
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Compile Time Symbolic Derivation with C++ Templates

Joseph Gil
IBM T.J. Watson Research Center

Zvi Gutterman
Technion Israel Institute of Technology

COMPILE TIME SYMBOLIC DERIVATION WITH C++ TEMPLATES

Joseph (Yossi) Gil * †

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
yogi@watson.ibm.com

yogi@cs.technion.ac.il

Zvi Gutterman
Faculty of Computer Science

Technion Israel Institute of Technology
Haifa 32000, Israel

zvik@cs.technion.ac.il

 Abstract

C++ templates are already recognized as a powerful linguistic mechanism,
whose usefulness transcends the realization of traditional generic containers. In
the same venue, this paper reports on a somewhat surprising application of
templates—for computing the symbolic derivative of expression. Specifically,
we describe a software package based on templates, called SEMT, which allows
the programmer to create symbolic expressions, substitute variables in them,
and compute their derivatives. SEMT is unique in that these manipulations are
all done at compile time. In other words, SEMT effectively coerces the
compiler to do symbolic computation as part of the compilation process.
Beyond the theoretical interest, SEMT can be practically applied in the
efficient, generic and easy to use implementation of many numerical
algorithms.

KEYWORDS: SCIENTIFIC COMPUTING, GENERIC PROGRAMMING, NUMERICAL ALGORITHMS,
SYMBOLIC DERIVATION.

* contact author
† Research done in part while the author was at the Technion

1 INTRODUCTION

C++ templates were originally designed to support the
realization of traditional generic containers and
algorithms [S94: Chap. 15]. However, there is much
more to C++ templates beyond basic genericity
capabilities: function templates and their implicit
instantiation mechanism and other sophisticated
specialization mechanisms, a variety of kinds of
parameters, including parameters which are template
themselves, default parameters, explicit instantiation,
and more. C++ genericity mechanism also draws
power from the fact that a class template is not limited
to methods and instance variables. It may include static
member data members; type and constant definitions
(using typedef and enum), nested classes and even
nested template classes and template function
members. The combined power of all these enable a
relatively new language feature to surpass its original
intent. A well known (and at first sight intriguing)
example of this is that of function objects and

binders [KM96: Chap. 21-22] which are part of the
Standard Template Library (STL) [MS96]. Another
interesting use of templates is that of “trait
classes” [NM95] which were employed in dealing with
the internationalization of C++ code.

The work reported here is an extension of this line of
inquiry. We demonstrate the practical implementation
of C++ templates in doing some non-trivial symbolic
computation during compile time. To a certain extent
we continue the work on template metaprograms
technique of Veldhuizen [V95a] in which the compiler
is employed as an interpreter. The instructions to this
interpreter are encoded in an elaborate template lingo.
The useful work that this interpreter does is the
generation of efficient inlined code. Template
metaprograms were exemplified in making the
compiler evaluate the factorial function instead of
deferring its computation to run-time. Yet another
application of these was the efficient computation of a
prefix of a Taylor series expansion for approximating
numerical functions.

The template metaprograms technique was perfected in
Veldhuizen's subsequent work [V95b] on expression
templates. Expression templates were used to create an
efficient inlined code for expressions on vectors and
matrices. Consider the C++ expression, A+B*c , where
A and B are vectors of the same length, and c is some
scalar. In a simple-minded operator overloading
implementation, this expression would span two loops.
However, using expression templates for it effects a
code that comprises a single loop, as it would have
been by manually crafted code.

Our extension to expression templates is a template
based software package called SEMT (“Symbolic
Expressions Manipulation with Templates”). SEMT is
different than the work of [V95b] in that the symbolic
expressions can be directly created, used and
manipulated by the programmer, rather than just
serving as internal representation employed in the
optimization purpose. One important and far from
trivial such manipulation is the computation of the
symbolic derivative. Again, the use of templates makes
it possible to do these manipulations at compile time.
In other words, SEMT effectively coerces the compiler
to do symbolic computation as part of the compilation
process. Beyond the theoretical interest, SEMT is
applicable in an efficient, generic and easy to use
implementation of the many numerical algorithms that
make use of the derivative function. A primary
example of such an algorithm is the Newton-Raphson
method for finding the roots of a function.

Outline. The rest of this paper is structured as follows.
The next Section 2 makes the case for symbolic
manipulations in compile time. In Section 3 we explain
the technique of using types to represent expressions.
Section 4 describes symbolic derivation and computing
the value of an expression at a given numerical point.
The implementation and evaluation of the run time
performance of the package are the subject of Section
5. The penultimate Section 6 presents some more
sophisticated applications employing more advanced
techniques. The technical discussion also culminates
here in implementing the chain rule using C++
templates. Finally, Section 7 draws the conclusions and
lays out some directions for future research.

2 THE CASE FOR SYMBOLIC ,
 COMPILE -TIME DERIVATION

A familiar example of the use of the derivative function
in scientific computing is that of the Newton-Raphson
method. This method, which will be used as our main
running example, prescribes that xi +1, the next

iterative approximation to a root of a functionf , is

computed from the previous approximationxi , using

the following formula:

x x
f x

f xi i
i

i
+

+
= −1

1

()

'()

Although the method is simple in principle, its
implementation will necessarily depend on many
parameters: an initial guess x0 , bounds on the

accepted final error (e.g., asx xi i+ −1 or f xi()), an

upper limit to the number of iterations, the function
f itself, the algebraic field (real vs. complex), the

arithmetic precision with which the computation is
carried out, , etc. Such dependencies are not a
phenomenon specific to Newton-Raphson or to
numerical computation only. Software of all kinds
exhibits dependency on a large number of widely
different parameters. In general, a dependency on a
certain parameter can be captured at one of the
following three points during a program lifetime.

1. Run Time. An implementation may receive a
setting for the parameter at run time as an actual
parameter of a routine or as a global variable. For
an example, consider the implementation of
Newton-Raphson algorithm in Figure 1 below. The
initial guess and an error bound on
| () / ' ()|f x f xi i are formal parameters to function

NR_simple ; their values are determined only
when routine NR_simple starts its run.

The run-time dependency approach is the most

double NR_simple(
double (*function)(double),
double (*tag_function)(double),
double initial_guess, double e)

{
double root = initial_guess;
double f, ftag;
int itr;

for (itr = 1;
itr <= MAX_ITERATIONS; itr++) {

f = (*function)(root);
ftag = (*tag_function)(root);
root = root - f/ftag;
if (fabs(f/ftag) < e)

return root;
}
return root;

}

Figure 1. Simple numerical solver using the Newton-
Raphson method (adapted from Numerical
Recipes [TFP92])

flexible, since the same compiled code can be used
for all settings of the parameter. This approach is
also the least efficient, since the code must consult
the parameter value during its execution.
Furthermore, this approach is more difficult to
optimize in a separate compilation environment.

2. Compile Time. In this approach to the
expression of the dependency on a parameter, the
same source is compiled to different object targets,
depending on the parameter value. In Figure 1,
identifier MAX_ITERATIONS is a pre-processor
constant, to be set at compile time by the
programmer. A different object code will be
generated for each different setting of it.

This approach incurs no direct performance
penalty, although the coding for generality to
account for different parameter values may bring
about an implicit cost. Compile time parameters are
also safer than run-time parameters, since the
compiler gets a chance to check the parameters.
Erroneous parameters would lead to a compilation-,
rather than a run-time error.

3. Design Time. In this approach, the human
programmer writes the code for a specific value of
the parameter. In Figure 1, for example, it was a
design decision to use double precision
arithmetic. When the need arises to change the
value of the parameter, the human software
engineer is called in to write a new code, or rewrite
the existing one.

In most cases, the intermediate approach of compile-
time parameter dependency is the preferred one.
Compile-time parameters make it possible to achieve
flexibility without compromising efficiency. The cost is
in the coding effort and sometimes in portability to
other languages and environments. Implementing
compile-time parameters is typically not easy. Such
implementation is often highly dependent on the
expressive power of the underlying programming
language. Standard C environment, for example, does
not directly support simultaneous different object files
of the same source code. It takes proficiency in writing
makefile and skills in juggling pre-processor
directives to convert the code in Figure 1 to make the
arithmetical precision design-time parameter into a
compile-time one. It is even more challenging to do the
same for the function run-time parameter.

C++ templates open the door to a new world of cleaner
representation of compile-time parameters. It is
straightforward to make precision a compile-time
parameter. But, in general, template programming is

much more difficult. In order to avoid the cost of
indirect function call one may want to make
function and tag_function into true compile-
time parameters. But this can only be done using the
sophisticated function-objects technique of STL. The
function objects technique suggests that there is more
to template programming than meets the eye. Another
indication of this is the clever use of templates to
express policy parameters, such as memory allocation
schemes, algorithmic strategies, etc. (See e.g., [MS96]
and [S91: Chap. 13.4].) In this broader context we may
regard the contribution of this paper as a further
exploration of the expressive power of C++ templates.
We demonstrate that a non-trivial symbolic
computation can be carried out at compile time using
templates.

In the more specific Newton-Raphson example, there is
a design-time dependency of the derivative function
tag_function on function . For each value of
function , the programmer must code in a new
derivative to be passed as parameter to
tag_function . Thus, to solve the equation

tan()x x= 2

the programmer would not only have to code the
following function

double G(double x) {
return tan(x) - 2 * x;

}

 but also,

double G_tag(double x) {
return 1.0/pow(cos(x),2) - 2;

}

only after which a call to the numeric solver such as

cout << "The root of Tan(x) is " <<
NR_simple(G, G_tag, 1.0, 1E-5);

can be issued.

The code of function G_tag depends on that of
function G. Whenever G changes so should G_tag .
This dependency was captured at design time:
whenever G changes, the programmer must be called in
to recode G_tag . The run-time approach alternative to
this is to compute, or rather approximate, the
derivative at run-time. However, the cost of doing so
would never be acceptable in a fast numeric solver.

Using SEMT, the dependency of f ' on f can be

shifted from design time into compile-time one. The
user may write a functionf much like any C++
expression, and reply on the compiler to symbolically
compute expression f ' . These expressions are

implemented as C++ types. A call to the SEMT solver
might take the following form:

TYPE(tan(x) - 2*x) g;
double x = 0.98;
cout << "The root of " << g

<< " near " << x << " is "
<< NR_symbolic(g, 1.0, 1E-5);

which would produce the output

The root of Tan(X) - 2 * X near 0.98 is
1.1656

The macro TYPE returns the type of an expression. It
is easy enough to implement in gcc, Gnu’s C++
compiler, with the use of the typeof operator.
Unfortunately, as far as we could determine, it is
impossible to implement in a standard-conforming
compiler. With C++ implementations that do not
support this language extension we must resort to a
more complicated scheme to extract the type of an
expression, in lieu of the elegant typeof operator and
the TYPE macro. This scheme is discussed below.

Note how a symbolic expression can be stored in a type
of a variable g. Passing the variable as a parameter is
the same as passing the type associated with it as a
parameter. Evidently, the syntax for invoking
NR_symbolic is cleaner. Also, the code is less bug-
prone, since the user is no longer trusted (or troubled)
to carry out the symbolic derivation by hand and keep
it in synchronization with the original function. From
an efficiency perspective, both f and f ' could be
inlined into the numeric solver, thus achieving the
same level of specialization as that of the hand-coded
solver of Figure 2.

3 EXPRESSIONS AS TYPES

In this section we describe the basic idea behind used
in SEMT, which is similar in principle to that
of [V95b]. It is to have a distinct C++ class, generated
by a template, for each possible symbolic expression.

We start by giving a more formal definition of the
symbolic expression concept:

Definition 1 The set E of all symbolic expressions is
defined as the minimal set such that:

1. all integer constants n∈Z are in E ;

2. symbolic variables, x y, ,...are in E ;

3. for each unary operator { }◊ ∈ + −, , and for each

function f ,

{ }f ∈ sin,cos, tan,arcsin,arccos,arctan, log, lg, ln,exp,...

if e E∈ , then so are ◊e and f e() ; and ,

4. for each binary operator { }⊗ ∈ + −, ,*,/ , if

e e E1 2, ∈ then so is e e1 2⊗ .

Ignoring momentarily the fact that non-class types
(such as int and ios *) may serve as template
parameters, we can think of class templates with
typename parameters as functions, operating at
compile time, whose domain and range is the universe
of all classes. Equating this with the above definition,
we can devise a recursive construction of a C++ class
for each symbolic expression:

1. To create a distinct class for each such integer
value, there is a class template expecting a
constant int parameter.

2. There are unique X, Y,… C++ classes to represent
the symbolic variables, x y, ,... . Alternatively,
there could be a template expecting a char
constant argument, such as 'x' , 'y' , …, as a
parameters to create a unique class for the
symbolic variables.

3. For each unary operator ◊ and for each
function f , there is a unique class template that
takes the class corresponding to expression e as a

double NR_tan_x_minus_two(double initial_guess, double e)
{

double root = initial_guess;

for (int i = 1; i <= MAX_ITERATIONS; i++) {

root = root - (sin(root)/cos(root)-2*x)/(1/pow(cos(root),2)-2);

if (fabs((sin(root)/cos(root)-2*x)/(1/pow(cos(root),2)-2)) < e)
return root;

}

return root;

 }

Figure 2. A hand-code implementation of a Newton-Raphson solution to tan()x x= 2

parameter and creates a new class for ◊eand for
f e() .

4. For each binary operator⊗ there is a class template
that takes the classes corresponding to symbolic
expressions e1 ande2 , and creates a new class that

corresponds to e e1 2⊗ .

In this construction, there be would an instance of class
template sin_t (which takes a single typename
parameter) to represent an expression of the form
sin()X . There would be an instance of the class
template plus_t to represent an expression whose
outer most operation is+ . Also, there would a unique
class to represent each symbolic variable used in the
program, and a template class, instantiated out of a
class template taking a constant int parameter, for
each integer constant used as part of a symbolic
expression in the program. The following C++ code
excerpt demonstrates the idea:
template <typename T> class sin_t {};
template <typename T1, typename T2>

class plus_t {};

// ...

template <int n> class Number {};
class Variable {};

With this, the symbolic expression
x x x+ +sin(sin())

is represented as the template class
plus_t<Variable, sin_t< plus_t<
Variable,sin_t<Variable> > > >, or in
somewhat easier to read indented layout:
plus_t<

Variable,
sin_t<

plus_t<
Variable,
sin_t<Variable>

>
>

>
We see that a type definition can be very long and
unwieldy even for a relatively small expression. We

cannot improve on this in the general case, syntactic
sugaring is possible for many applications by using
function templates such as:
template <typename T>

inline sin_t<T> sin(const T& p) {
return sin_t<T>();

}

Template function sin returns a value of type
sin_t< t > for any type t . More importantly, thanks
to the implicit template instantiation, the return type of
sin(v) for a value v of type e would be
sin_t<e *> . Thus, instead of having a type
corresponding to a symbolic expression, we have a
value of the exact same type, which is returned by that
function. Note how simple the body of the function is.
It can be further simplified using a pointer return type
to eliminate the constructor call from the return
statement:
template <typename T>

inline const sin_t<T> * const sin(
const T * const) {

return 0;
}

Let us do the same also for the addition, by overloading
the operator +
template <typename T1, typename T2>

inline const plus_t<T1,T2> * const
operator +(

const T1 * const ,
const T2 * const) {

return 0;
}

Now, X + sin(X + sin(X)) is a C++ expression
whose type is a (const) pointer to (a const of) the
type corresponding to expression x x x+ +sin(sin()) .
Some non-trivial compiler work needs to be done to
discover that type. However, in evaluating this
expression, there is little, if any code generation
required of the compiler. Even a half-hearted
optimization attempt of this C++ expression will
quickly reveal that it is nothing but the null pointer.

We use the term expression values for null pointers of

#define UNARY_OP(ResTempl, Fname) \
template <typename T> \

inline E_VALUE(ResTempl<T>)Fname(E_VALUE(T)) { return 0; }

UNARY_OP(sin_t, sin)
UNARY_OP(cos_t, cos)
//…

#define BINARY_OP(ResTempl, Fname) \
template <typename T1, typename T2> \

inline E_VALUE(ResTempl<T1,T2>) Fname(E_VALUE(T1), E_VALUE(T2) { return 0; }

BINARY_OP(plus_t, operator +)
BINARY_OP(minus_t, operator -)
//…

Figure 3. Macros for defining type construction functions.

this kind. Also, template functions, such as the two
defined above, which take and return expression values
without doing any computation on them, are called
expression functions. The following macro definition is
useful for defining expression functions:

#define E_VALUE(T) const T * const

The basic expression functions for type expressions can
be concisely coded using two more simple macros as
shown in Figure 3

4 COMPOSITIONAL RECURSION

In this section we describe how symbolic derivation is
implemented in SEMT. The exposition is served by
starting with a sketch of the implementation of
expression application: the process by which value of
an expression at a certain numerical point is evaluated.
We then proceed to describe symbolic derivation.
Figure 4 demonstrates how these two operations might
be used in actual user code. As before, the C++
variables u and v are dummies. Their actual value is
less important than their type. Thus, the type of u
represents the constant 10, while type of v represents a
free variable.

Function apply is a template function which is

instantiated from the following function template.

template <typename T>
inline double apply(

E_VALUE(T),
double val) {

return T::apply(val);
}

(It is also possible to make the arithmetical precision a
parameter of the template, but for simplicity, we will
just use double .) The type of the first parameter
represents the symbolic expression. The instantiation
of the function template depends on this type. The
second parameter of apply is the point where that
expression has to be evaluated.

The function template apply works since each
C++ class which corresponds to a symbolic expression
would have a static function apply , defined by what
we will call compositional recursion on the type, or
equivalently, the expression structure, to do the actual
evaluation. Figure 5 illustrates the appropriate class
template definitions for making the compositional
recursion definition of apply .

The recursion base is classes Variable and Number
representing variable and constants in the expression.
For the sake of brevity, only the templates for the

Variable v;

Number<10> u;

cout << apply(v, 5.9) << " ";
cout << apply(u, 5.9) << " ";
cout << apply(derive(v), 5.9) << " ";
cout << apply(derive(u), 5.9) << " ";

cout << apply(derive(u - sin(v)), 0)) << endl;

// Output is: 5.9 10 1 0 -1

Figure 4. Simple code using SEMT

template <typename T> class sin_t { public :
static inline double apply (double x) { return sin(T::apply(x)); }

};

template <typename T1, typename T2> class plus_t { public :
static inline double apply(double x) { return T1::apply(x) + T2::apply(x); }

};

template <int n> class Number {
static inline double apply(double) { return n; }

};

class Variable {
public :
static inline double apply(double x) {

return x;
}

};

Figure 5. Compositional recursion definition of apply

unarysin and the binary+ expression type constructors
are shown in this and the other code excerpts that
follow.

Note that compositional recursion is somewhat
reminiscent of refinement in inheritance, in which an
overriding function relies on the implementation of the
overridden one for its own implementation.

In much the same way, one can define a print
function (or an operator <<) to print the symbolic
expression that each class represents. We do not
include the code for this here.

Compositional recursion is basically the technique of
implementing the derivative operator. However, since
symbolic derivation is a mapping from symbolic
expressions to symbolic expressions, it should be
represented as a class to class mapping. For this, we
must rely on the ability to make typedef declarations
in a class. The following typedef makes the
derivative of a free variable to be the constant 1

class Variable {
public :

typedef Number<1> tag;
};

The actual code is depicted in Figure 6. For brevity,
only the tag typedef members of the class
templates are shown in the Figure; we will remain
faithful to this convention of illustrating only the new
members of previously defined classes.

For each type T representing a symbolic expression,
type T::tag represents the type of the derivative of
the symbolic expression that T represents. At this

stage, we do not distinguish between different symbolic
variables that might occur in type T. For the purpose of
derivation and application, all symbolic variables are
considered identical. Thus, all symbolic expressions
can be thought of as functions of one variable.

Here is the definition of function derive which
makes it possible to apply symbolic derivations not
only to types, but also to expression values.

template < typename T>
E_VALUE(T::tag) derive(E_VALUE(T)) {

return 0;
}

template <typename T> class sin_t {
 public :

typedef cos<T> tag;

};

template <typename T1, typename T2> class plus_t {
 public :

 typdef plus_t<T1::tag, T2::tag> tag;
};

template <typename T1, typename T2> class mult_t {
 public :

 typdef plus_t<
 mult_t<T1::tag, T 2>,
 mult_t<T1, T2::tag>
 > tag;
};

template <int n> class Number {
typedef Number<0> tag;

};

Figure 6. Compositional recursion definition of typedef tag

5 IMPLEMENTATION AND PERFORMANCE

The source code of SEMT spans some twelve hundred
lines of C++ code, which are to be put on the web
shortly. SEMT supports the elementary mathematical
operators as well as standard mathematical functions
including the trigonometric functions and their inverse
and logarithm and exponentiation. Unfortunately, it
has been difficult to get the entire code to compile on
most current compilers although different pieces have
compiled correctly on different compilers. This
includes also the leading three compilers (Borland,
Gnu and Microsoft). It is clear that current compilers
are still lacking in providing full support of the
upcoming ISO/ANSI C++ standard [IA97]. Some of
the weaknesses that we have encountered are support
for nested template classes, template specialization and
template functions with non-typename arguments.

SEMT does not yet support arithmetical precision as a
template parameter, but work on this extension has
already begun.

Due to the highly structured nature of the definitions,
most of the code can be written using sophisticated
macros, similar to those of Figure 3. They have been
found essential to capture the commonality between
many template definitions.

As a side comment we note that extensive use of
pre-processor macros is often frowned upon in
ordinary C++ programming. Many of their
traditional applications in C are better served with
the more modern features of C++. Templates were
promoted and effectively used as a structured
substitute to macros. It is therefore especially
displeasing to have to resort to macros in a
template package. We find this need to be the result
of lack of higher level constructs in C++. There are
no templates for defining templates, templates for
defining templates defining templates, etc. The
sophisticated recent additions to the language,

such as passing a template argument to a template
do not seem to ameliorate this predicament.

The implementation of the Newton-Raphson algorithm
as an expression function in SEMT is given in Figure
7, which is arguably more elegant than that of Figure
1, but potentially as efficient as the hand-coded,
specialized version of Figure 2.

template <typename F>

double nr_SEMT(E_VALUE(F), double initial_guess, double e) {

double root = initial_guess;

for (int itr = 1; itr <= MAX_ITERATIONS; itr++) {
root = root - F::apply(root)/F::tag::apply(root);

if (fabs(F::apply(root)/F::tag::apply(root)) < e)
return root;

}

return root;

}

Figure 7. Newton-Raphson algorithm as a function template.

Table 1 compares the running time of an
implementation of the Newton-Raphson algorithm
which is template-based Figure 7 to one which uses
pointers to functions (Figure 1) for several functions of
varying level of complexity. The Visual C++ compiler
(Version 5.0) generated the code. Measurements were
taken on a 32MB, 133MHZ Pentium machine.

It can be inferred from the table that in finding the
roots of relatively simple functions, the template
version does not significantly improve the run time of
the algorithm in comparison to the standard
implementation. However, for more complex
functions, the differences in run time become more
substantial. These observations are consistent with our
conjecture that in small functions, the main saving is
due to the elimination of indirect function call. More
complicated expressions give rise to more optimization
opportunities due to code inlining in the template
based implementation.

We do not ignore the fact that straightforward symbolic
derivation may produce gigantic expressions which
may greatly benefit from a substantial symbolic
simplification which a compiler is unlikely to make.
(Consider for example the 17th derivative of

)cos(*)sin(xx . A naïve derivation would yield 217

terms, which can be simplified to only 18 terms.) In a
template-based implementation, an optimizing
compiler is given a fair chance to run massive code
transformations, which may produce equivalent results.
Curiously, this offers a perspective of engaging the
optimizer module of the compiler in the task of
symbolic simplification, a chore that is usually done
manually, or with the aid of a dedicated package. From
our limited experiments, it is not clear to what extent
current compilers are capable in this task.

f Function
Pointers

Templates Ratio

tan()x 1415 1408 1.005

x x x4 3 24 45+ − 2162 1590 1.360

tan() sin() cos()x x x+ + 3224 2427 1.328

x x extan() 4223 2896 1.458

sin(cos()) tan(sin())x x x x+ − − 4500 3510 1.282

Table 1 Runtime in µ-sec of Newton Raphson algorithm for solvingf x() = 0 in a pointer to function vs. template

implementation, and ratio of running times.

6 HIGHER APPLICATIONS AND ADVANCED

TECHNIQUES

In this section we describe how the ideas behind
symbolic derivation described above can be used for
doing a variety of symbolic manipulations at compile
time. These include rational arithmetic, substitution
(superimposition), taking the nth derivative, partial
derivation and the chain rule.

6.1 RATIONAL ARITHMETIC

Unfortunately, floating point numbers cannot serve as
parameters to C++ templates. Thus, constants used in
our symbolic expressions were all of type integer. This
is less of a limitation than it may seem, since real
numbers can be approximated with rational expression
such as Number<31>/Number<7> . Moreover, note
that symbolic expressions involving only constants
offer unbounded precision. The value type

1/(1 + 1/(1 +
 1/(1 + 1 / (1 + 1/…. + Number<1>)))…

gives an approximation to the golden

ratio 2)15(−=ϕ which is arbitrarily close to it.

However, when the need comes to evaluate an
expression, the optimizing component of the compiler
should be trusted to do the arithmetical simplifications.
Alternatively, it is possible to use a rational arithmetic
templates package that is structured much like the
symbolic expressions. The essential parts of the code
for this are given in Figure 8.

Note that it in the template implementation of rational
it is all but explicitly guaranteed that the evaluations
are all done in compile time. A C++ compiler is
required by the language standard to instantiate a
template exactly once for each distinct pair of
parameter values. In particular, this must be the case
even if an integer parameter is given as a compound

constant expression.

template <int i1, int i2> class fraction {
public :

enum {numerator = i1, denominator = i2};
};

template <int i1, int i2, int i3, int i4>
E_VALUE(fraction<i1* i3, i2 *i4>)

operator * (fraction<i1, i2>, fraction<i3, i4>) {
return 0;

}

template <int i1, int i2, int i3, int i4>
 E_VALUE(fraction<i1*i4 + i3*i2 , i2*i4>)

operator + (fraction<i1, i2>, fraction<i3, i4>) {
return 0;

}

Figure 8. Template based implementation of rational arithmetic.

6.2 EXPRESSION SUPERIMPOSITION

As explained above, a symbolic expression e with one
symbolic variable v can be also thought of as a
function, or a lambda expressionλe v. . As such, it can
be applied to another expression e' to obtain the
compound expression (.) 'λe v e . We call this operation
super-imposition. For example, super-imposing
x x x+ +sin(sin()) on cos(cos())x x+ would yield.

cos(cos()) sin(cos(cos()) sin(cos(cos())))x x x x x x+ + + + +
Expression super-imposition is implemented using
compositional recursion. This is done with help of a
relatively new, and not widely supported, C++ feature
known as nested template classes, or template class
members. The code of this implementation is
illustrated in Figure 9.

The following expression function helps to make the
syntax of type superimposition simpler.
template < typename T, typename S>

E_VALUE(T::super<S>::impose*)
superimpose(

E_VALUE(T),
E_VALUE(S)) {

return 0;
}

Thus, the expression value for our example is created
by:
superimpose(

X + sin(X + sin(X)),
cos(cos(X) + X)

)

6.3 N'TH DERIVATIVE

To compute derivatives of any arbitrary order, one can
use the following code
template <typename T, int n>

class TAG_N { public :
typedef TAG_N<T::tag, n-1>::Tag

tag;
};

template <typename T>
class TAG_N<T, 1> {

typedef T::tag tag;

};

In words, class template TAG_N taking parameters T
and n, has a typedef tag which is the type
corresponding to the nth derivative of the expression
corresponding to type T. The definition of this
typedef is made recursively: the nth derivative is the
first derivative of the (n-1) th derivative. Template
specialization for the case n=1 is the recursion base.
An expression function to compute the arbitrary order
derivatives is:
template < int n, typename T>

E_VALUE(TAG_N<T, n>)
n_derivative(E_VALUE<T>) {

return 0;
}

A call to this function to produce the expression value
is:

n_derivative<3>(X + sin(X + sin(X)));

template <typename T> class sin_t { public :
template < typename S> class super { public :

typedef sin_t<T::super<S>::impose > impose;
};

};

template <typename T1, typename T2> class plus_t { public :
template < typename S> class super { public :

typedef add_t<T1::super<S>::impose, T2::super<S>::impose> impose;
};

template <int n> class Number {
template < typename S> class super { public :

typedef Number<n> impose;
};

};

class Variable { public :
template < typename S> class super { public :

typedef S impose;
};

};

Figure 9. Compositional recursion definition of typedef super<S>::impose

6.4 PARTIAL DERIVATIVE

The code samples above used a single class,
Variable , to represent symbolic variables in
expression types. This means that expressions used
only a single symbolic variable. All of the symbolic
manipulations presented tacitly assumed that all
variables in an expression are the same. Thus,
typeof (X + 2 * Y - 3 * Z)::tag , where X
and Y symbolic variables (i.e., instances of class
Variable), is, (after some simplification)

Number<1> - Number<2> + Number<1>

which is nothing but 0. This is in contradiction with
the basic rules of calculus which prescribe

∂
∂ x

x y z()+ − =2 3 1
∂

∂ y
x y z()+ − =2 3 2

∂
∂ z

x y z()+ − = −2 3 3
∂

∂ w
x y z()+ − =2 3 0

It is easy enough to define a template to represent

distinct symbolic variables. Here is one way of doing
so:

template <char c> class Variable {
public :
// …

};

With this, template classes such as Variable<'x'>
and Variable<'y'> serve as the symbolic
variables.

In computing the partial derivative with respect to a
specific variablev there are two issues that must be
must be resolved. The first of these is that it is
necessary to pass v down the compositional recursion
hierarchy. This is done using nested class templates as
in Section 0 above. The other issue is the correct
termination of the recursion in a class template
Variable< x>, so that for a variableu v≠ ,

0/ =vu ∂∂ , whereas 1/ =uu ∂∂ . This is done using
specialization of nested template classes, as illustrated
in Figure 10.

template <typename T> class sin_t {
 public :

 template < typename V> class partial {
 public :

 typedef times_t<cos_t<V>, T::partial<V>::derivate> derivative;
};

};

template <typename T1, typename T2> class plus_t {
 public :

 template < typename V> class partial {
 public :

 typedef add_t<T1::partial<V>::derivative, T2::partial<V>::derivative>;
};

template <int n> class Number {

 public :
 template < typename T> class partial {

 public :
 typedef Number<0> derivative;

};

};

template <char c> class Variable {
 public :

typedef Variable<C> Self;
template < typename T> class partial {

 public :
 typedef Number<0> derivative;
};
class partial<Self> {

 public :
 typedef Number<1> derivative;
};

};

Figure 10. Compositional recursion definition of typedef partial<V>::derivative

An interesting application of partial derivatives is in
the identity

df x y

dt

f x y

x

dx

dt

f x y

y

dy

dt

(,) (,) (,)= +∂
∂

∂
∂

also known in calculus as the “chain rule”. An
expression function to implement it is given in Figure
11.

7 CONCLUSIONS AND FURTHER RESEARCH

We have described the main techniques behind
SEMT—a C++ template package for manipulating
symbolic expression at compile time. The package is
useful in writing flexible and efficient code for
numerical applications. The package can only be
partially implemented on current compilers due to their
lack of support of the standard. This is probably a
temporary situation. We expect compilers to become
more stable and standard conforming in the future.
With this happening, a more closed implementation of
the package will become available.

Many of the practical problems we experienced during
the coding and porting were a result of the crass error
messages and warnings that compilers issue for
template expansion errors. The advent of advanced
techniques of using C++ templates, of the sort
propounded by this paper, builds a C++ code body
which makes a sophisticated use of templates. This
would hopefully coerce compiler writers to pay better
attention to this point. Moreover, debugging code
generated from templates is not easy. In many ways it
resembles debugging high level code through the
equivalent assembly. Again, improved tool support is
required here.

The main C++ lingual feature that we feel is missing
in order to make this package complete is a mechanism
for extracting the type out of a value. This is required
in order to translate an expression function back to the
type of the value it returns, as done with the typeof
pseudo-operator of Gnu C++ compiler.

We are currently engaged in extending the package to
deal with algebraic numbers. Yet another interesting
extension, with intriguing theoretical consequences, is
to implement a full lambda calculus. On the other
hand, the dual problem to the one we have solved here,
namely coercing a symbolic computation such as
MATHEMATICA [W91] to compile C++ templates may
be less than interesting.

Acknowledgments. Inspiring discussions with Irad
Yavne and Mark Wegman are gratefully
acknowledged.

template <

typename X, // represents symbolic variable x
typename Y, // represents symbolic variable y

typename F, // represents f x y(,)

typename X_T, // represents dependency x x t= ()
typename Y_T // represents dependency y y t= ()

>
E_VALUE(

add_t<
mult_t< F::partial<X>::derivative, X_T::tag >,
mult_t< F::partial<Y>::derivative, Y_T::tag >

>
) chain(E_VALUE<F>, E_VALUE<X_T>, E_VALUE<Y_T>) {

return 0;
}

Figure 11. A function template implementing the chain rule

8 REFERENCES

[KM97] Koenig A., and B. Moo., Ruminations on C++,
Addison Wesley 1996.

[IA97] ISO/Ansi, C++ Standard Draft Proposal X3J16,
http://www.cygnus.com/misc/wp

[MS96] Musser, D. R., and A. Saini., STL– Tutorial and
Reference Guide. Addison-Wesley, 1996.

[M95] Myers N., A new and useful template technique:
"Traits", C++ Report 7(5):32–35, June 1995.

[TFP92] Teukolsky S. A., Flannery B. P., Press W. H., and
W. T. Vetterling., Numerical recipes in C,
Cambridge 1992.

[S91] Stroustrup B., The C++ Programming Language. 2nd

ed. Addison Wesley, 1991.

[S97] Stroustrup B., The Design and Evolution of C++.,
Addison Wesley, 1994.

[S97] Stroustrup B., The C++ Programming Language. 3rd

ed. Addison Wesley, 1997.

[V95a] Veldhuizen T., Using C++ template metaprograms,
C++ Report, 7(5):26–31, June 1995.

[V95b] Veldhuizen T., Expression templates, C++ Report,
7(4):36–43, May 1995.

[W91] Wolfram M. Mathematica, Addison-Wesley 1991.

