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Abstract

We describe the interaction of objects and concur-

rency in the design of Triveni, a framework for

concurrent programming with threads and events.

Triveni has been realized as JavaTriveni, a collec-

tion of tools for the Java programming language.

We describe our experiences in JavaTriveni with an

example from telecommunication.

1 Introduction

We describe the language-independent architecture

of Triveni, a process-algebra-based design methodol-

ogy that combines threads and events in the context

of object-oriented programming. Triveni is compati-

ble with existing threads standards such as Pthreads

and Java threads, and with event models based on

the Observer pattern. In particular, Triveni allows

existing threads in the host language that conform

to an Observer-pattern-based interface to be used

as subcomponents. Dually, Triveni processes can

be used as embedded systems in the host program-

ming language if communication is arranged via the

registration and noti�cation mechanisms of the Ob-

server pattern.

We have realized Triveni in Java as an API, Java-

Triveni, that also includes an environment for

speci�cation-based testing; the detailed algorithms

and design of JavaTriveni are described in [CJJ+98].

We present here the general design methodology un-

derlying Triveni, using JavaTriveni as a concrete

example. We also describe a case study in Java-

Triveni, involving the re-implementation of a piece

of telecommunication software, the Carrier Group

Alarms (CGA) software of Lucent Technologies'

5ESS switching system.

Organization of the paper Section 2 describes

the rationale and basis of Triveni. Section 3 gives

a pattern-based description of the design method-

ology of Triveni; this discussion is illustrated con-

cretely via the design of a game using Triveni. Sec-

tion 4 describes our case study and includes a com-

parison with our earlier work [JPVO96] on this

telecommunication software.

2 Triveni: Basis

Triveni is a programming methodology for concur-

rent programming with threads and events. Triveni

has its basis in process algebras (e.g., CCS [Mil89],

CSP [Hoa85]) and synchronous programming lan-

guages (e.g., see [Hal93]). The key feature of these

formalisms is a notion of abstract behavior, which

in a concurrent system is essentially the interaction

of the system with its environment. Communica-

tion is via (labeled) events that are abstractions of

names of communication channels. Triveni has the

following features:



� Programs can be combined freely with the

Triveni combinators, and one need only be con-

cerned about the desired e�ects on the resulting

behavior. Thus, Triveni combinators operate

on behaviors and the result of the combinators

are behaviors: the implementation of Triveni

yields the correct combination of behaviors.

� Triveni enables parallel composition to be used

freely for the modular decomposition of de-

signs. In particular, the parallel composition of

Triveni programs yields programs that are in-

distinguishable from simple ones (in much the

same way that an object built by object compo-

sition has the same status as a simple object).

The correct wiring among events sent by par-

allel components is done automatically by

Triveni, and thus, the implementation of a pro-

gram can closely re
ect its design. Namely,

each parallel component can be implemented

separately: Triveni realizes the desired commu-

nication among them.

� Triveni supports exceptions via preemption

combinators. For example, the watchdog com-

binator DO P WATCHING e yields a process that

behaves like P until event e happens, upon

which execution of P is terminated (in the

spirit of \Ctrl{C"). Analogous to exception

mechanisms in traditional programming lan-

guages, the preemption combinators aid in pro-

gram modularity; for example, the watchdog

above avoids the pollution of P with informa-

tion about the event e.

In Triveni, exceptions have �rst class status |

any event can be an exception and can be used

in the place of e in the watchdog. This allows

exceptions to play an integral role in the pro-

gramming of systems.

Priorities on events are achieved by nesting

of the preemption operators; for example, the

event e2 has higher priority than the event e1

in the program fragment DO (DO P WATCHING

e1) WATCHING e2. These priorities are not

�xed by Triveni; they are determined by the

program/design text.

� Triveni is compatible with the extensive exist-

ing work in both the design and implementa-

tion of programming languages and the analy-

sis of concurrent systems. In particular, Triveni

integrates the aforementioned ideas into the

context of object oriented programming. Fur-

thermore, Triveni is compatible with exist-

ing threads standards such as Pthreads and

Java threads, and with event models structured

on the Observer pattern [GHJV95]. Finally,

Triveni includes a speci�cation-based testing

environment that automates testing of safety

properties.

3 Triveni: Design and Implementa-

tion

In this section, we describe the architecture of

Triveni. A game called Battle, whose rules are sum-

marized in Figure 2, is used as a running example

throughout this section. We discuss the design of

Triveni at an abstract level using descriptions some-

what in the style of design patterns. Finally, we

present a concrete design of Battle.

3.1 Processes as Objects

In Triveni, the class Expr captures the abstract no-

tion of behavior. Expr enriches the structure of the

encapsulated state in objects in two ways. (Figure 1

summarizes the following discussion.)

Controllable

start (evt : LabeledEvent) : void
resume () : void
suspend () : void
resume () : void

Observable

notifyObservers (Object arg) : void
setChanged () : void

Runnable

run () : void

Communicator

Observer

update (obs : Observable, arg : Object) : void

Expr

start () : void
become (Expr e) : void

Figure 1: The Expr class

1. The Communicator interface captures reactiv-

ity, i.e. interaction with the environment. The

environment uses the Observer interface to

send inputs to Expr and the Observable in-

terface to receive outputs from Expr. Thus,

instances of Expr can be used as embedded sys-

tems in the host programming language if the

communication is arranged via the Observer

pattern.

2. Expr supports the encapsulation of autonomous

state, such as system clocks, that can evolve

even in the absence of interaction with the en-

vironment. The environment interacts with the



Battle is an n-player variation of the 2-player board game Battleship. New players cannot join the game

once it has begun. A player loses by manually aborting the game or when all his/her ships are destroyed.

Oceans. Each player has a collection of ships on an individual ocean grid. The n ocean grids are

disjoint. Each player's screen displays all n oceans, but a player can see only his/her own ships. A player's

ships are con�ned to the player's ocean.

Ships. Each ship occupies a rectangular sub-grid of the player's ocean and sinks after each point in its

grid area has been hit. There are two kinds of ships:

1. Battleships that can move on the surface of the player's ocean.

2. Submarines that can dive, but remain at a stationary position with respect to the player ocean's

surface.

Moves. A player can move as fast as the user-interface/re
exes allow. Player i can make 4 kinds of

moves:

1. Fire a round of ammunition on a square of another player j's ocean by clicking on it. The ammunition

may hit a previously unhit point on one of player j's ships, in which case an X is displayed at that

point in player j's ocean on all players' screens. No information is reported in case of a miss. The X

marks are static; when a wounded battleship moves, or a wounded submarine dives, it does not a�ect

previously displayed X marks on players' screens. When a ship is sunk, its position is revealed to all

players.

2. Impart a velocity to a battleship that lasts until it receives another velocity command.

3. Make a submarine dive for a game-speci�c interval of time.

4. Raise a shield over his/her entire ocean for a game-speci�c interval of time, during which player i's

ships are invulnerable. When a player raises an ocean-wide shield, his/her ocean becomes dim on

the screens of all players. Each player has a limited supply of shields.

Figure 2: Rules of Battle

encapsulated autonomous program by the con-

trol operations indicated by the Controllable

interface | started via start(), suspended

via suspend(), resumed via resume(), and

stopped via stop(). The Controllable inter-

face corresponds closely to the control opera-

tions allowed on threads in Java | in particu-

lar, existing Java threads that conform to the

Communicator interface for any event exchange

can be used as Exprs.

The di�erent kinds of state in Expr can interact.

This discussion is best carried out in the context of

a concrete example.

Example 1 Consider the class of players in the

Battle game. The user interface of the player is

a reactive subcomponent of the player. The number

of available shields can be modeled as an instance

variable, say numshields. The timer that measures

the duration of shielding evolves autonomously.

The activation of the shielding (i.e. the initiation

of the autonomous state) is caused reactively by in-

puts from the user interface. This activation a�ects

the variable numshields. The end of the period of

shielding, as detected by the autonomously evolving

clock object, causes a stimulus (in the form of bright-

ening of this player's ocean) to the reactive subcom-

ponents in other players.

The become method in Expr follows standard

object-oriented techniques. It allows an Expr to as-

sume the behavior of another Expr and is useful for

re�ning the inherited behavior in subclasses of Expr.



Example 2 In the design of Battle that follows,

a class called Ship is used to factor out the com-

mon behavior of Battleship and Submarine, namely

the handling of opponent �re. (See Figure 3.) A

Battleship is constructed from a Ship by adding

instance variables and behavior to handle movement

in terms of direction and speed. A sketch is as fol-

lows (detailed design is in Section 3.5):

Ship

Battleship

dir : Direction
speed : int

Submarine

Expr
EventObject

ShipUIEvent

Move

getDirection () : Direction
getSpeed () : int

Dive

Figure 3: Inheritance Example

class Battleship extends Ship {

Direction dir;

int speed;

Battleship(initial_status) {

super(initial_status); // initialize receiver

Expr e = // construction of new behavior

// from inherited behavior

become(e); // assume new behavior

}}

3.2 Building Triveni processes

The combinators that build Triveni programs are

presented in Figure 4. The presentation as a Com-

posite pattern leaves Triveni open to the addition of

new combinators.

We �rst consider the Activity class. An Activity

represents arbitrary code in the host programming

language (say Java) that conforms to the interfaces

Communicator and Controllable. The combinator

ActivityExpr is used to embed an Activity in an

Expr as its autonomous program. This allows the

embedded Activity to be used as a subcomponent

in the Expr and controlled by the Expr. In Triveni,

the Activity class is actually a superclass (gener-

alization) of the Expr class without the additional

infrastructure that Expr provides for process com-

position.

public abstract class Activity extends Communicator

implements Controllable { ... }

Example 3 The GUI components for the user in-

terface of the player in Battle, such as Player and

Opponent windows, are best realized as Activities.

This allows the GUI components to be embedded in

the Triveni program for Battle as controllable sub-

components.

The other combinators fall into the following cat-

egories. The Battle design example clari�es their

semantics.

1. Triveni allows event-based communication

| event emission (Emit), event renaming

(Rename), and scoping in the form of local

events (Local). Events are discussed in detail

in Sections 3.3 and 3.4.

2. Triveni supports the classical constructions

from process algebra | parallel compo-

sition (Parallel), sequential composition

(Sequence), identity of sequential composition

(Done), looping (Loop), waiting (potentially

inde�nitely) until a particular event happens

(Await), and checking if the current event has

a required label (Present).

3. Triveni also supports the preemption combi-

nators from synchronous programming. This

includes a watchdog (DoWatching) that termi-

nates execution when a particular event hap-

pens, and a combinator that suspends the exe-

cution on a particular event and resumes it on

another event (SuspRes).

4. In addition, Triveni provides structured inter-

faces (Valuator) to access the data carried on

events and a combinator that branches on this

information (Switch).

3.3 Events

In a Triveni program design, event labels are closely

related to the class names in the event class hierar-

chy. This class-based view of labels induces an iso-

morphic hierarchy on the labels. This added struc-

ture makes renaming delicate; for example, the re-

naming of a label corresponding to a superclass has

to propagate down the class hierarchy. However, it

allows di�erent parts of the system to view the same

event object at di�erent levels of granularity.



Emit

ActivityExpr

Activity

Done

Valuator

Local

*

SequenceDoWatching Loop

*

ParallelAwait Present SuspRes

*

Switch

Expr

***

Rename

Figure 4: The Expr combinators as a Composite

Example 4 In Battle, Figure 3 depicts the part

of the event class hierarchy related to the class

hierarchy for Ship, Submarine, and Battleship.

The Battleship class handles Move events. The

Submarine class handles Dive events. The pres-

ence of the class hierarchy on events allows the gen-

eralizing class, the Ship class, in our design to be

set up in terms of the generalized event class, the

ShipUIEvents class. This makes it independent of

whether each one is a battleship, a submarine, or

any other type of ship added later.

Consider the following code fragment from Bat-

tle. There is a parallel composition (written ||) of

several renamed instances of Ship along with the

player's window (PlayerWindow).

LOCAL ShipUIEvent_1, ..., ShipUIEvent_k IN

PlayerWindow

|| RENAME [ShipUIEvent_1/ShipUIEvent] IN ship_1

...

|| RENAME [ShipUIEvent_k/ShipUIEvent] IN ship_k;

Thus, renaming on the event ShipUIEvent in class

PlayerOcean induces a renaming on the events

Move in the BattleShip class and Dive in the

Submarine class.

3.4 Communication

In Triveni, the event delivery model is fair multicast:

events are eventually and simultaneously delivered

to all interested listeners. From an object point of

view, one can view communication in Triveni as a

re�nement of the Observer pattern. Recall that in

the Observer pattern, events are generated by event

sources (subjects), and one or more listeners (ob-

servers) can register with a source to be noti�ed

about events of a particular kind. Triveni thus uses

the registration and multicast mechanisms of the

Observer pattern, but does not employ callbacks

from the listeners back to the sources.

Triveni handles the registration of the Observer pat-

tern by scoping mechanisms. In other words, every

Triveni event has by default an associated scope

established via the traditional programming lan-

guage mechanisms such as local variables. A Triveni

Expr then, by default, can listen to all events whose

scopes include it.

Example 5 Consider the code presented in exam-

ple 4 above; this establishes k connections, one each

between the PlayerWindow and each of the k ships.

This \wiring" for event delivery is deduced from the

program structure. The top level parallel composi-

tion sets up a group of Triveni processes that com-

municate via broadcast. The local construct ren-

ders the outside world oblivious to the occurrence

of the events of ShipUIEvent label (or variants

thereof). Furthermore, in the concrete design later,

ships are sensitive to only ShipUIEvents. Conse-

quently, after renaming, the di�erent ships occupy

disjoint bands of the communication bandwidth leav-

ing the PlayerWindow as the sole observer of each

individual ship, and leaving each ship registered as

an observer of only PlayerWindow.

3.5 The Triveni program for Battle

Figure 5 shows a three-player Battle game, and Fig-

ure 6 shows the architecture of a Battle player.

The \wiring" in these �gures represents the various

kinds of events of the system: the tokens attached to

the wires are event labels, and the event data �elds,

if any, are shown inside parentheses. A wire that
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Figure 5: A three-player Battle game illustrating

event-label renaming

has di�erent names at each end represents an ex-

plicit event-label renaming. For example, Figure 5

shows that to connect several players in a game,

player i's generic event labels (e.g., Fire, Hit, etc.)

are renamed to their corresponding event labels sub-

scripted by i.

In the entire code for the Battle game, there is no

explicit wiring for events. Instead, all events are

broadcast throughout a parallel composition, and

the Triveni constructs of event-label matching and

scoping via LOCAL and RENAME provide the necessary

\wiring" of event delivery.

There are four kinds of GUI components for each

player, shown as ovals in Figure 6.

� Abort Button: One per player. Emits the event

Abort.

� Shield Button: One per player. Emits the event

Shield.

� Player Window: One per player. For 1 � i � k,

where k is the number of ships per player,

emits either event Movei(direction; speed)

or event Divei, depending on whether ship

i is a battleship or a submarine. Ac-

cepts events Hit(position), Sunk(status),

and Status(status).

� Opponent Window: n � 1 per player, for an

n-player game. Emits event Fire(position).

Accepts events Hit(position), Sunk(status),

Shield, and Unshield.

The user-interface components are \generic" al-

though they are not parameterized by a player in-

dex. Through event-label renaming, Triveni al-

lows the di�erentiation and connection of multi-

ple instances of a generic component. Indeed,

user-interface components such as Player Window

are most naturally implemented as subclasses of

Activity embedded in and controlled by suitable

subclasses of ActivityExpr:

class PlayerWindowUI extends Activity {

//...create the user interface for the player window

}

class PlayerWindow extends ActivityExpr {

PlayerWindow {

super(PlayerWindowUI); // embed the user interface

// within this Expr

}}

Player i is implemented as a parallel composition

of the top-level components shown in Figure 6. Its

pseudo-code realization in Triveni is shown below.

To aid readability, we use the Triveni combinators

in in�x form rather than the implicit pre�x form of

section 3.2; for example, we use DO .. WATCHING

.. instead of DoWatching(.., ..), A || B for

Parallel(A,B), etc.

class Player extends Expr {

Player(i) {

Expr e = RENAME[Fire_i/Fire, Hit_i/Hit, Sunk_i/Sunk,

Shield_i/Shield, Unshield_i/Unshield,

Abort_i/Abort] IN

DO

AbortButton

|| Shield(number, duration)

|| SUSPEND Shield [PlayerOcean]

RESUME Unshield

|| OpponentOcean(1) || ...

|| OpponentOcean(n) // except i

WATCHING Abort;

become(e);

}}

This code performs the renaming shown in Fig-

ure 5. The whole process is wrapped inside a

DO-WATCHING construct, which preemptively termi-

nates player i upon receipt of an Abort event.

This is indicated in Figure 6 as a small boxed

X at the scope of the entire player. Since the

GUI components of the system are implemented as

Activities, they are fully controlled by their sur-

rounding ActivityExprs. Therefore, when a player

presses the abort button, the single DO-WATCHING

construct above terminates each component of

his/her GUI. The SUSPEND-RESUME construct is used

to ensure that when a player raises a shield, his/her

own ocean is suspended until the shield runs out.
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Shield

Timer

Submarine
(extension)
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Abort

Shield
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Firen(pos)
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Unshield Abort

Fire(pos)

Hit(pos)

Shield1 Abortn Unshieldn

UnshieldAbortShield

Sunk(stat)

Hit(pos)

Fire(pos)

Player

Counter

int num

num--

Move1(..) Divek

Dive

Ship Ship

Shield

Status(stat) Status(stat)

Move(..)

Fire1(pos)

Hit1(pos)

Sunk1(stat)

Sunk(stat)

Figure 6: Architecture of a Battle player

While it is suspended, it will not respond to Fire

events, but the player may still �re upon opponent

oceans.

The player's shield process has an auxiliary timer

Activity embedded in a subclass of ActivityExpr.

This timer process will be reused throughout this

example.

class Timer extends ActivityExpr {

Timer(duration) {

// accepts: Start

// emits: Finish

}}

The implementation of a timer is not shown; it is

a generic timer that is tied to the shield button via

the event-label renaming given below. The shield

process comprises three components running in par-

allel:

1. The shield button, which is terminated upon

receipt of an OutOfShields event.

2. A loop that decrements an instance vari-

able numshields every time a shield is raised

and emits an OutOfShields event when

numshields reaches 0.

3. The shield timer.

The pseudo-code for the Shield process is as follows:



class Shield extends Expr {

int numshields;

Shield(number, duration) {

numshields = number;

Expr e = LOCAL OutOfShields IN

DO ShieldButton WATCHING OutOfShields

|| LOOP Shield -> { numshields--; }

SWITCH (numshields == 0)

true: EMIT OutOfShields

false: DONE

|| LOOP

RENAME [Shield/Start, Unshield/Finish]

IN Timer(duration);

become(e);

}}

The LOCAL hides the OutOfShields event from the

rest of the system.

A player's ocean is parameterized by k ship pro-

cesses, and is a parallel composition of all of them

along with the player's window.

class PlayerOcean extends Expr {

PlayerOcean(ship1, ..., shipk) {

Expr e= LOCAL ShipUIEvent_1, ..., ShipUIEvent_k IN

PlayerWindow

|| RENAME[ShipUIEvent_1/ShipUIEvent] IN ship1

...

|| RENAME[ShipUIEvent_k/ShipUIEvent] IN shipk;

become(e);

}}

The code above is set up in terms of Ships and

ShipUIEvents and exploits the inheritance hierar-

chy on Triveni objects and events, as illustrated in

Figure 3. Thus, each one can be a battleship or a

submarine.

Each ship is parameterized by a ShipStatus object

that speci�es its dimensions, position, and damage.

When a ship process is started, it emits its sta-

tus; these events are handled by the player window.

Then (via the SEQ construct), it enters an event loop

that reacts to Fire events, each carrying position

data. The update method updates status upon a

hit.

class Ship extends Expr {

ShipStatus status;

Ship(initial_status) {

status = initial_status;

Expr e = DO

EMIT Status(status)

SEQ

LOOP Fire(pos) ->SWITCH(status.update(pos))

Hit: EMIT Hit(pos)

Sunk: EMIT Sunk(status)

Miss: DONE

WATCHING Sunk;

become(e);

}}

Battleships and submarines are implemented as sub-

classes of ship as illustrated in Figure 3, and share

the above collision-control behavior.

A battleship contains two new instance variables,

dir and speed, and adds a process in parallel with

a generic ship process to handle Move events. At

any point in time, a battleship is either stationary

(speed is 0) or mobile. In the stationary state, it is

awaiting an appropriate Move event to trigger a local

Mobile event. In the mobile state, it invokes the

movemethod of status at intervals of 1/speed until

it becomes stationary again. Both the battleship

and submarine processes reuse the timer process,

originally introduced for the shield process above.

class Battleship extends Ship {

Direction dir;

int speed;

Battleship(initial_status) {

super(initial_status);

Expr e = DO

this // behavior inherited from Ship

|| LOCAL Stationary,Mobile,Start,Finish IN

LOOP Move(d,s) ->

{ dir = d; speed = s; }

SWITCH (speed == 0)

true: EMIT Stationary

false: EMIT Mobile

|| LOOP

DO

AWAIT Mobile ->

LOOP

EMIT Start

SEQ

AWAIT Finish ->

{status.move(dir)}

EMIT Status(status)

||

LOOP Timer(1/speed)

WATCHING Stationary

WATCHING Sunk;

become(e);

}}

A submarine is a ship that is suspended upon receipt

of a Dive event and resumed after some duration

of time. Suspending a ship suspends the collision-

control process and thus renders it invulnerable to

attack.

class Submarine extends Ship {

Submarine(initial_status, dive_duration) {

super(initial_status);

Expr e = DO LOCAL Start, Finish IN

SUSPEND Start [this]

RESUME Finish

|| LOOP Dive -> ( EMIT Start

SEQ

AWAIT Finish )

|| LOOP Timer(dive_duration)

WATCHING Sunk;

become(e);

}}



An opponent ocean is an opponent window, with the

events appropriately renamed to tie together with

the opponent's process in a multiplayer game. If an

opponent aborts the game, this will cause his/her

corresponding ocean on the screens of all other play-

ers to disappear. Since Shield and Unshield events

are broadcast each player knows when an opponent

has raised a shield.

class OpponentOcean extends Expr {

OpponentOcean(j) {

Expr e = RENAME[Fire_j/Fire, Hit_j/Hit, Sunk_j/Sunk,

Shield_j/Shield, Unshield_j/Unshield,

Abort_j/Abort] IN

DO OpponentWindow WATCHING Abort;

become(e);

}}

An n-player game is simply constructed by compos-

ing n player processes in parallel.

3.6 The Implementation of JavaTriveni

We have implemented Triveni in Java as a class li-

brary. The design of the JavaTriveni implementa-

tion and the underlying algorithms are described

in [CJJ+98]. The relationship between class names

and event labels in Triveni must currently be es-

tablished by the application programmer and is not

currently enforced by the system.

Here, we brie
y sketch the architecture of a Triveni

process, referring the reader to [CJJ+98] for de-

tails. The implementation of a JavaTriveni process

P comprises of a controller CP , which is a deter-

ministic state machine, and a multiset of concurrent

communicating activities (fAP;1; : : : ; AP;ng), possi-
bly implemented in the host language Java. In par-

ticular, event emissions are realized as activities.

Every transition in the state machine CP is labeled

with an event name and a set of side-e�ects that

will occur when this transition is taken { these side

e�ects can include control operations on activities

via the Controllable interface, such as start(),

suspend(), resume(), and stop(). A given transi-

tion labeled e is triggered upon receipt of an event

with label e if the current state of the state machine

is the source state of the transition. CP also controls

all communication between its activities | each ac-

tivity AP;i emits events to CP , which may forward

it back to one or more selected activities AP;j . The

implementations of all Triveni combinators operate

on such structures and yield such structures.

Our JavaTriveni implementation includes a non-

intrusive form of instrumentation for testing and

debugging in the 
avor of assert statements in

traditional languages. In particular, system spec-

i�cations can be expressed as safety properties; in-

formally, these properties stipulate that \something

bad never happens." Temporal logic is a well-known

formalism for specifying safety properties, and our

speci�cation language is based on its propositional

linear-time variant [MP92]. This notation provides

a straightforward means of expressing conditions on

sequences of events.

Our implementation uses the following fact about

safety properties: for any safety property, there ex-

ists a �nite-state machine whose language is the set

of all possible (�nite) executions that violate the

property. From the given property, our implementa-

tion automatically generates a JavaTriveni process,

which encodes this �nite-state machine. This pro-

cess is composed in parallel with the process that

is being monitored. If the speci�ed property is vi-

olated at any point during an execution of the sys-

tem, the above JavaTriveni process generates a spe-

cial event, and the assertion fails. The user has the

option to abort the application, ignore the failed

assertion, or ask the system to report entire test

traces.

4 A Telephone Switching System

Application

We now describe our telecommunication case study

in JavaTriveni.

Lucent Technologies' 5ESS telephone switching sys-

tem [MS85] is a concurrent reactive system com-

prised of millions of lines of C code. In this switch, a

wide variety of carrier group types are used to trans-

mit data corresponding to end-to-end telephone

connections. These carrier groups are attached to

various hardware units on a set of processors, which

are responsible for routing telephone calls. Malfunc-

tions on these carrier groups, such as lost framing,

lost events, or physical accidents, can result in dis-

turbance or abrupt termination of existing phone

calls. The Carrier Group Alarms (CGA) software

in the 5ESS switch is responsible for reporting sta-

tus changes | malfunctions or recoveries from mal-

functions | on carrier groups, so that other 5ESS

software can respectively remove or restore the as-



sociated carrier groups from service, and route new

telephone calls accordingly [HLRW85].

As a case study, we have re-implemented part of the

CGA software in JavaTriveni. The starting point of

our implementation and the top level design come

from our earlier work [JPVO96]. We repeat here

our earlier description and design of the CGA soft-

ware [JPVO96] in order to keep this paper self-

contained. For proprietary reasons, the descriptions

of our version given in this paper do not re
ect the

speci�c details of the actual 5ESS switch software,

and we note that the JavaTriveni code in this paper

is not part of the 5ESS switch.

One of the main sources of inputs to the CGA soft-

ware are summary requests from either human oper-

ators or some other parts of the switch. In response,

the CGA software must collect data about the sta-

tus of all the carriers on all the relevant processors,

and print this information on various consoles and

printers via the Human-Machine Interface (HMI).

One component, called the \CGA Collection Soft-

ware," requests every relevant processor to send

data about the status of all the carrier groups at-

tached to that processor. This software then for-

mats the received data in a manner suitable for

printing on various consoles and printers via the

HMI. The other components, called the \CGA Data

Software," reside on the processors on which the

carrier groups are attached. When a request for

data arrives from the CGA Collection Software to

the CGA Data Software on a given processor, this

processor searches the relevant databases for status

information on all the carriers that are attached to

that processor. The data is then sanity-checked |

namely, that this particular sort of status change

can actually occur on the given carriers and is not

merely the outgrowth of a database error. The

data is collected into a packet and sent to the

CGA Collection Software, after which this instance

of the CGA Data Software waits for the next re-

quest from the CGA Collection Software. After re-

ceiving the next request, it resumes searching for

more data, from the point it left o� in the corre-

sponding databases. When all the relevant data has

been gathered, an appropriate termination message

is sent to the CGA Collection Software. All commu-

nication between the CGA Collection Software and

the instances of the CGA Data Software is through

asynchronous message passing.

There are a number of issues that we needed to con-

sider in writing our JavaTriveni version (and our

earlier version) of the CGA software. For example:

� What should be done if a processor does not

respond to a request for data?

� Should the CGA Collection Software keep send-

ing requests for data to the processors if the

HMI is not responding?

� Should more than one summary request ever be

in process simultaneously?

� Is there a way to terminate a summary request

prematurely?

We have dealt with these problems in quite a natu-

ral manner, thanks to the expressive power of Java-

Triveni. Our case study version is described below.

In this case study, we follow closely our earlier de-

sign [JPVO96].

4.1 JavaTriveni version of the Carrier
Group Alarms software: Structure
and Advantages

Our version of the CGA software consists of approx-

imately 2500 lines of concurrent code in JavaTriveni.

The functionality of this software, comprised of the

CGA Collection Software and multiple instances of

the CGA Data Software, is depicted in Figures 7

and 8. (The structure of the CGA Data Software

is relatively simple, and hence is depicted merely as

pseudo-code). Arrows emanating from Triveni pro-

cesses indicate events that are emitted or 
ags that

are set by those Triveni processes; arrows pointing

to Triveni processes indicate events that are received

or 
ags that are read by those Triveni processes.

Dotted arrows represent events to or from the out-

side world.

The CGA Collection Software receives summary re-

quests from the outside world. In response, it �rst

broadcasts a message to all the instances of the CGA

Data Software to start collecting their data. It then

sends requests to the multiple instances of the CGA

Data Software; these instances are polled sequen-

tially. The �rst request from the CGA Collection

Software to a given instance of the CGA Data Soft-

ware is represented by the FIRST REQ i events, and

subsequent requests are represented by NEXT REQ i
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HM_READY

class CGA extends Expr {

CGA(CollectionSoft, DataSoft1, ..., DataSoftk) {

Expr e= CollectionSoft

|| RENAME[CGA_DATA_1/CGA_DATA,

LAST_DATA_1/LAST_DATA,

FIRST_REQ_1/FIRST_REQ,

NEXT_REQ_1/NEXT_REQ] IN DataSoft1

...

|| RENAME[CGA_DATA_k/CGA_DATA,

LAST_DATA_k/LAST_DATA,

FIRST_REQ_k/FIRST_REQ,

NEXT_REQ_k/NEXT_REQ] IN DataSoftk

become(e);

}}

class CollectionSoft extends Expr {

CollectionSoft() {

Expr e= VerifyReq

|| ServiceReq

|| Timers

|| HMMonitor

become(e);

}}

Figure 7: Architecture of CGA Software(left), CGA Collection Software (right)

events. The given instance of the CGA Data Soft-

ware responds to a FIRST REQ i event by collecting

a threshold amount of data from the beginning of its

databases, and sending CGA data to the CGA Col-

lection Software via the CGA DATA i event. It then

waits for a NEXT REQ i event, upon which it resumes

searching for more data, from the point it left o� in

the corresponding databases. It again sends data

via the CGA DATA i event. The LAST DATA i event

signi�es that all relevant CGA data has been sent

by this instance of the CGA Data Software. The

CGA Collection Software collects all the CGA data,

reformats it, and sends it to the Human-Machine In-

terface for printing.

The JavaTriveni design and implementation of the

top-level CGA program, the CGA Data Software,

and the CGA Collection Software utilize the princi-

ples underlying JavaTriveni. In particular:

1. The CGA sub-programs are combined freely

with the JavaTriveni combinators, and the

JavaTriveni tools produce an implementation

that yields the correct combination of behav-

iors. For example, all Triveni processes (de-

class DataSoft extends Expr {

DataSoft() {

Expr e= AWAIT FIRST_REQ ->

LOOP

// collect threshold amount of data

// from beginning of database

// emit CGA_DATA or LAST_DATA

DO

LOOP

AWAIT NEXT_REQ ->

// collect threshold amount of data

// data from rest of database

// emit CGA_DATA or LAST_DATA

WATCHING FIRST_REQ

become(e);

}}

Figure 8: Design of the CGA Data Software

noted by boxes in the �gures) are viewed as

black boxes by the rest of the program, and

the design and implementation of the CGA pro-

grams is based only on the desired e�ects on the

resulting behavior.

2. Parallel composition is used freely for the mod-

ular decomposition of designs, and the Java-

Triveni tools automatically implement the de-

sired communication. For example, the mod-

ules in Figure 7 are composed using the Java-



Triveni Parallel construct and the desired

wiring depicted in the �gures is realized by

JavaTriveni.

3. The preemption operators of JavaTriveni aid

in program modularity and allow expressing

priorities on events. For example, consider

the CGA Data Collection software of Fig-

ure 8. It uses preemption to indicate that the

FIRST REQ event has higher priority than the

NEXT REQ event. Namely, the AWAIT NEXT REQ

statement occurs inside the DO ... WATCHING

FIRST REQ statement. This corresponds to the

desired CGA functionality that if a FIRST REQ

event arrives | perhaps as a result of the

previous request being aborted and a new re-

quest being started | then the database will be

searched from the beginning for possible alarm

data on this processor. The use of the pre-

emption operators to express priorities avoids

the pollution of the code following the AWAIT

NEXT REQ -> statement with information re-

garding FIRST REQ.

4. The combination of objects, renaming, and in-

heritance gives a convenient way to express

variances in program components in the places

they are used. For example, in Figure 7, re-

naming of the events passed between the CGA

Collection Software and the multiple instances

of the CGA Data Software allow di�erent com-

munication channels to be used for the di�erent

instances.

The JavaTriveni design methodology is also evident

at a \micro" level in the the following detailed de-

scription of the JavaTriveni implementation of the

CGA Collection Software.

The architecture of the CGA Collection Soft-

ware

The CGA Collection Software (Figure 7) has four

parallel Triveni processes: VerifyReq, ServiceReq,

HMMonitor, and Timers. Figures 9{11 show the in-

ternal structure of some of these Triveni processes.

As before, the modules in the �gures are composed

using the JavaTriveni Parallel construct, and the

desired wiring depicted in the �gures is realized by

JavaTriveni.

START

summary requests

CheckReq

StartProcess

DONE

IN_PRG

Figure 9: Internal Structure of VerifyReq
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Figure 10: Internal Structure of ServiceReq

Verifying a Request Summary requests are �rst

veri�ed by the VerifyReq Triveni process, whose in-

ternal structure is illustrated in Figure 9. There are

various types of summary requests, and each one

has an associated internal IN PRG 
ag that denotes

that this particular type of request is currently in

progress. The CheckReq Triveni process waits for

summary requests, using the JavaTriveni Await con-

struct. If some other request is in progress, i.e., the

corresponding IN PRG 
ag has been set by StartPro-

cess, then the requesting party is asked to \retry

later." Otherwise, the request is started, i.e., the

START event is emitted by CheckReq and the appro-

priate IN PRG 
ag is set by StartProcess.

Servicing a Request The START event and

IN PRG 
ag are received/read by the ServiceReq

Triveni process, which is responsible for servicing

the request. The internal structure of ServiceReq
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Figure 11: Internal Structure of GetDatafromProc

is depicted in Figure 10. The ProcessReq Triveni

process waits for the START event and �rst sets

a timer for the maximum amount of time that

may be spent servicing a single request. This

timer is set using the event TOTAL TIMER; the events

TOTAL TIMER EXPIRED and TOTAL TIMER CLEAR, re-

spectively, indicate the expiration or clearing of

this timer. The TOTAL TIMER EXPIRED event is of

high-priority: in particular, upon receipt of this

event, the current request, if active, is aborted,

the event DONE is sent to VerifyReq and its inter-

nal Triveni processes, StartProcess resets the IN PRG


ag, and CheckReq starts accepting new requests.

This form of process abortion is expressed using

the JavaTriveni DoWatching construct in the Pro-

cessReq module. This gives high-priority to the

TOTAL TIMER EXPIRED event, while allowing the rest

of the Collection Software to remain unpolluted by

information about this event.

Alerting the Processors After the timer is set

by ProcessReq, the DoBroadcast Triveni process be-

comes active and, in turn, sets another timer and

broadcasts a command to all the processors to start

collecting data. When the broadcast completes or

this timer expires, the DoBroadcast Triveni process

becomes inactive and the DoAllProcs Triveni pro-

cess becomes active. This timer event is of lower

priority than the TOTAL TIMER EXPIRED event. This

is expressed through appropriate nesting of preemp-

tion operators: in particular, the Await construct

for this timer event is nested inside the DoWatching

construct for the TOTAL TIMER EXPIRED event.

Collecting Data from the Processors If the

HM READY 
ag is set, DoAllProcs gets the identi-

�er of the �rst processor to be queried for data

about carrier groups, and passes this identi�er to

the GetDataFromProc Triveni process as a value on

the event PROC NUM. Figure 11 illustrates the inter-

nal structure of the GetDataFromProc Triveni pro-

cess. The PROC NUM event is received by its inter-

nal Triveni process GetProcData, which then sets a

timer and sends a FIRST REQ event (or a NEXT REQ

event) to the corresponding processor, requesting

data. If the timer expires before the processor

replies (with a CGA DATA or a LAST DATA event), the

query of this processor is aborted, ABORT PROC is

emitted, and DoAllProcs starts processing the next

processor. (As before, this timer event is of lower

priority than the TOTAL TIMER EXPIRED event, ex-

pressed through appropriate nesting of preemption

operators.) Otherwise, when the processor replies,

the data on the received event is sent to ProcessData

as a value on the event PROC DATA. ProcessData for-

mats the data in a manner suitable for sending to

the Human-Machine Interface. Pieces of data are

sent individually to OutputToHM via SEND DATA ev-

ery time SEND MORE is received. OutputToHM then

sends the data to the HMI; if there is a resource

over
ow and a message is lost, OutputToHM sends

a WARN HM event to HMMonitor.

This cycle continues, using the JavaTriveni Loop

construct, until the last piece of data is col-

lected from a given processor (indicated by the

LAST DATA event), after which GetProcData emits

the NEXT PROC event. DoAllProcs then gets the

identi�er of the next processor to be queried, and

the cycle is repeated until all the data on all the pro-

cessors is collected. If there is a fatal error in pack-

aging the data or accessing the HMI, the request is

aborted by sending ABORT ALL to ProcessReq. This

event is of high-priority, and the resulting behav-

ior is similar to that of the TOTAL TIMER EXPIRED

event. In particular, control then returns to Process-

Req, the request is aborted, the event DONE is sent

to VerifyReq, and its internal Triveni process Check-

Req starts accepting new requests. The response to

a problem in determining the �rst or next processor

is similar, except that the ABORT ALL event is not

emitted.

When the last processor has been queried, DoAll-

Procs emits SEND DATA and FLUSH to OutputToHM



so that any remaining data is sent to the HMI. Pro-

cessReq then emits the event DONE so that CheckReq

can start accepting new requests.

The Human-Machine Monitor Whenever a

WARN HM is emitted by OutputToHM, HMMonitor

resets the HM READY 
ag, and data collection from

new processors is suspended by ServiceReq's inter-

nal Triveni process DoAllProcs. This behavior is

expressed using the JavaTriveni SuspRes construct

inside the DoAllProcs module: this allows the rest

of the Collection Software program to remain unpol-

luted by information about HM READY, while giving

high-priority to this event. HMMonitor then pe-

riodically checks if the HMI is responding. Once

the HMI starts responding, data collection is re-

sumed. If it does not respond in a threshold number

of queries, HMMonitor sends an ABORT ALL to Ser-

viceReq's internal Triveni process ProcessReq, and

the summary request is aborted. The nesting struc-

ture of the SuspRes construct for HM READY and

the DoWatching construct for ABORT ALL give the

desired dynamic priorities among these events, de-

pending on the number of times the HMI has been

queried.

Timers Timers are set and cleared through the

Timers Triveni process, which also sends events to

the other Triveni processes when a timer has ex-

pired.

4.2 Testing of safety properties

In our earlier work [JPVO95], a 5ESS developer had

provided a summary of safety properties that this

variation of the CGA software should satisfy. We

consider some of the same safety properties here.

The actual timing constants have been omitted here

due to proprietary considerations and have been de-

noted by symbols ci. These are so-called \soft" real-

time properties in the sense that the exact bounds

ci need not be satis�ed; a reasonable approximation

will do.

T0 A summary request must be completed in less

than time c1.

T1 If a queried processor does not reply within

time c2, the request should be aborted immedi-

ately and the next processor should be queried.

T2 If the HMI blocks on a message, the collection

of new CGA data must suspend.

T3 If the HMI blocks on a message, the message

should be resent with a period of time c3, un-

til the HMI unblocks. If time c4 elapses and

the HMI has not yet unblocked, the summary

request should be aborted.

T4 If HMI unblocks after CGA data collection has

been suspended, CGA data collection must be

reactivated immediately.

T5 No summary request should be honored when

another summary request is currently running.

Using the speci�cation-based testing facility of Java-

Triveni, we have tested our JavaTriveni implemen-

tation of the CGA software against these properties.

Since our JavaTriveni version used system timers to

enforce timing constraints, our implementation can

only be expected to satisfy the above properties un-

der certain obvious assumptions about these system

timers. In particular, we need to assume that when

a timer is set with the value ci, it either expires or

is cleared within time ci after it is set.

4.3 Comparison with earlier work

Our earlier work involved writing an implemen-

tation of the Carrier Group Alarms software

in the synchronous programming language Es-

terel [BG92]. Both the Esterel and JavaTriveni

versions of the program are about 2500 lines of code.

Esterel elegantly models simultaneous events, and

in this regard is superior to JavaTriveni's simula-

tion of simultaneity. In our JavaTriveni code, we

followed the Esterel design closely; however, most

assumptions on event simultaneity could safely be

eliminated, and data 
ags were used to simulate si-

multaneity in the few remaining cases.

Esterel only supports very rudimentary notions of

autonomous behavior and asynchronous communi-

cation. Thus, in our earlier work the Timers Triveni

process of the JavaTriveni implementation was real-

ized outside the Esterel framework, via an oper-

ating system call, and the the communication of the

CGA Collection Software and the CGA Data Soft-

ware was implemented using C system calls. In con-

trast, JavaTriveni fully integrates autonomous and



reactive behavior and supports asynchronous com-

munication, and the entire summary request func-

tionality of the CGA software was implemented in

JavaTriveni.

5 JavaTriveni Distribution and Fu-

ture Work

Information regarding the JavaTriveni distribution

can obtained by contacting the authors.

A next step in Triveni is to study the interaction

between the event-based exceptions and priorities

in Triveni with Java's existing notions of exceptions

and thread priorities.

The next phase of the Triveni project is the inves-

tigation of the interaction between Triveni and dis-

tributed programming, such as via remote method

invocation (RMI) in Java.
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