
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Dynamic Management of CORBA Trader Federation

Djamel Belaid, Nicolas Provenzano,
and Chantal Taconet

Institut National Des Telecommunications

Dynamic Management of CORBA Trader Federation

Djamel Belaïd, Nicolas Provenzano, Chantal Taconet1

Institut National des Télécommunications
Evry, France

1 INT, 9 rue Charles Fourier, 91 011 Evry Cedex, France.
{Djamel.Belaid, Nicolas.Provenzano, Chantal.Taconet}@int-evry.fr

Abstract

In Wide Area Networks, tools for discovering objects
that provide a given service, and for choosing one out
of many are essential. The CORBA trading service is
one of these tools. A trader federation extends the
limit of a discovery, thanks to the cooperation of sev-
eral trading servers. However, in a federation, coop-
eration links are manually and statically established.
In this article, we propose an Extended Trading Serv-
ice, which manages a trader federation dynamically.
With Extended Trading Service, optimized links be-
tween traders are automatically set up thanks to the
use of a minimum-weight spanning tree. Cycles in
discovery propagation are eliminated. Links evolve
dynamically in order to adapt to the modification of
the underlying topology and the failure of an interme-
diate trader or link. The Extended Trading Service is
able to organize discovered objects from the nearest to
the furthest according to a distance function chosen for
the federation. Such management is provided by spe-
cialized trading servers conforming to OMG Trading
Service Specification.

1. Introduction

The expansion of Wide Area Networks (WANs) has
already led to information superhighways. From now
on, a huge number of computer services are being de-
veloped and made available on WANs. These services
should be available from a wide range of computer
stations and through a wide range of networks. Object
middleware, such as those built with CORBA (Com-
mon Object Request Broker Architecture) [OMG97],
help to implement distributed services without taking
care of distribution configuration.

In WANs, huge number of clients, and distances be-
tween clients, have naturally led to replicate some
server objects on geographically distributed networks.
Every day, new replicas may appear. One issue is to
offer final users tools for transparent discovering
services and in the case of replicated servers, for dis-
covering the “best” one, which may be different for
each client.

Tools currently offered to find out server objects are
not adapted for finding the “best” server for each cli-
ent. Traditional name servers such as DNS [Mock87],
compel one to give different names to different repli-
cas (e.g. different URLs [Bern94]) and so don’t help
end users to choose the best server. The DNS support
for replication [Bris95] automatically selects a server
through a round robin algorithm and as a result the
chosen server is not adapted to each client. Discovery
tools, such as Alta Vista Search Engine [Seit96], offer
global searching on the Internet but selection is on text
information only.

Some new kinds of discovery tools are appearing.
With the Globe location service, servers are registered
in a global hierarchical tree [vS96], which is then used
for finding the nearest server. The Internet community
is thinking of URN (Uniform Resource Name)
[Moat97] to replace URL in order to have better sup-
port for replicated and movable servers. The trading
service specification, proposed for ODP [ODP93] and
then CORBA [OMG96], has been defined to find the
best server(s) for each client thanks to a service type
and a list of properties.

In WANs, some services are available thanks to the
cooperation of a set of distributed servers. We illus-
trate this feature through the following examples. The
News USENET [Kant86] is distributed to final users
thanks to the cooperation of several news servers dis-
tributed on the Internet. In the MBone [Deer90], the

subset of Internet supporting multicast routing, packets
are forwarded thanks to tunnels set up between a set of
cooperating multicast routers. And a federation of
cooperating traders may offer the trading service. The
study of these examples shows that cooperation links
between these servers are set up manually by human
administrators on each server. These cooperation links
are neither necessarily adapted to the underlying net-
work topology nor fault tolerant. One issue is to offer
a tool for linking cooperating servers efficiently and
dynamically.

The CORBA trading specification does not offer any
tool for linking cooperating traders dynamically either.
In this article, we define a specialized trader, con-
forming to the OMG specification, which offers dy-
namic management of trader federation. Our federa-
tion is based on the cooperating server graph model
[Taco97] that optimizes the links set up between coop-
erating traders and helps them to find the nearest
server to each client.

This article is organized as follows. In Section 2, we
present a synthesis of the CORBA trading service
specification and we study limitations of this service in
the WAN context. In Section 3, we summarize the
Cooperating Server Graph model that offers to manage
links between cooperating servers dynamically. We
use this model in Section 4 to define the architecture
of a specialized trader for WANs. In Section 5 we
study its implementation and compare its behavior
with traditional traders in the WAN context.

2. CORBA Trading Service description

In this section, after a brief description of the CORBA
architecture, we present the main features of the
CORBA Trading Service, and then some optimizations
of this service intended to the WAN context.

2.1. CORBA Architecture

Common Object Request Broker Architecture
(CORBA) [OMG97] is an open distributed object com-
puting infrastructure standardized by the Object Man-
agement Group (OMG). CORBA allows development
of applications in which distributed objects communi-
cate with one another thanks to well-defined inter-

faces, no matter where objects are located or how ob-
jects are implemented.

In CORBA each object is identified by an object ref-
erence and is associated to an interface and an imple-
mentation. An interface allows clients to access a set
of services offered by a server object. Interfaces are
described with the CORBA Interface Description Lan-
guage (CORBA-IDL).

CORBA Architecture consists of the following compo-
nents:

• Object Request Broker (ORB) is a middleware
that establishes client-server interaction between
distributed objects. When a client invokes a
method on a server, whatever programming lan-
guage or operating system used for server imple-
mentation, ORB has to find the server implemen-
tation location, deliver the request to this server,
and return invocation results to the client. In or-
der to allow interaction between objects on differ-
ent ORBs, OMG has defined a General Inter-ORB
Protocol (GIOP), which specifies a standard trans-
fer syntax and protocol. GIOP is designed to op-
erate over a connection-oriented transport proto-
col. Internet Inter-ORB Protocol (IIOP) is a con-
crete implementation of the abstract GIOP for
TCP/IP.

• Object Services, is a collection of services that
provide basic, nearly system-level, functions for
implementing objects. We can mention Naming
Service, Life Cycle Service, and Trading Service.

• Common Facilities, is a collection of services
shared by many applications. For example,
graphical objects may be used by every applica-
tion for providing a user interface.

• Applications Objects are specific to each appli-
cation. They may use any CORBA objects (e.g.
Object Services and Common Facilities). They
are not standardized by OMG.

2.2. Obtaining an object reference

In order to invoke a method on a server object, a client
must first hold an object reference to this server. An
object reference is associated to at most one CORBA
object. With an object reference, the ORB is in charge

of locating the object and delivering the invocation to
the server.

Object references may be obtained by the following
means. First, with re-
solve_initial_references ORB operation,
clients may obtain references to well known services
such as InterfaceRepository and Name-
Service . Clients may also obtain object references
from output parameters of any method. The Naming
Service allows clients to obtain object references
thanks to object symbolic names. And finally, the
Trading Service allows clients to get object references
selected thanks to a type of service name and a list of
properties.

2.3. Trading Service

In this subsection we describe the main features of the
trading service.

The trading service has been designed to allow the
registration and discovery of objects. A trader is an
object that provides the trading service in a distributed
environment. Server objects advertise or export their
service offers to traders. Exporters may be server
objects or other objects acting on the behalf of the
server. Client objects invoke traders to discover or
import service offers matching a given type of service
and a set of properties. Clients are called importers;
they can be the consumers of the service or act on be-
half of other objects.

A service type is defined in a Service Repository with
an interface type and a set of zero or more properties.
Each property is described by a name, a mode and a
type of value. If a property mode is mandatory, then
each instance of the service type must provide an ap-
propriate value for this property when exporting its
service offer. Each service type is identified by a
unique ServiceTypeName .

A service offer consists of a ServiceTypeName , a
list of properties (property name and value), and an
object reference to the interface providing the service.
Some properties are dynamic; for these, values are not
in the service offer, but obtained explicitly from the
interface of a dynamic property evaluator given by the
exporter of the service.

The main trader interfaces are shown in Figure 2.1.
The most important ones are the Register and the

Lookup interfaces. The Register interface pro-
vides the export method for exporting a service of-
fer. The Lookup Interface provides the query
method for importing a list of service offers. The im-
porter may express its preferences with a constraint
language. Traders organize discovered service offers
according to these preferences.

Traders can be linked together in a trader federation.
Figure 2.1. gives a simple example of federation be-
tween traders A, B, and C. Target trader (e.g. trader B)
establishes a link with a source trader (e.g. trader A)
using the Link interface. Then, the source trader (i.e.
trader A) is able to invoke target trader (i.e. trader B)
with a query method. These links are therefore ex-
plicitly created and are unidirectional. All the links
form a directed graph called the trading graph. The
Link interface provides methods to manage the links,
such as the add_link method used by a target trader
to define a new link to a source trader, and the re-
move_link method to remove a link.

Figure 2.1: Traders Interfaces and Federation

A federation allows traders to extend an importation to
a trading graph. Importation policies modify trader
behavior for a discovery in a federation. Importation

Importer Exporter

OMG-Trader

ProxyLookup Register

Link

Service Offers

Admin

OMG-Trader

Service Offers

ProxyLookup Register

Link

Admin

Admin ProxyLookup

OMG-Trader

Service Offers

Register

Link

A

B

C

policies are associated to each trader, each link, and
each importation. A combination of these policies
conditions the list of traders visited for an importation.
Trader policy overrides link policy, which itself over-
rides importer policy. The main importation policies
are given as follows: (i) search_card , gives the
number of service offers to be searched; (ii) re-
turn_card , gives the number of ordered service
offers to be returned to the client; (iii) hop_count ,
gives the maximum number of links that may be vis-
ited for a search; (iv) starting_trader , gives a
path to a remote trader on which the search must start;
(v) follow_policy , defines the trader behavior for
propagating a search. The following policies are: (i)
local_only , only locally registered service offers
are returned; (ii) if_no_local , the search is only
propagated if the number of local offers matching the
request is less than the number of offers to be returned
(i.e. return_card); (iii) always , the search is
propagated till the expected number of offers is
reached (i.e. search_card).

Besides the Register , Lookup and Link inter-
faces, the trading service defines three other interfaces.
The Admin interface allows one to modify and list
interfaces and policies supported by a trader. The
Proxy interface is used to register service offers for
which the object reference is not known at the expor-
tation but obtained at query time thanks to a proxy
object. And the ServiceTypeRepository inter-
face is used for the management of the repository
service types. Traders have to implement at least the
Lookup interface.

2.4. Trading service optimization

In this sub-section, we present possible optimizations
of OMG trading service and especially for that par-
ticular part which concerns trader federation.

Because of the huge number of services available on
WANs, it is easier for end users to search a service
according to its characteristics rather than to its name.
Indeed, it’s easier to get information on Internet
through a search engine than by giving its URLs. Be-
cause of the increase in the number of services, the
trading service is bound to become more useful than
the naming service.

Trader federation is an interesting feature in the con-
text of WANs: it allows one to distribute the trading

service on several traders. However, improvement
could be achieved on the following points.

As they are now defined, trader federations are bound
to be established “manually” by an administrator. As
a result, they may not be adapted to the underlying
network topology. Furthermore, trader graphs may
contain cycles (i.e. a search may visit the same trader
several times).

As the federation is usually static, it cannot react in a
transparent way to network events such as trader or
communication link failures, or changes on the un-
derlying network topology. Therefore, it doesn’t adapt
to events occurring on the underlying WAN.

The trading service doesn’t define the concept of dis-
tance between objects. Consequently, the client can-
not express the search of the nearest service, and the
trader cannot organize service offers according to dis-
tance between clients and servers, even though this
information could be important because of differences
in communication costs in a WAN.

The integration of the Cooperating Server Graph
model, which we describe in Section 3, in the trading
service bring solutions to the above remarks and there-
fore would improve and optimize this service. We
present in Section 4 a proposal of an Extended Trading
Service using this model.

3. Cooperating Server Graph model

In this section, we summarize the Cooperating Server
Graph model (CSG), which is described in details in
[Taco97b]. The aim of the CSG model is to optimize
and dynamically manage links between cooperating
servers over a WAN. This model defines a protocol for
dynamically updating the links according to different
events happening, either to some servers, or to the un-
derlying WAN. This model has already been adapted
for the cooperation of WAN location servers for the
Chorus micro-kernel [Taco97a]. We present in Sec-
tion 4 the use of this model for dynamically managing
a trader federation.

3.1. Cooperating Server Graph definition

On a WAN, we consider a set of cooperating servers
(several hundred or so) which cooperate in order to

offer a service (e.g. a federation of traders which offers
the trading service). The cooperating servers are geo-
graphically distributed on different computer sites (e.g.
LANs) which may be separated by long distances.
Each site is made up of physically close machines. The
sites are logically linked (e.g. they belong to the same
company or cooperate for a given project) and physi-
cally connected by an underlying WAN.

As there may be several sets of cooperating servers on
the same WAN, we associate to each one a unique
identifier (e.g. symbolic name).

The model uses a distance function. At a given time,
this function associates a value to each couple of co-
operating servers. This value has to be representative
of the communication cost between the couple of co-
operating servers (e.g. financial cost, latency induced
by physical distance or available bandwidth), and may
change over time. For Internet, we have used the dis-
tance function used by routing protocols (i.e. number
of hops between sites).

We build a graph, namely a CSG, in which the nodes
are the cooperating servers. The nodes are linked by a
weighted edge providing that a distance value has been
evaluated between the two nodes. The CSG is simple,
k-connected and not oriented.

Figure 3.1: A CSG example (a) and its associated
broadcast tree (b)

We assume that the number of nodes in a CSG is low
(some hundreds or so). So each cooperating server
stores in its own memory the layout of the CSG.
Thanks to the CSG, all the cooperating servers calcu-

late the same broadcast tree between all the nodes.
We use a minimum-weight spanning tree calculated by
the Prim algorithm [Prim57]. This tree is used to
broadcast information to all the cooperating servers.
With the broadcast tree, broadcasting is made with a
minimum communication cost (according to the dis-
tance function), with a distribution of the communica-
tion load between all the nodes and without the need
of a stop control for eliminating the CSG cycles.

Figure 3.1-a gives a simple example of a CSG with
eleven cooperating servers distributed all over the
world. Figure 3.1-b shows the broadcast tree calcu-
lated for this configuration.

3.2. Dynamic update of the CSG

The model includes a protocol for updating the CSG
and its associated broadcast tree in order to take into
account the following events: the addition or removal
of a cooperating server, modification of the underlying
WAN topology which leads to some CSG distance
changes and temporary failure of a cooperating server
or of a communication link.

In order to be more efficient and because of differ-
ences in the duration of events, the model offers three
levels for taking those events into account: (i) the al-
ternative behavior in case of failure; (ii) the local
modifications; (iii) and the global change of CSG ver-
sion.

When a failure is just discovered, i.e. when one node
can't propagate an information to its neighbors in the
tree, this node uses the alternative behavior in case of
failure. It propagates the information on behalf of the
failed neighbor2 to the neighbors of the failed neighbor
in the tree. For example, in Figure 3.1, if node Phnom
Penh cannot propagate to node Tokyo, node Phnom
Penh will decide to propagate to nodes Beijung and
Austin on behalf of node Tokyo. This behavior is pos-
sible because of the global knowledge of the broadcast
tree. This behavior maintains the continuity of the
service.

The local modification level is used for long time fail-
ure, long time failure recovery, addition and removal

2 In order to simplify, we call it the failed neighbor but
the communication failure may come from a failed
server or from a network failure.

4

10

15

3

9

8

4

5

3

33

4

12

2

5

6

4

3

12

12

12

4

10 3

8

3

33

4

5

2

Beijung Tokyo

New York

Washington

Amsterdam

Lille
Munich

Marseille

Beijung Tokyo

Lille

Amsterdam

estimated distance between two nodes

Phnom Penh

New York

Washington

Austin

Marseille

Munich

Paris

Paris

Austin

Phnom Penh

of cooperating servers. A local modification consists
in a coherent change of the broadcast tree seen on a
node, its neighbors, and the neighbors of its neighbors.
For example, if the failure of node Tokyo lasts after a
given delay (e.g. several minutes), a new configuration
of the tree shown on Figure 3.2 between nodes Bei-
jung, Phnom Penh and Austin is calculated. This
modification concerning node Tokyo is made coher-
ently on Tokyo's neighbors in the broadcast tree (i.e.
Beijung, Phnom Penh and Austin) and on the neigh-
bors of its neighbors broadcast tree (i.e. New York).
Local modifications keep a broadcast tree, but this tree
is no longer a minimum-weight spanning tree.

Figure 3.2: Local modification of the broadcast tree

A CSG version change is activated as soon as the deg-
radation rate3 of the broadcast tree goes past a given
threshold. The activation is triggered by a Changing
Version Server (CVS) chosen dynamically in the set of
cooperating servers. The new version takes into ac-
count all the events considered as permanent since the
last version: very long time failures, very long time
distance changes, addition and removal of nodes. The
new version is propagated on the broadcast tree. Two
nodes have to agree on a version before they can
communicate.

All the CSG updates are made dynamically. Thanks to
the three update levels, the number of version changes
is reduced. The links between all the nodes follow the
evolutions of a CSG and its underlying WAN topol-
ogy. The model tolerates a great number of failures.
In case of too many failures leading to dividing the
CSG into several isolated classes4, server cooperation
is limited inside each class.

3 The degradation rate is estimated with the sum of the
weights of the degraded broadcast tree and the sum of
the weights of the minimum spanning tree that could
be used.
4 If a node cannot communicate with a node and some
of the neighbors of the failed neighbor it assumes there

We present in Section 4 how the integration of this
general model optimizes a CORBA Trader federation.

4. The Extended Trading Service

4.1. Global description

The Extended Trading Service is an evolution of the
OMG trading service, which integrates the Cooperat-
ing Server Graph model (cf. Section 3). The aim of
this evolution is to optimize the management of trader
federations and object importation over a set of traders
scattered on a WAN.

The Extended Trading Service is offered by a federa-
tion of CSG-traders belonging to the same logical do-
main. A CSG-trader is a specialization of an OMG-
trader preserving OMG-trader interfaces. For an im-
porter or an exporter, the CSG-trader is therefore en-
tirely conform to the OMG specification and offers the
same service as the OMG-trader. Any implementation
of the OMG trading service may be specialized in a
CSG-trader.

We consider a CSG in which each node is a CSG-
trader. Besides its OMG trading service function, a
CSG-trader ensures automatic federation of CSG-
traders. Each CSG-trader stores its CSG and calculates
the broadcast tree. In a CSG-traders' federation, the
propagation of importations follow the broadcast tree.
Every CSG-trader manages dynamically (in collabora-
tion with the other CSG-traders) the links of the fed-
eration. Links evolve according to events occurring on
the network. CSG-traders may be linked to OMG-
traders using OMG links. Object search is then per-
formed according to client choice either in OMG mode
using OMG links or in CSG mode using the broadcast
tree. Finally, in order to reduce the number of ex-
tended importation, each CSG-trader manages a cache
of service offers.

4.2. The CSG-trader architecture

The general architecture of a CSG-trader is presented
in Figure 4.1. A CSG-trader consists of one OMG-

is a partition. Its class is made up with the sub-trees
with which the communication is still possible.

4

12

4

10 3

8

3

33

4

5

2

Beijung Tokyo

New York

Washington

Marseille

Lille

Amsterdam

Munchen

Phnom Penh

Austin

Paris

trader part, called the trader part, and a CSG speciali-
zation called the CSG part.

Figure 4.1: CSG-trader Architecture

4.2.1. The OMG-trader part

As a CSG-trader is derived from an OMG-trader, it
inherits from all the OMG-trader interfaces namely the
Lookup interface and possibly the Register ,
Admin , Proxy and Link interfaces. The Link in-
terface is only used to create links between OMG-
traders and CSG-traders, which we call OMG links.
These links and their follow policies are managed by
the trader part. Because links between CSG-traders
have a different semantic they are managed by a spe-
cial interface.

4.2.2. The CSG-trader federation

A CSG-trader federation is established according to
the CSG. The links between CSG-traders, which we
call CSG links, are entirely managed by the CSG part
and are not explicitly created. Indeed, every CSG-
trader knows all others CSG-traders, calculates a
broadcast tree, and consequently knows its neighbors
in the broadcast tree. A CSG link is essentially com-
posed of the target CSG-trader name as well as a ref-
erence to its interfaces.

4.2.3. The CSG-trader specific interfaces

The extended trading service inherits interfaces from
the OMG trading service. We add two new interfaces:
the CSGManagement interface and the Extended-
Lookup interface.

The CSGManagement interface provides methods for
the management of a CSG. Among them we can men-
tion ask_for_csg that allows a new CSG-trader to
get the CSG, in order to set up a link with the nearest
CSG-trader using the add_extended_link
method.

The ExtendedLookup interface is a derivation of
the OMG-trader Lookup interface. It provides sev-
eral methods: (i) the overrided query for all clients
(except CSG-traders); (ii) the extended_query for
the propagation of a search over a CSG-trader federa-
tion; (iii) the extended_answer to return the result
of a search to the source trader. Compared to the
query method, the extended_query add two pa-
rameters: a CSG identifier and the name of the CSG-
trader initiator of the importation. It is invoked in a
one way method. The service offer result (if any), as
well as the reference of the CSG-trader that gives the
offer, is returned directly to the initiator CSG-trader
later, using the extended_answer one way
method. The initiator trader is then able to evaluate
the distances of each discovered offer.

4.2.4. Service importation in a CSG-trader federation

In the CSG mode, a search is limited in a CSG. In
order to allow clients to specify a CSG identifier, we
define the CSG property. The CSG property is useful
only for the CSG part of a CSG-trader.

When a CSG-trader receives a query request with its
CSG identifier, it firstly asks its trader part with lo-
cal_only policy (without the CSG property), and
then, if necessary, propagates the request. If the CSG-
trader does not belong to the indicated CSG, it can be
considered as a relay trader and forward the request
to a CSG-trader belonging to the required CSG. If the
client doesn’t indicate any CSG identifier, then the
search is not carried out over the CSG federation but is
accomplished following the OMG links exclusively.

4.2.5. Service offer cache

The goal of the CSG-trader is to optimize importation
over a WAN. For this purpose, each CSG-trader stores
a service offer cache in which it stores results of pre-
vious extended importations. All clients of the same
CSG-trader benefit from this cache.

The service offer cache holds an LRU table in which
each cell consists of a service type name, a set of prop-
erties, the policy used to discover this offer, and the
reference of the CSG-trader that returned this service

Admin Proxy

ExtendedLookup

Lookup

Offer

CSGManagement

Cache

Service

CSG
L

in
k

Importer Exporter OMG-TraderCSG-Trader

Register

OMG-Trader part C
SG

-T
ra

de
r

pa
rt

extended_query()query()

Service Offers

offer. When a CSG-trader receives a query request it
looks in the cache for a cell matching the query . If it
finds any, it sends a “local_only ” query request
to the CSG-trader referenced in that cell in order to
verify the validity of the service offer and get its dy-
namic properties. If the target CSG-trader returns the
service offer, the cell age is updated; otherwise the cell
is deleted.

4.2.6. Importation policies

The CSG-trader provides the same importation poli-
cies as the OMG-trader. We present here the importa-
tion policies whose semantic has been adapted to CSG
federations.

With the if_no_local and always policies, the
client request is propagated following the broadcast
tree. Each intermediate CSG-trader invokes the one
way extended_query method in parallel to all the
following sub-trees. Results, if any, are returned di-
rectly to the initiator CSG-trader. With this behavior,
the number of intermediate traders waiting for answers
is significantly reduced, the drawback is that discovery
goes on on each subtree independantly even if results
have been found on other subtrees.

The hop_count policy preserves its semantic and
applies to the broadcast tree. For example, with a
hop_count of "1", only the initiator CSG-trader’s
neighbors on the tree will be visited.

Only the if_no_local policy uses the cache. In
order to ensure the locality of the service offers, the
cache is not used with the local_only policy. We
also have chosen not to use the cache with the al-
ways policy, in order to preserve the quality of the
results rather than the performance of the search.

Finally, if every server object exports its service offer
to the nearest CSG-trader, and the client imports from
the nearest one, the extended trading service may or-
ganize the results from the nearest to the furthest,
thanks to the use of the CSG graph.

5. CSG-trader implementation

In this section, we first present the representation of a
CSG in a CSG-trader, we then describe our CSG-trader
prototype, finally we compare the OMG trading serv-
ice and the Extended Trading Service with a simple
federation example,.

5.1. Representation of a CSG

A CSG-trader federation is represented on each CSG-
trader with the same data structure, in which each node
or CSG-trader is described by a TraderElement
which consists of the following components.

• The CSG-trader identification in the CSG.

• The distance function type (adapted to the federa-
tion).

• The reference of its GSCManagement interface
(for dynamic CSG evolution).

• The reference of its ExtendedLookup interface
(for query operation propagation).

• Its network address (for evaluation of distances
between CSG-traders).

• The sequence of its neighbors in the broadcast tree
(this information represents the broadcast tree).

A CSG is represented by a CORBA object (type CSG).
In this object is stored: (i) the running version of the
CSG (global information common to all nodes), and
(ii) node specific information for recording local modi-
fications. The different components of this object are
as follows.

• CSG identifier

• The running CSG version number

• The number of CSG-traders (known locally). Be-
cause of local modification unknown on this node,
this number may be different from the number of
CSG-traders in the current broadcast tree.

• A sequence of TraderElement . This sequence
may not be the same on each node because of lo-
cal modifications.

• The distance matrix (distance between CSG-
traders). If a distance has not been evaluated, the
infinite value is attributed.

• The table of distance between the local CSG-
trader and other CSG-traders. If the distance is in-
finite in the matrix, the distance is evaluated by
the sum of distances in the shortest path between
the two nodes (the CSG is connected).

A CSG is described by an IDL interface and may be
obtained by another CSG-trader. This feature is inter-
esting for the addition of a new CSG-trader in the
CSG, and for the propagation of a query request to
another CSG.

5.2. Prototype

We have implemented a prototype of CSG-trader on
Orbix 2.15 with Sun Solaris 2.5. This prototype uses
IIOP references.

 At the time of our implementation we did not have the
sources of any OMG-Trader, so we have implemented
a simplified OMG-trader which supports Lookup ,
Register and Link interfaces. But we can easily
adapt our prototype to any OMG-trader implementa-
tion.

Our CSG-trader prototype is a specialization of the
simplified OMG-Trader, which furthermore imple-
ments CSGManagement and ExtendedLookup
interfaces, provides dynamic updates of the CSG and
manages the offer service cache.

With this prototype we have done the following ele-
mentary tests on a LAN.

• Addition and removal of a CSG-trader in the fed-
eration.

• Automatic CSG version change on all the nodes.

• Propagation of importation on a CSG-trader fed-
eration with local_only , if_no_local and
always policies.

• The alternative behavior in case of failure of an
intermediate CSG-trader.

• CSG-trader and OMG-Trader cohabitation.

5.3. Comparison between a CSG-trader
and an OMG-Trader

In order to give an interesting comparison between a
CSG-trader and an OMG-Trader we would have
needed a complete OMG-trader implementation and a
testbed for WANs. We did not have any of these two
conditions, that is the reason why we don’t give any
performance comparison. We present here a compari-
son illustrated by an example in order to highlight in-
teresting features of the Extended Trading Service.

In this section, we use the CSG federation of Figure
3.1. An example of possible associated OMG trading
graph is given in Figure 5.1-a. In Figure 5.1 unidirec-
tional OMG links are represented with one arrow,

5 Iona Technology CORBA implementation

other links are bi-directional. In this figure we present
the invocations needed for a discovery in the OMG
graph (Figure 5.1-a) and in the CSG federation (Figure
5.1-b).

Figure 5.1: Example of discovery

For this example, we compare the number of method
invocations needed for OMG Trading Service and Ex-
tended Trading Service. The query request example
uses the policy if_no_local , the search_card
and the return_card both have value 1, the initia-
tor trader is Washington. The matching service offers
are on nodes Tokyo and Marseille. The Extended
Trading request propagates requests in parallel on all
the following sub-trees. Dashed arrows symbolize
method invocations.

For this example, an importation on OMG federation
generates 12 two-way method invocations and on the
CSG-federation it generates only 10 one way method
invocations. In OMG federations, double links (bi-
directional links) lead to double invocations (even
though there is a stop control). So, even if the OMG-
trader graph is a tree, two times more invocations
would be needed. Number of invocations will also be
reduced by the CSG trader cache management.

In order to avoid cycles, the OMG-traders need to
store and compare request identifiers (case of cycle
Washington, New York and Austin) at each node.

query

query

(a) OMG Federation

6 Paris

Marseille

Munich

Amsterdam

Phnom Penh

Lille

Austin

New York

Washington

Beijing Tokyo4

10 3

8

3

33

4

5

2

(b) CSG Federation

4

10 3

8

3

33

4

5

2

Beijung Tokyo

New York

Amsterdam

Lille
Munich

Marseille

Paris

Austin

Phnom Penh

service offer

invocation

unidirectional link

bidirectional link

Washington

With an OMG-trader federation, no guarantee is given
on the existence of a path between each pair of nodes.
In the example, the Tokyo service offer can’t be found.
Special attention is needed to configure an OMG-
trader federation.

With an OMG trader federation each intermediate
trader in the importation has to be waiting for an an-
swer (RPC invocation). With the CSG federation only
the initiator trader is waiting for an answer.

We argue that CSG-traders would facilitate trader fed-
eration. However, more tests are needed to verify the
efficiency of the overall CSG federation mechanisms.

6. Conclusion

Because of distributed computing, the evolution and
diversity of services offered on today’s and tomorrow’s
WANs, discovering tools such as the trading service
should become essential for end users.

In this paper, we have described the CORBA trading
service specified by the OMG. With this service cli-
ents may import service offers exported on traders.
Cooperating traders may be federated to offer ex-
tended searches. Yet, we have shown that as links are
statically and manually established they are not
adapted to the underlying network topology and do not
evolve dynamically. Moreover, they do not help cli-
ents to choose the nearest replicated object, while,
because of communication delay and cost on WAN;
this would be an important feature.

We have presented the Cooperating Server Graph
model. With this model, the links between cooperat-
ing servers are established dynamically. Furthermore,
thanks to an inter server protocol, the links evolve to
react to different events such as intermediate servers or
communication links failures, and modifications in the
underlying network topology. With this model, the
propagation of information to all servers is efficient.
The knowledge of distance information between the
servers allows traders to organize the results from the
nearest to the furthest.

We have defined the CSG-trader that integrates the
CSG model in an OMG-Trader. CSG-traders offers
the following optimizations. Trader federation is es-
tablished and evolves dynamically. Extended service
offers searches follow a minimum-weight spanning
tree. Assuming that importation and exportation are

sent to the nearest trader to clients and servers,
searches may find the nearest server to each client.
Asynchronous treatment of requests increases the
number of requests handled in parallel by each trader.

We have then described a CSG-trader prototype for
Orbix 2.1, which is a specialization of a simplified
trader that we have implemented.

In the definition and implementation of the CSG-trader
we paid a special attention to stay conform to the
trading service interface specification. Our optimiza-
tions are transparent for trading service clients. In
order to facilitate the choice of a search domain (i.e. a
CSG), and of a starting trader, it would be interesting
to adapt the trader specification.

Trading service and migration

We would like to emphasize that migration, taken into
account in CORBA life cycle service, and trading ex-
portation should be linked together. In CORBA speci-
fication, an object reference should stay valid after a
migration. So, a service offer stays valid after a mi-
gration. Yet, in order to both facilitate ORB location
service and preserve the nearest server semantic of-
fered by CSG-traders in case of object migration, we
argue that a server migration should be coupled with
the migration of its associated service offer. And so
service offers will be registered on the trader which is
the nearest to the server object.

CORBA domains

CORBA specification defines several notion of do-
mains (interoperability domains, policy domains, secu-
rity domains). A more precise definition of adminis-
trative domain seems to be an important issue.

Just like CSG, a domain may take into account the
logical relationship between ORBs. For example, all
the computer sites of a company may define a CORBA
domain. Some of the CORBA services could benefit
from such domain definition. The life cycle service
could limit some migration and replication inside a
CORBA domain. The trading service could restrict
searches inside a CORBA domain. Every object would
be associated to one or several administration do-
mains. And so, some operations may be authorized

between objects of the same domain only, while others
may be authorized between different domains.

References

[Bern94] T. Berners-Lee, L. Masinter, M. McCahill.
Uniform Resource Locators (URL), RFC1738,
December 1994.

[Bris95] T. Brisco. DNS Support for Load Balancing.
RFC 1794, April 1995.

[Deer90] E.S. Deering and D.R. Cheriton. Multicast
Routing in Datagram Internetworks and Ex-
tended LANs. ACM transactions on Computer
Systems, 8(2), May 1990.

[Moat97] R. Moats. URN Syntax. RFC 2141, May
1997.

[Mock87] P. Mockapetris. Domain Names Implementa-
tion and Specification. RFC1035, November
1987.

[ODP93] Information Technology- Open Distributed
Computing – ODP Trading Function. ISO/IEC
JTC1/SC21.59 Draft, ITU-TS-SG 7 Q16 rap-
port, November 1997.

[OMG96] Trading Object Service. OMG Document 96-
05-06, RFP5 submission, May 1996.

[OMG97] Common Object Request Broker: Architecture
and Specification. Revision 2.1 OMG Docu-
ment, August 1997.

[Prim57] R.C. Prim. Shortest Connection Networks and
some Generalizations. Bell Syst. Techno. J. 36,
1957.

[Seit96] R. Seitzer, E.J. Ray, and D.S. Ray. Alta Vista
Search Revolution: How to find anything on
the Internet. Digital Press, New Jersey, 1996.

[Taco97a] C. Taconet and G. Bernard. Object Location in
Wide Area Networks. In Porceedings of ER-
SADS’97 European Research Seminar on Ad-
vances in Distributed Systems, Zinal, Switzer-
land, March 1997.

[Taco97b] C. Taconet. Graphe de Réseaux Coopérants et
Localisation Dynamique pour les Systèmes
Répartis sur Réseaux Etendus. Ph.D. Thesis
University of Evry, France, October 1997.

[VS96] M. Van Steen, F.J. Hauck, and A.S. Tanen-
baum. A model for World wide Tracking of
Distributed Objects. In proceedings of
TINA’96, Heidelberg, Germany, September
1996.

