear advantages. First, the RMI nam-

ing service will no longer remain a single

point of failure. Second, it simpli�es the

lookup() operation. Clients no longer need

a priori knowledge of the server's host, since

a lookup() operation performed by any reg-

istry (see Figure 3) will return a server regis-

tered anywhere on the network.

5.2 Supporting Reverse Lookup

As mentioned earlier, we have implemented

a system that can transparently mask server

failures. Because of the transparency require-

ment, we had to work below the code that

is generated by the Java and RMI compil-

ers, see Figure 1. For this purpose, a fault

has to be detected and masked at the Remote

Reference Layer (RRL) or below. How-

ever, at the RRL level, concepts of server

objects and server names do not exist, there

are only remote reference objects and connec-

tions. Thus we need a mechanism that could

construct a connection to a replicated server,

given a stale connection to a crashed server.

We addressed this problem as follows. First

we extend the mappings of our FT Registry.

For each server object, in addition to stor-

ing its name and remote object, we store its

connection object (live reference). With the

added information a reverse lookup operation,

where a server name can be looked up based

on its live reference, becomes possible. Thus,

given a server's live reference, our FT Reg-

istry can return references to other replicas

of that server. In the next section we will

discuss how this functionality is used.

Also note that registering the live reference

is transparent to users|the server object

simply calls bind() or multiBind() meth-

ods of our DistributedNaming class that ex-

tends the standard Naming class. Access-

ing the live reference and passing it to the

FTRegistryImpl are hidden in our implemen-

tation.

5.3 Experiments

We measured the time for bind() and

lookup() operations using the RMI registry

provided with JDK1.1, and using our FT Reg-

istry. Experiments were conducted in the

same setting as in Section 4.2. The results

are shown in Figure 7.

Our implementation of lookup() is fast,

even when it provides a richer functionality.

On the other hand, our bind() operation is



0

10

20

30

40

50

60

70

80

T
i
m
e
 
(
m
s
e
c
)

bind lookup

Operation

RMI Registry (local)

RMI Registry (remote)

FT Registry-1

FT Registry-2

FT Registry-4

FT Registry-8

Figure 7: Performance of FT Registry. The x-axis contains the lookup() and bind() opera-

tions for both the standard RMI registry and our fault tolerant implementation. The y-axis

represents time in milliseconds.

slower, since such events must be sent to all

replicas and the new entry becomes visible at

remote hosts. This functionality is not pro-

vided by the standard RMI registry service.

Again, our implementation of registry service

seems to scale reasonably well. For example,

a bind operation with a group of 8 registry

servers is approximately 2.5 times slower than

a group of size 1.

6 Implementation of FT Unicast

On the client side of an RMI application,

a stub object contains a handle for the re-

mote object that it represents. This handle is

represented by the RemoteRef interface. The

remote reference is used to make method in-

vocations on objects for which it is a refer-

ence. The stub object is exported by the

server side to the client side. When a client

makes a remote method invocation on an ob-

ject through its stub, �rst the newCall()

method of the corresponding remote reference

is invoked by giving the remote object name

and the operation in the object that needs to

be performed. The newCall() method ini-

tiates a new connection and returns an ob-

ject of type RemoteCall interface. Then, the

invoke() method of the remote reference is

called with this RemoteCall object as the pa-

rameter to execute the remote method over

this connection. The remote method is exe-

cuted by calling the executeCall() method

of the RemoteCall object.

In order to implement FT Unicast, we im-

plemented our own versions of the RemoteRef

and the RemoteCall interfaces. This works as

follows. When the executeCall() method

is called in our implementation of the

RemoteCall interface, we pass the control of

execution to the underlying (and unmodi�ed)

RMI mechanism through a method call. If

this call is successful, then the result from

the remote method invocation is returned to

the user. If the call is unsuccessful because

of server failure, the existing connection that

has been established inside the RemoteRef

is released and the live reference for this

failed server is acquired from the RemoteRef.

Then, the local RMI registry is contacted �rst

with this live reference to get the name of

the server, and then again with the name

of the server to get a new live reference

for another replicated server. These func-

tionalities are provided by our distributed

RMI registry through the implementation



of reverseLookup() and lookupLiveRef()

methods. The latter method, if given a repli-

cated server name as a parameter, randomly

returns a live reference for some replica of the

server. We do not need to get a complete

object reference for the server as we already

have a stub for the server. We only need a

live reference to establish a connection to an-

other available replica of the server. Then

the old live reference (of the now unavailable

server) at the remoteRef is replaced by the

new reference using the setRef() method of

the corresponding remoteRef. Again the pro-

cess is repeated by making the RemoteRef

establish a new connection, instantiate a

new RemoteCall object and then calling the

invoke() method, until the remote method

invocation is successful. Then the results are

returned to the client.

The process explained above is executed

transparently to the client. That is, the client

makes only a single method invocation on a

remote object server and if this server is un-

available, the remote reference layer masks

this failure by �nding an available server, ex-

ecuting the method and eventually returning

the results of this method invocation to the

client.

As we mentioned earlier, we have our

own implementation for the RemoteRef in-

terface. Because this handle is exported

from the server side, we need to make

sure that this handle is correctly bound to

our implementation before it is exported

from the server side. This is done as fol-

lows. In Java RMI, the server object in-

herits from the UnicastRemoteObject which

is an extension of a remote server. In-

stead, we have our own extension that mir-

rors the UnicastRemoteObject which we

call the FTUnicastRemoteObject. In our

case, when the server implementation is in-

stantiated, the exportObject() method of

the corresponding FTUnicastRemoteObject

is called. This method instantiates an object

of class FTUnicastServerRef and calls the

exportObject()method of this object. This

method sets the skeleton to the proper skele-

ton class, the stub to the proper stub class by

setting the RemoteRef (which in our case is

of type FTUnicastRef) correctly, and creates

a binding between the remote object and the

server
skel

R R L

group
mgr

server
skel

R R L

group
mgr

server
skel

R R L

group
mgr

server
skel

R R L

group
mgr

cl ient
s tub

R R L

transport
t ransport

Figure 8: Highly available server architecture

stub. The stub object is then exported to the

client side.

In the next section, we discuss how the

GroupManager class can be used to build

fault-tolerance into any general purpose Java

application server through replication.

7 Implementing Highly Avail-

able Application Servers

Our implementation of the

FTUnicastRemoteObject class enables a

client to transparently recover from server

failures. It works by allowing multiple servers

to register under the same name, and in

the event of a failure, it redirects a client's

request to another server. This method

only works however, for state-less servers.

That is, servers that do not modify their

state based on client requests. An HTTP

server is an example of a state-less server.

State-full servers on the other hand require

a general solution that is not provided by

FT Unicast. In this section we address

the general problem by integrating our

GroupManager and FTUnicastRemoteObject

class implementations, and provide a general

architecture.

The GroupManager class has so far been

used to construct the highly-available FT

Registry, a state-full server. This concept can

be generalized to make any application server

fault-tolerant|by replicating the server and

using GroupManager class to manage repli-

cas. An architecture for such a highly avail-

able server is shown in Figure 8. In this case,

the group managers ensure reliable ordering



of events across all the server replicas and

guarantee that servers have a consistent state.

Failure detection of servers can be performed,

as in the FT Registry, by the group managers

pinging each other in the background. Simi-

larly, dynamic addition of server replicas can

be allowed by transferring the state of an ex-

isting server to the newly added replica.

The ability to detect server failures, and

to transparently redirect a client's request

to a replicated server is another key in-

gredient in our design. We have already

demonstrated that this functionality can be

integrated within the Java RMI architec-

ture at the RRL level, by implementing

FTUnicastRemoteObject class. But unlike

the FTUnicastRemoteObject class, here the

client has the illusion of a single server but

in reality there are replicated servers that are

coordinated by the group managers.

Currently, we are implementing a

FTMulticastRemoteObject class that can be

used in place of the UnicastRemoteObject

class provided by JDK1.1. The

FTMulticastRemoteObject class will enable

replicated servers to provide the illusion of

a single server to a client. A server that

inherits this class will become a member of

a multicast group and any remote method

calls to this server object will be multicast

to all the replicas in the group.

8 Conclusions

In this paper we presented the design of

Filterfresh, a Java package that provides sup-

port for building fault-tolerance into repli-

cated Java server objects by implementing

an underlying Group Communication mech-

anism. We described the GroupManager class

that is instantiated with each replica and im-

plements the group communication mecha-

nism. We showed how the GroupManager

class can be used to construct a fault-tolerant

RMI registry server { FT Registry. We also

described the FT Unicastmechanism that en-

ables application server failures to be toler-

ated at the client stub layer, transparent to

the client, using the FT Registry. Future

work includes completing the implementation

of the FTMuliticastRemoteObject class that

enables the group manager support to be gen-

eral so that it can be used to make any appli-

cation server highly available and also exten-

sions to Filterfresh to support nested invoca-

tions which will be required in this case.

References

[1] G. Beedubail, A. Karmarkar, A. Guri-

jala, W. Marti, and U. Pooch. An Algo-

rithm for Supporting Fault Tolerant Ob-

jects in Distributed Object-Oriented Op-

erating Systems. In Proc. Fourth Inter-

national Workshop on Object-Oriented

Operating Systems, 1995.

[2] K. Birman, A. Schiper and P. Stephen-

son. Light-weight Causal and Atomic

Group Multicast. ACM Transactions on

Computer Systems, August 1991.

[3] K. Birman and R. Van Renesse. Reliable

Distributed Computing with ISIS Toolkit,

IEEE Computer Society Press, 1994.

[4] N. Brown, C. Kindel. Distributed

Component Object Model Protocol {

DCOM/1.0. Internet Draft, 1996.

[5] T. Chandra, V. Hadzilacos and S. Toueg.

Impossibility of group membership in

asynchronous systems. Technical Report

95-1533, Computer Science Department,

Cornell University, August 1995.

[6] D. Dolev, D. Malki, and R. Strong. A

Framework for Partitionable Member-

ship Service. In Proc. of the 15th An-

nual ACM Symposium on Principles of

Distributed Computing, 1996.

[7] M. Fischer, N. Lynch and M. Peterson.

Impossibility of Distributed Consensus

with One Faulty Process. Journal of the

ACM, April 1985.

[8] S. Hirano, Y. Yasu, and H. Igarashi.

Performance Evaluation of Popular Dis-

tributed Object Technologies for Java.

In Proc. of ACM Workshop on Java for

High-Performance Network Computing,

1998.



[9] IONA Technologies. http://www-

usa.iona.com/Press/PR/Isis.html.

[10] W. Jia. Implementation of a Reliable

Multicast Protocol. Software Practices

and Experience, July 1997.

[11] M. Kaashoek. Group Communication

in Distributed Computer Systems. Ph.D

Thesis, Vrije Universiteit, Netherlands,

1992.

[12] M. Kaashoek, A. Tanenbaum, and K.

Verstoep. Using Group Communication

to Implement a Fault-Tolerant Directory

Service. In Proc. of the 13th Interna-

tional Conference on Distributed Com-

puting Systems, 1993.

[13] S. Ma�eis. Adding Group Communi-

cation and Fault-Tolerance to CORBA.

In Proceeding of USENIX Conference

on Object-Oriented Technologies, June

1995.

[14] S. Ma�eis. A Fault-Tolerant CORBA

Name Server. In Proc. of Symposium on

Reliable Distributed Systems, 1996.

[15] S. Ma�eis. iBus { The Java Intranet

Software Bus.

http://www.softwired.ch/ibus.htm.

[16] L. Moser, P. Melliar-Smith, D. Agarwal,

R. Budhia and C. Lingley-Papadopou-

los. Totem: A Fault-Tolerant Multicast

Group Communication System". Com-

munications of the ACM, vol. 39, no. 4,

pp. 54{63, April, 1996.

[17] Object Management Group. The Com-

mon Object Request Broker: Architec-

ture and Speci�cation 2.1, 1997.

[18] F. Schneider. Implementing Fault-

Tolerant Services Using the State Ma-

chine Approach: A Tutorial. ACM Com-

puting Surveys, December 1990.

[19] R. Stevens. UNIX Network Program-

ming, Prentice Hall, 1990.

[20] Sun Microsystems. Remote Method In-

vocation Speci�cation, 1997.

http://java.sun.com/products/jdk/1.2/

docs/guide/rmi/index.html.

[21] Y. Wang, Y. Huang, K. Vo, E. Chung

and C. Kintala. Checkpoint and its ap-

plications. In Proceedings of the 25th

IEEE Fault Tolerant Computing Sympo-

sium, June 1995.

[22] A. Wollrath, R. Riggs and J. Waldo. A

Distributed Object Model for the Java

System. USENIX Journal, Fall 1996.


