
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Mobile Objects and Agents (MOA)

Dejan S. Milojicicc, William LaForge, and Deepika Chauhan
The Open Group Research Institute

Mobile Objects and Agents (MOA)

Dejan S. Milojicic, William LaForge, and Deepika Chauhan

The Open Group Research Institute

[dejan, laforge, dchauhan]@opengroup.org

Abstract

This paper describes the design and implementation of
the Mobile Objects and Agents (MOA) project at the
Open Group Research Institute. MOA was designed to
support migration, communication and control of
agents. It was implemented on top of the Java Virtual
Machine, without any modifications to it. The initial
project goals were to support communication across
agent migration, as a means for collaborative work; and
to provide extensive resource control, as a basic support
for countering denial of service attacks. In the course of
the project we added two further goals: compliance with
the Java Beans component model which provides for
additional configurability and customization of agent
system and agent applications; and interoperability
which allows cooperation with other agent systems.

This paper analyzes the architecture of MOA, in partic-
ular the support for mobility, naming and locating, com-
munication, and resource management. Object and
component models of MOA are discussed and some im-
plementation details described. We summarize the les-
sons learned while developing and implementing MOA
and compare it to related work.

1. Introduction

Mobility has always attracted researchers in computer
science. This interest spans from general observations,
such as“if it weren’t for mobility, we would still be
trees” [10], and the analogies with the real world“mi-
grating birds and nomadic tribes moving due to the lack
of resources”, to purely technical reasons, such as im-
proving locality of reference and difference between lo-
cal and remote semantics.

One of the first incarnations of software mobile entities.
is worms [30], which could spread across nodes and ar-
bitrarily clone. Unrestricted implementations of worms
and viruses have received negative connotations, due to
security breaches and denial of service attacks [13].

The next generation of mobile entities, known as pro-
cess migration, were implemented at the operating sys-

This work was supported in part by the Advanced Research Projects
Agency and the Rome Laboratory of the Air Force Materiel Com-
mand.

tem (OS) level. There were many implementations of
process and object migration [3, 12, 19, 31], but none
has achieved wide acceptance. Due to inherent com-
plexity, it was hard to introduce process migration with-
out impacting the stability and robustness of the
underlying OS.

Mobile objects and agents have attracted significant at-
tention recently. In addition to mobile code (such as ap-
plets), agents consist of data and non-transient system
state that can travel between the nodes in a distributed
system (intranet or Internet). Compared to mobile ob-
jects, mobile agents also represent someone; they can
perform autonomous actions on behalf of a user or an-
other agent. A number of academic systems (such as
Agent Tcl [20], Mole [4], Ara [27] and Tacoma [18])
and industrial systems (such as Telescript [34], Aglets
[1], Concordia [9] and Voyager [33]) exist. The prod-
ucts using mobile agents have started to appear, such as
Guideware [16]. The government is interested in fund-
ing work on agents [11]. A patent has been approved on
mobile agents [35]. A standard has been adopted (OMG
MASIF [26]), and reference implementations are in
progress. A couple of books have been published on
agents [6, 8] and a few more are in progress [21, 24].

This paper describes the Mobile Objects and Agents
(MOA) project at the Open Group Research Institute.
The obvious question is why yet another mobile agent
system? There were a few reasons. None of the existing
systems at the time of starting the project were mature
enough to be used as a starting point for our work. We
found it easier to develop another system that would suit
our needs from the beginning. Additionally, some areas
of our interest, such as communication and resource
control, are deeply involved in the design decisions of
any system, making it very hard to add them as an after-
thought. Finally, we were interested in interoperability
between the systems, and therefore supporting another
implementation was a good idea.

At the beginning of the project we were interested in the
first two of the four features listed below, and during the
course of development we added the last two:

Collaboration. Frequently, agents need to collaborate
during their execution either with other agents or their

user. For agent collaboration, it is required to support
naming, locating and communication among agents.

Denial of service attacks.Agents, as well as hosts, are
vulnerable to mutual attacks, either over a network or lo-
cally. In order to prevent denial of service attacks, it is re-
quired to maintain resource control of agents and agent
systems, and to impose security and resource policies.

Configurability and customization. It is increasingly
difficult to configure and customize software. In the case
of mobile agents, this applies both to agent applications,
as well as to agent systems. Being compliant with a com-
ponent model, such as Java Beans, allows for a standard-
ized way to access and change component properties.

Interoperability. Agents, as well as agent systems, need
to interoperate. In the case of agent systems, interopera-
bility leads to a larger base that agents can visit. We were
active in the OMG Mobile Agent Facility proposal which
addresses mobile agents systems interoperability [26].

More details on how these goals have been achieved is
described in Sections 4.3, 4.6, 4.2 and 4.10 respectively.

The rest of this paper is organized as follows. In
Section 2 we provide a background on mobile agents and
component-based computing. Section 3 describes Java’s
suitability for mobile agents and for component-based
computing. Section 4 presents the MOA design and im-
plementation. Section 5 discusses MOA current status.
Section 6 describes some MOA applications. In
Section 7 we present lessons learned while designing
and implementing MOA. MOA is compared to related
work in Section 8. Finally conclusions and future work
are presented in Section 9.

2. Background

In this section, we provide background on mobile agents
and component-based computing.

2.1 Mobile Agents

Among the benefits of mobile agents we would like to
underline the following.Improving locality of refer-
ence is achieved by moving the action towards the source
of data or other end point of communication, resulting in
substantial performance improvement.Survivability:
similar to nomadic tribes or migratory birds, agents can
survive if moved closer to resources, or away from par-
tially failed nodes.Analogy to the real world helps
some programmers to better understand programming
paradigms expressed in terms of mobile agents. Exam-
ples are travelling salesman, shoppers and workflow
management systems.Customizationof software can be
achieved using mobile agents, for example, by adjusting
the search according to a user-specific criteria, or by per-

forming an action specific to a remote site.Autonomici-
ty represents agent’s independence from its owner. A
user can start an agent to act on his behalf and discon-
nect. When the user reconnects, the agent returns or oth-
erwise provides results.

Agents have various areas of deployment. One isslow
and unreliable links, such as radio communication,
where locality of reference improves performance, and
avoids potential loss while transferring large amounts of
data.Software distribution becomes increasingly hard.
Mobile code has provided a revolutionary breakthrough,
by allowing downloading code for heterogeneous envi-
ronment. Mobile agents makes this effort even easier, by
associating actions and state with each distributed ver-
sion and copy of a particular software.Network man-
agement: agents migrate both code and data, making
them useful for automating control and configuration in
large scale environments, such as networks [15]. Elec-
tronic commerce deploys mobile agents by modeling
travelling salesmen or shoppers visiting stores in an elec-
tronic mall.Data mining is a convenient application for
mobile agents due to locality of reference: agents opti-
mize a search by wandering from site to site with large
volumes of information. (See [7] for additional benefits.)

Nevertheless, mobile agents still haven’t achieved wide
acceptance. Some of the reasons include the following.
Lack of applications: mobile agents have achieved a
reputation of “the solution searching for the problem”.
Many systems have been developed but few applications
exist.Security: the problems caused by mobile code are
frequently reported. Mobile agents push the security
problems even further.Lack of infrastructure adapted
for mobile agents, such as name servers, messaging sys-
tems, and management, is still not widely deployed.Sur-
vivability is both a benefit and a challenge for mobile
agents. Mobile agents are inherently survivable, but this
does not come free; they need to be designed and imple-
mented for survivability. In particular, they should mini-
mize residual dependencies on previously visited nodes,
or servers.

2.2 Component-Based Computing

Component-based programming, including OpenDoc,
VBX, and ActiveX, has been quite successful in speed-
ing the development of GUI applications. Java Beans
(components written in Java), are promising for non-
GUI component programming. The runtime behavior of
a Java Bean is defined by an ordinary Java class. The dif-
ference between a bean and other objects is the metadata
used for configuration. It is provided by an associated
BeanInfo class, or it is derived from the runtime class.

Component-based programming enhances object orient-
ed benefits, such as flexibility, and code reuse with two
new characteristics: independence and configuration.

Independence. The source code defining a component
does not directly reference any other component; in-
stead, relationships between components are created at
runtime. The relationships may be established by the
container holding the components, or even by the com-
ponent itself. This has several benefits:

• a “building block” approach: programs are constructed
from existing components by defining relationships

• each component can be individually tested

• components are more easily reused; there is a mini-
mum of interdependency between components

• a program can be restructured for new requirements
without impacting the logic of individual components

• updating a program with the latest version of 3rd party
components is simplified

Configuration. A component is constructed by a general
configuration tool. The component participates in its
own configuration. Application programs are assembled
from pre-configured components. The implementation
specifics of a component are separated from other ele-
ments of the program. Separating the configuration of
components from an application program facilitates the
use of alternative implementations and component up-
grades are backward compatible. However, this impacts
the development cycle, as changes made to a compo-
nent’s source code will often invalidate its configuration.
The edit, compile, and test of the development cycle now
becomes edit, compile, configure, and test.

3. Java

We have chosen Java because it seemed to be the main-
stream programming language, but also because of the
features that make it suitable for mobile agents and
components.

3.1 Java and Mobile Agents

Java offers advantages for mobile agents, as well as some
disadvantages. Advantages consist of the support for
mobile code, heterogeneity, language safety, object seri-
alization [28], reflection, dynamic class loading, and
multithreading.

Disadvantages consist of inadequate support for resource
management (e.g. memory and disk limits), no support
for preserving the thread execution context, limited sup-
port for versioning, no ownership of objects and fine
grained protection at the object granularity [21].

3.2 Java and Components

Components written in Java are lightweight and little
code is required for conformance to the component mod-
el. Java supports a number of key features of component
programming:

• A component may have several interfaces. Java pro-
vides for the implementation of multiple interfaces, un-
restricted casting, and aninstanceof operator to
determine if a component supports an interface.

• Several components may be aggregated into a single
component. The JDK 1.1 methodsBeans.isInstanceOf
andBeans.getInstanceOf can be used in place of the in-
stanceof operator and casting, allowing for the future
use of aggregation in JDK 1.2.

• The life of a component may span more than one pro-
gram. JDK’s provision for serializing components al-
lows converting an object into a form which can be
written to a disk file or passed across a network.

• A component is configured by modifying its properties
identified by examining the method signatures of the
component, e.g. the class is recognized as having the
propertyslices, if the methodsgetSlices andsetSlices
exist.

• The component’s properties are accessed using the
class Introspector.

4. MOA Design and Implementation

The MOA architecture is presented in Figure 1. There
are three types of nodes that run MOA system: front-end
node allows users to control and monitor agents; home
node is used as a repository for agent’s data; and remote
node is where agents typically run throughout their life
time. The MOA system has a Telescript-like model (al-
though sufficient difference avoids infringing their
patent). Agents travel visiting places held by Agent En-
vironments (AE). Places accept agents, and store infor-
mation. Agent environments host various objects. A

Figure 1. MOA Configurations: front-end supports starting
and controlling agents and other MOA components. Home
node is the node where agent was originally started and where
agent-related state is maintained. Remote node is one of the
nodes where agent currently executes.

home node

remote node
front-end node

agent environment

agentApps

agent repository:
 data, state
 snapshots, logs

name server tracks the location of agents and other ob-
jects, whereas a monitor serves for controlling and mon-
itoring objects. These and other objects in the MOA
architecture are described in more detail in this section.

4.1 Object Model

The MOA objects on remote nodes can be classified as
agent- or system-related (see Figure 2). Agent-related
objects are circled; they have migratory state. Agent and
place belong to the user trust domain (see Section 4.7 on
more details related to security), whereas other
components belong to the MOA trust domain.

An agent and place are application extended classes.
Agent is the first class MOA object. It is a template class
extended by agent applications. Agents are named (see
Section 4.4), and they can communicate (see
Section 4.3). An agent canmove to an agent environment
(or a place within it), it can request tomeet other agents
at a certain place or agent environment,openChannelto
another agent, orsendMessages to it. An agent always
executes within a place (see below). There is a one-to-
one mapping between an agent and a place within an
agent system. However, an agent can leave places behind
when it moves. Therefore there is one-to-many mapping
between an agent and places on different agent systems.

Place is the second class MOA object. The main differ-
ence from agent is that place is a stationary object, and
therefore it can notmove or meet. However, places can
communicate with other places and agents; they can be
active, i.e. they can have threads running. Place also
serves the container-proxy role. They are proxies be-
cause they can remain after an agent leaves and represent
it there (be proxy). They serve the container role for se-
curity and resources of an agent.

Agent Control, Agent Properties, Family, LogService
and Bucket are agent-related classes that belong to the
MOA trust domain. Agent control is an internal class
that represents an interface between agent system and
agent/place. It manages agent system resources (commu-
nication channels, agent properties, etc.). These objects
can be accessed by an agent/place, but they cannot be
changed.AgentProperties contains the properties that
characterize agents and are transferred across the nodes.
Examples are owner, home Agent Environment, and lo-
catingStrategy.Family is used for monitoring agent ac-
tivities. Each agent has its own Family object which it
carries across migrations.LogService manages local
logs.Bucket holds the contents of a JAR file (JAva aR-
chive). Each bucket implements a classloader for the dy-
namic loading of the jar file. A hashtable contained
within a bucket enables the client of a bucket to efficient-
ly index into the contents of a jar file. During migration,

components circled in Figure 2 (except for Place and
Agent Control) are serialized, put into the bucket and
sent to destination node.

Policy and Negotiator objects maintain and manage in-
formation about resources.Policy is a placeholder for
properties describing the policy of an agent arriving at a
node (agentPolicy), and a host receiving the agent (host-
Policy), such as agent’s maximum lifetime, maximum
number of channels and maximum threads.Negotiator
performs negotiation between the agent and the receiving
agent environment prior to agent’s visit. Agent move-
ment is subject to resource requirements and security ar-
rangements between the two entities.

Sandbox and Agent Environment provide basic infra-
structure. Sandboxclass separates the agent application
from the agent system state. It switches from the agent
system thread to application thread when there is a dif-
ferent protection domain; it also serves to switch from
synchronous to asynchronous communication when go-
ing across the network. Resource usage and limits are
tracked on a per sandbox basis.AgentEnvironment
(AE) is the container for agents and their related objects
at an agent system. There is one agent environment per
Java Virtual Machine (JVM), but there can be many per
a node. Each agent has its home AE and alternate home
AE in case the home is not accessible.

Net, Messenger and Name server comprise the MOA
communication model. Net provides the basic communi-
cation support for establishing and maintaining commu-
nication channels between components on remote and
local JVMs. Communication channels are established by
specifying the component name, host and port number.

Agent
Environment

Agent
Control

Negotiator

Sandbox

Net

Messenger

Name Server
and Locator

Monitor

user trust domain

MOA trust domain

PlaceAgent

BucketPolicy
(Agent)

Agent
Properties

Figure 2. MOA Objects: consist of objects in user trust do-
main, and MOA objects in MOA trust domain. Agent environ-
ment represents container for all MOA objects.

Family LogService

agent-related components

agent system related
components

infrastructure

Logger Mover services

communicationPolicy
resource
maintenance

(Host)

TheMessenger layer uses the services of Net to support
one- and two-way messages between components. Com-
ponents are addressed using destination agent system
and the component name.Name server tracks agent lo-
cations. The name server clients can(un)register and
lookup an agent location. Name server clients are user
(monitor) and agents thatlookup locations of other
agents in order to communicate. Information about the
agent location (or how to find it) is cached at agent sys-
tems that the agent visited or communicated with. Name
server also plays theLocator role.

Mover, Monitor and Logger provide MOA services.
Mover supports agent movement. It negotiates migra-
tion, captures the agent state, and transfers it.Monitor
provides a user interface to control and monitor applica-
tions (e.g. agent’s movement, communication and re-
source usage).Logger logs events in an Agent System to
persistent media.

MoaApplet, BatchDriver and User classes support the
interface to the MOA system and its applications.
MoaApplet is an applet-based interface enabling users
to interactively monitor and debug agents, to launch
them, to snapshot the agent’s state, and to query the
logged data.BatchDriver is a script-based user interface
to provide the services of MoaApplet; typically it is used
for testing purposes.User class serves as an interface be-
tween the user applet and the agent. It launches the pre-
configured agents, tracks the agents, and maintains
information of interest to a user.

4.2 Component Model

MOA components are configured using the MOAbatch
tool (see Section 5). The components configuration de-
fines the system object tree. The MOA system is loaded
by first loading the root component. Each component
then successively loads the component below it in the
tree. Components are locally organized into a labeled
tree (see Figure 3) used to dynamically establish rela-
tionship between the components, in contrast to static
binding, typical of OO programming.

After the components have been loaded, they can locate
other components of the agent system by name in order
to establish dynamic binding. Non-leaf elements of the
object tree subclass theenvironmentChild class (see
Figure 4) which provides methods for locating a tree el-
ement given a relative or full pathname. For example,
any component in Figure 4 can access the Mover object
by calling the method:

getEnvironment().getInstanceOf(“/Mover”,Mover.class)

Coupling of components to a certain extent negates the
benefits of component programming, and as such it has
been kept to a minimum. For example, the net compo-
nent is made known to other components, such as those
that subclass NetUser: AC, Messenger and arbitrary ap-
plications using Net.

We have successfully used components for preconfigur-
ing agent applications, as well as the agent system. For
agent applications, we can easily preconfigure an agent’s
itinerary, policy, types of logging, debugging, etc. Agent
system configuration specifies which components will

Figure 3. Agent System Object Treedefines the names of
MOA internal objects. Parenthesis contain the class names
from which the objects are derived. Internal object names are
important when communication between various objects on
different MOA systems is established, and for initialization.

root
|
— Net (Net)

|
— Messenger (Messenger)

|
 — Logger (Logger)
|
 — HostPolicy (Policy)
|
 — Mover (Mover)
|
 — Killer (Killer)
|
 — NameServer (NameServer)
|
 — Monitor (Monitor)
|
 — AcTakedownMgr (AcTakedownMgr)
|
 — AE (Environment)

|
 — sam:457#Third_1 (AC)

|
— AcChannelMgr (AcChannelMgr)

|
 — AcMsgUser (AcMsgUser)
|
 — Agent (application-specific, derived from Agent)
|
 — Place (application-specific, derived from Place)
|
 — AgentProperties (AgentProperties)
|
 — LocalPolicy (Policy)
|
 — Family (Family)

Figure 4. Inheritance tree of EnvironmentChild Class: the
EnvironmentChild class supports accessing other components
within the object tree (see Figure 3). For example, the Mover
needs access to NameServer and Messenger and therefore has
to be wired. Inheritance tree indicates objects accessible by in-
heritance, for example, Mover has access to Messenger by be-
ing a subclass of MessageUser, and needs not be wired.

class sandbox.environment.EnvironmentChild
class moa.ac.AcTakedownMgr
class sandbox.environment.Environment

class moa.ac.AC
class sandbox.environment.Killer
class moa.ac.LogService
class sandbox.message.MessageUser

class moa.nameserver.LocatorUser
class moa.ac.AcMsgUser
class moa.nameserver.NameServer

class moa.nameserver.HNameServer
 class moa.user.User

class moa.logger.Logger
class moa.monitor.Monitor

class moa.mover.Mover
class sandbox.net.Net
class sandbox.net.NetUser

class moa.ac.AcChannelMgr
class sandbox.message.ChannelManager

class sandbox.message.Messenger
 class moa.api.Service

be integrated into the tree. For example, homeService is
not present on all agent systems, and agent environment
is not needed on the front-end and on the home node. De-
bugging can be specified as a part of the agent system
configuration at class granularity. Message timeouts can
be configured on a component basis. For the Net compo-
nent we specify its port number; for each agent, we spec-
ify the number of service threads for each agent; Killer
component’s property includes time when it will take the
system down; for each user, we specify the password, lo-
gin id and login time; for each system, we specify the
host policy for negotiating with agents.

Components can also be organized using subcompo-
nents. For example, AC is an aggregate which includes
AcChannelMgr and AcMsgUser. Only AC is configured
into the whole system. This way configuration is simpli-
fied using a hierarchical structure. The MOA
components of a remote system and their properties are
presented in Figure 5.

4.3 Communication

The MOA communication is built on top of JVM sock-
ets. It provides a higher level of abstraction, such as the
channels and messaging between MOA objects (agents,
places and servers). The communication channels sup-
port object streams. Messaging provides for passing ob-
jects of arbitrary type specific to the application.

The Net package supports opening of channels with au-
tomated retry. The destination system can optionally re-
ject a request for the channel subject to resource
limitations. This can happen at the agent system, as well
as at the application level. When opening a channel to an
agent, only the agent name needs to be specified. The
agent system resolves the actual agent location with the
help of Locator object in a distributed manner.

The Message package is able to pass application specific
objects by delaying deserialization until the name space
of destination is identified. Messages can be synchro-
nous (RPC-like), or asynchronous (one-way messages).

Messaging is built on top of the Net package, using a
common pool of channels dedicated to message passing.
The destination of messages can either be a specific lo-
cation (destination name, host and port), or a logical
name (e.g. agent name) in the case where the destination
is a migrateable object. This is reflected in the implemen-
tation, where a layered approach is applied by building
the Locator on top of the Message layer which builds on
top of the Net (see Figure 6). The Locator handles trans-
parent routing of messages when a location is not speci-
fied. It enables the agents to transparently communicate
and collaborate with each other by using the name of the
agent. The Locator relies on the locating strategies de-
scribed in Section 4.4 to find new agent location.

In the case of two way messages, responses are routed
back to the originating thread, which is suspended pend-
ing either a response or a time out. A response can arrive
from the node other than the original destination, if the
destination agent moved.

While moving from one node to another, the agent does
not notice that its channels have been closed and re-
opened on the remote node. When the transfer is initiat-
ed, the channel migration process is performed first. Dur-
ing this process, the agent informs its collaborating
partners of its intent. From this point onwards, the data
received on the channels is not passed to the application,
but is stored in a Vector of unread Objects. Upon learn-
ing about the move, the agent channel manager on the
other end of the channel replies back an acknowledgment
and closes the channel socket without informing the ap-
plication. For the migrating agent, when the acknowl-
edgment is received on a channel, the Reader thread for
the channel is stopped, and the socket is closed. The
agent transports itself to a new location, only when the
migration process is completed for all open channels.

During channel migration, though the socket is closed,
the information regarding the other communicating
agents/places is still maintained. When the agent moves,
it carries along the information about the channels, and
uses it to reopen channels at the new location. Prior to re-
opening channels it first sends all the unread objects to

Figure 5. MOA Components, described with the list of prop-
erties (configuration of the remote MOA system).

Debug(List of components being debugged)
AE (agent application components)
Messenger(netBean,timeout)
Monitor (messengerBean,timeout)
Mover (messengerBean,timeout)
Net (retryDelays(Increment,max,init),runSrv,host,port,exitSrvOnError)
HomeService(nameSrvBean,messengerBean)
Logger (fileSuffix,logPath,retentionPeriod,messengerBean,timeOut)
NameServer(nameSrvBean,messengerBean)
Users(userPath,nameSrvBean,passwd,messengerBean,HSretryDelay)
UE (listOfUserBeans)
HostPolicy (maxLifeTime,timeRemain,maxChnl,remainPlaces,maxThrd)
Killer (killerTimeout)
Root (AE,debugger,net,messenger,logger,hostPolicy,mover,nameSrv,

ACChannelManager (timeout, netBean)
AcMsgUser(nameSrvBean,messengerBean,timeout)
AC (AcChannelMgr,AcMsgUser)

UE,homeServer,monitor,ACTakeDownMgr,killer) Figure 6. Stacked Communications Layers:Net supports
stream based communication, messenger messaging and loca-
tor introduces transparent locating of migratory objects.

Net
(AcChannelMgr, ChannelMgr)

Messenger
(LocatorUser, Monitor, Mover, Logger)

Locator
(AcMsgUser, NameServer, User)

the application. Reopening of channels can be done ei-
ther eagerly or lazily, depending on the type of the appli-
cation. If there are many channels not used often, they
are re-opened lazily. If there are a few channels likely to
be used after migration, then they are reopened eagerly.

MOA uses remote method invocation within a number of
its components. It would have been a reasonable choice
to rely on Javasoft’s RMI [36] instead, but we have not
made such a decision. There is nothing to prevent us
from using it in the future (and most likely we shall
switch to using it), but for the initial implementation we
did not want to adopt yet another technology (in addition
to Java Beans) that would introduce a learning curve.
Furthermore the unclear situation with CORBA v. RMI
was another contributing factor. Instead of using RMI,
we simulate its functionality by sending objects across
the network; based on the object type we invoke appro-
priate methods. The actual implementation is trivial.
There are a small number of uses of remote method invo-
cation and these are confined to limited scope of the
MOA implementation, whereas MOA applications can
use RMI. Overall, it was more a political- rather than a
technical-decision not to use RMI for the initial imple-
mentation.

Communication and resource management are deeply
involved in the design decisions in MOA. This is reflect-
ed in many MOA layers and components. For example,
communication is involved in the communication stack
(Net, Message, NameServer and Locator), but also in the
sandbox, AC, and agent/place interfaces. Similar applies
to resource management. The AC and sandbox
components were shaped to enable resource tracking. It
would have been hard to add this support as an after-
thought. Our earlier experience with Mach task migra-
tion [23] indicates that to a certain extent it is possible to
add resource management or to make communication
modifications as an afterthought, however, any signifi-
cant support needs to be well elaborated in advance.

4.4 Naming and Locating

The following objects are named in a MOA system:
agent environment, agent, place and servers. Name syn-
tax is presented in Figure 7. An agent environment is
named after the node and port on which they perform
communication. A server name has similar syntax.

Agents are named after the AE where they were created
if they are first generation. If cloned, agents are named
after the AE of their first ancestor extended with the gen-
eration number (see Figure 8), irrespective of the AE
where they were actually cloned. In other words, each
agent bears the sign of the original site responsible for
initiating the agent family. This is used as an ultimate
source of information on the current agent location: as a
last resort, the home AE can be queried for current loca-
tion information. The place name consists of the name of
an agent it belongs to, extended with the AE name where
place currently resides.

The agent location may be needed by its owner explicitly
in order to track the agent location, or implicitly in order
to be able to control it (kill , suspend, resume, etc.). It is
also needed by agents in order to be able to communicate
to (open channels) or synchronize (propose meeting)
with other agents.

Locating agents is performed through name servers. Ap-
plication requests to name servers (lookup, register, un-
register) are issued through the agent environment which
performs security and consistency verifications. When
migrating the agent, the Mover object makes a local re-
quest to the Name Server. When opening channels or
sending messages, NetUser and Messenger interact with
the Name Server. Name servers on multiple nodes then
cooperate to satisfy these requests.

The location object contains either the current location of
an agent, or sufficient information to obtain it. In partic-
ular, it contains some or all of the following: the name of
the residing agent system (if known), the type of the
strategy to locate the agent (discussed below), the list of
the nodes where the agent may reside (itinerary), the life-
time of this location object. Even though the lifetime of
an agent is limited by its owner, because of the delays in
transferring the agent over network, it is not possible to
assure its accuracy.

The location object is cached at each node the agent vis-
ited, or where there was a channel opened with the agent.
When searching for an agent, the location object is first
looked up at a local name server. If not found, it is looked

Figure 7. MOA Named Objects:Agent Environment, Agent,
Place and Server

AEname(ae): h:p
AgentName(a): aehome#f_l.g
PlaceName: aowner%aeresiding
ServerName: h:p

h - host name
p - port number
f - family name
l -launch number
g - generation number

Figure 8. Naming of agents:agent names are organized
around agent families and generations. Cloned agents always
carry the name of its ancestor as a part of their name.

agent agent-1

agent.1 agent.2

agent.2.1

the first family the second fam

first generation

second generation

the first agent

cloned agents

up at name servers higher in the hierarchy, if any exists
(name servers may be organized in a tree-like hierarchy).
If the agent is still not found, then the agent’s home node
is approached. The home agent environment is the ulti-
mate source of information of agent location. The loca-
tion of the home agent environment is implicitly known
from the agent’s name.

When locating agents, different location schemes are
used, similarly to those used in distributed operating sys-
tems, such as Charlotte [3], V kernel [31], Sprite [12] and
Mach [23]. The MOA system supports: a)updating the
home after agent moves, b)registering at a predefined
name server, c)searching based on predefined itinerary
and d)forwarding based on the trails left after migration
(see Figure 9). Locating scheme is selected subject to:

• destinations (a local or a far away region; limited set of
destination hosts or unknown),

• security aspects (if agent crosses security domain)

• type of migration (burst v. sporadic; frequent v. rare;
random v. cyclic).

For example, updating the home node is suitable for an
agent that moves within a local region. It is not suitable
for agents that visit distant nodes. Registering is suitable
for an agent that migrates within a far away region; in the
case of a large number of nodes, registering nodes are or-
ganized in a hierarchical manner; it is not suitable for a
large number of migrations. Searching scheme is suit-
able for agents that visit a small number of known hosts;
it is not suitable for destinations not known in advance
and for large number of nodes visited. Forwarding is
suitable for a small number of migrations; it is not appro-
priate for long chains.

In many cases, locating agents is application specific.
Even if the agent is successfully located, it might migrate
further away by the time the location is reported back to
the requesting node and communication or delivery of a
control message is attempted. This is especially critical
in cases of control messages such asmeet, suspend or
kill . It is required to perform optimizations, such as to
batch a locating request with the control message. This
eliminates the delay between the time the agent is located
and the control message is delivered to the visiting agent
system. This may not be sufficient for highly dynamic
agent applications or heavy loaded nodes in the case of
forwarding locating strategy. Instead, the updating and/
or registering strategy needs to be used, combined with
trapping the agent when registering/updating its location.
This way agent movement is delayed until communica-
tion/control messages are delivered.

4.5 Mobility

When an agent migrates, its state is extracted from the
source agent system and transferred to its destination
where it is restored into a new instance of an agent ob-
ject. During transfer, only site-independent information
is transferred. In the case of communication channels,
this information consists of the agent names with which
the migrating agent had opened channels as well as their
current location. The state relevant to each particular
node is transient, i.e., it is discarded. For example the
sockets maintained in the agent control object are closed

Figure 9. Locating schemes:(a) updating: an agent updates
its location with the home node name server; (b)registering:
agent registers at a predefined name server; (c)searching:
based on available itinerary, the sites are searched for agent’s
location; (d)forwarding based on trails agent left behind.

node 1 node 2 node 3 node n

agent agent agent agent

home

(a) updating at home node

node 1 node 2 node 3 node n

agent agent agent agent

server

(b) registering

home

node 1 node 2 node 3 node n

agent agent agent agent

? ? ? ?

(c) searching

home

node 1 node 2 node 3 node n

agent agent agent agent

(d) forwarding

home

and then reopened in the remote agent control object.
Figure 10 describes the transferred agent state. The state
extraction starts at the application level, where the appli-
cation state is serialized (non-transient data), then the
state of the agent control is serialized (agent resources,
such as agent limits and logging data). This state is then
transferred to the remote node through the cooperation of
Mover objects in the source and destination agent sys-
tem. The Mover objects involve negotiation based on the
agentPolicy and the destination node hostPolicy.

Mobility is based on messaging, where the message ob-
ject is the bucket containing the agent and related re-
sources. When an agent arrives at a node, the Mover
creates a new instance of the AC object (unless there al-
ready is one for that agent - the agent is returning to a
place it left). All other agent-related objects are instanti-
ated from the serialized versions in the bucket. Objects
are loaded using the class loader associated with the
bucket.

We do not provide for sharing of objects remotely, i.e. as
an agent migrates to another node, it should not maintain
any references to an object on the source node. Our ex-
perience is that distributed shared state is very hard to
support at the system level [5], it is more appropriate to
rely on distributed shared memory packages for such
needs.

4.6 Resource Management

One of the initial goals of the MOA project was to sup-
port extensive resource control of various MOA resourc-
es. The following limits are enforced on MOA resources:

• agent: lifetime, places, hops, open channels, clones
• place: lifetime, nested places, open channels, agents
• agent environment: agents, places, channels

These limits are verified upon each MOA function that
can impact the values, such as moving, or opening a
channel. Should the limits be exceeded, the function is
interrupted and the appropriate exception is thrown to the
component that invoked the function.

Prior to being accepted at a node, the agent negotiates
which and how many MOA resources it can utilize at the
visiting MOA system.This is achieved by calculating lo-
cal policy from the agent policy and host policy. The
agent local policy is enforced during its lifetime at the
visiting MOA system.

We did not address resource management not supported
by JVM, such as the size of VM, the amount of process-
ing, and communication. Whereas it would be possible to
enforce some of them by making modifications to the
JVM, we refrained from any deviation fromde facto
standard solutions. Imposing resource limits has impact-
ed the design and implementation of the MOA system.

4.7 Security

The first MOA release is fully compatible with the JDK
1.1 security manager; however, no security manager has
actually been implemented. Many security features were
left open for the next release, such as the work on authen-
tication, and authorization of agents. We have actually
implemented only the following features.

Thread switching was employed to allow conformance
with the Java security model. Services are provided by
threads containing only trusted classes. When a MOA
system thread has to switch the trust boundaries (for ex-
ample in the case of an incoming message, or opening a
channel), the request is passed to a system queue ser-
viced by a pool of application threads allocated for that
specific trust domain. A thread from the pool processes
requests by calling the application specific methods. The
request resumes either upon receipt of the response, or
upon the timeout, whichever happens first. This way, the
application is prevented from stalling the system by
thread exhaustion, or by impacting performance through
overusing system threads. In addition, resource usage is
tracked on a per sandbox basis.

Each agent has its own name space as defined by the
bucket in which it is transported. A name space consists
primarily of bytecodes and serialized objects. One com-
plication arises when an agent returns to a place that it
had left. In this case, the name space is a combination of
the original bytecodes and the returning objects. This is
achieved by nesting the returning bucket (with the mean-
ing of classloader in this context) within the bucket of the
remaining place.

We are using the standard JAR file format for passing
agents. This format has provision for digital signatures,
allowing for authentication. However, we have not ad-
dressed authentication at the moment. It is left as an open
issue, even though we have considered its deployment
during design and implementation. For example, the
agent’s authenticity will be maintained as a part of the
agent’s name object.

4.8 User Interface

MOA’s User Interface provides users with various types
of interactive monitoring and debugging services. An ap-
plet-based and a script-based User Interface are provid-

Figure 10. MOA agent applications Component Model: in
parenthesis we present configurable properties.

AgentProperties(owner,familyName,home/alternateHomeAE,lifeTime)
Agentpolicy (maxLifeTime,timeRemaining,maxChannel,

Family (typesOfLog,tracing,watches,limits)
Agent (applicationSpecific)
Place(applicationSpecific)

remainingPlaces,maxThreads)

ed. The script-based interface is primarily used for
testing purposes whereas the applet-based interface is
used by the user to interact with the MOA system.

The User Interface is a component in the front-end of the
system. It supports interaction with both the home and
remote system. A user can log into the system from any
remote location. The login information is verified at the
home agent system and a list of all the agents (preconfig-
ured applications available for launching and already
launched applications) is returned to the user as a result
of a successful login. The user can select any preconfig-
ured application agent and launch it to a remote or local
destination.

Users can launch a preconfigured agent, send a com-
mand to suspend or kill a selected agent and monitor
agent-related activities. An agent can be queried by spec-
ifying its start time, duration (to determine which log
records to access) and a query pattern. The home of an
agent maintains a cyclic array of agent snapshots (cap-
tures of agent’s state at different times). The user can
fetch a snapshot and use it to start a new application
agent. The interface accepts various types of messages
pertaining to an agent’s movement, notices, system sta-
tistics and log items. All these messages are displayable.

4.9 MOA Tools

We also developed the tools for manipulation of Java
Beans. Even though many new tools are becoming avail-
able commercially, or will be developed soon, we needed
some functionality that was not available at the time of
development. In particular we developed MoaBatch pro-
gram for instantiating Beans and MOAJar for manipulat-
ing JAR files.

MoaBatch is a simple script program (726 lines of code)
which lets you instantiate beans (saving them to disk as
serialized objects) and edit the properties. It can not use
the property editors which do not support text. MoaBatch
works with all of the property editors provided with the
BDK except for the font editor. MoaBatch fully supports
indexed properties. Source and executables are available
from http://www.camb.opengroup.org/~laforge/java/mo-
abatch/. Some of the commands that MoaBatch supports
for manipulation of beans are included below:

• Instantiate X - create a bean X.ser.
• Properties X - list the properties of bean X.
• Limit N - limit display of elements of an indexed property
• Set X Y Z - set property Y of bean X to Z.
• SetAt X Y I Z - set property Y at I of bean X to Z.

MOAJar is a GUI utility for editing JAR files layered on
top of an API for manipulating the JAR file contents and
manifest. MoaJar supports:

• Add, remove, extract, or rename a file in the JAR.
• Edit the name/value attributes in the JAR manifest.
• Serialize object from a class in JAR or onCLASSPATH.
• Edit the properties of a serialized object in the JAR.

4.10 Interoperability

During the development of MOA, we participated in the
OMG Mobile Agent Systems Interoperability Facility
(MASIF) standard [26]. MASIF is an attempt by General
Magic, IBM, Crystaliz, GMD and the Open Group to es-
tablish a standard for mobile agents using CORBA. It
standardizes agent control, locating, and migration. It
does not address communication among the agents. This
participation was intertwined with the development of
MOA. For example, our experience with MOA has im-
pacted some of the choices in MASIF, and conversely,
some of the MASIF specification choices have impacted
MOA. In particular, our experience with locating con-
tributed to standardization. MASIF impacted our selec-
tion of interfaces for the name server, as well as for the
naming in future versions of MOA. OMG MASIF is im-
portant for enlarging the base of agent systems that can
accept visiting agents.

5. MOA Current Status and Performance

MOA has been delivered to SECOM, utilizing funding
provided by MITI. The project started in the summer of
1996. On average the project had four people working
full time. Approximately 6 staff years were invested in
the effort. The system is at the advanced research proto-
type stage. It has been tested for a number of scenarios,
and we are currently conducting robustness and perfor-
mance tests. MOA has been adopted as a base technolo-
gy for a follow-up project ANIMA [2] in The Open
Group Grenoble Research Institute. Three other sites
have been using MOA: SECOM, University of Denver
(further development of the Rent-a-Soft application), and
INRIA (for security work).

MOA was developed on Windows NT, PC-based ma-
chines. We were mainly using the bare JDK for develop-
ment, although throughout various phases of the project
and for various purposes, developers have also been us-
ing other tools, such as Symantec Cafe, J++ and Java
Studio. The main reason for using JDK was due to the
relatively slow response of the industry to Java Beans de-
velopment.

For development, we have used ATRIA’s ClearCase.
While we highly regard this tool in general and especial-
ly on UNIX machines (we had other development on HP/
UX), the match between Clearcase and the JDK on NT
was not a good experience. The problems consisted of
the use of upper case letters for file names, very poor re-
sponse time and interference with debugging. By the

very end, we had found ways around all these problems,
but they mostly consisted ofad hoc solutions, and by
staying away from ClearCase as much as possible. The
bare minimum consisted of maintaining the source code
control, and Clearcase was indeed very suitable for this.

At the moment of writing this paper, the MOA system
consists of approximately 30,000 lines of code (includ-
ing comments), organized in 21 packages, 200 classes,
and 10 interfaces. This does not include test programs,
developed as unit tests for most packages, and 25 test
scenarios exercising various aspects of the system. The
tests, including the configuration files, represent addi-
tional 11,500 lines of code. The footprint (accumulative
size of classes) of the whole MOA system, along with the
test programs, is approximately 730KB.

We have only now started working on performance and
robustness. We eliminated a few obvious performance
bottlenecks and are improving it further. Because of this,
and because all measurements were done using interpret-
ed Java (JIT for 1.2 will be available only for the final re-
lease on NT platform), results should be taken with the
grain of salt. Measurements were conducted between
two 100MHz pentium PCs connected in a separate LAN
(10Mb ethernet), running NT 4.0 and JVM 1.2. All mea-
surements are an average of 5 runs, which in turn consist
of 1,000 RPCs or of 100 moves, subject to measurement.

The RPC with a null message between two agents run-
ning on two different nodes takes approximately 25 ms.
Note that even though the context of the message is null,
the message itself is not null, since it contains destination
and source fields. Serializing this object incurs addition-
al cost. Out of 25ms, approximately 3ms is part of the
MOA code before the message is passed to the JVM
stream, and it takes 3ms since it is read from the JVM
stream and until it is delivered to receiving agent. This is
when the agent and MOA system are collocated in the
same sandbox. If they reside in different sandboxes, it
takes 47ms (the corresponding times on the write and
read path are 11ms and 6ms). For comparison, the null
RPC using RMI on the same platform was measured at 5
ms.

We have measured the move time of a simple agent to be
1177ms. It takes 88ms to serialize the agent and its prop-
erties, and 783ms to deserialize it. Transfer of the JAR
file over network takes approximately 98ms. For com-
parison, it takes 45ms to transfer the same JAR file using
RMI. The higher costs bring in return a higher flexibility,
such as forwarding of messages. Nevertheless, we hope
that using JIT and further improving the MOA commu-
nication will significantly improve the performance.

6. Applications

“ Rent-A-Soft” is a demo program, presented at Unifo-
rum. The idea is to use agents to help out with distribut-
ing and renting software packages. This is applicable for
relatively expensive packages, or for cheaper software
(such as games) assuming large quantities. A chain of
participants is envisioned, such as producer, wholesale
renter, renting departments, the company which rents
and its own departments which sub-rent and occasionally
exchange software. By encapsulating information about
the renting source, duration and usage of the package, an
otherwise complex inventory tracking process is re-
placed. Each encapsulated layer can associate an agent
responsible for specific activities, such as revoking the
rent, statistics maintenance, etc. Communication in the
presence of mobility can be used to revoke the rent with-
in the same security domains. For example, the company
which rents may revoke certain copies of the package
within its own departments, it can install new versions of
software, and dynamically monitor software use. The
Rent-a-soft application is presented in Figure 11.

Radio Communication. The Grenoble facility of the
Open Group Research Institute is planning to use the
MOA project for a police force application over radio
connections [2]. This is a type of application suited for
mobile agents. Radio communication has slow and unre-
liable links, allowing mobile agents to exploit the locali-
ty of reference. Another important feature that prevents
alternative solutions based on the client server model to
be used as effectively as possible is the unpredictable
availability of connections. It can easily happen that con-
nections with the centralized server are broken (e.g. a po-
lice car enters a tunnel). In such a case, mobile agents can

Figure 11. Rent-A-Soft: each level (producer, renter, renting company, and their departments) encapsulates its data and support-
ing code for maintaining the renting process, upgrades, inventory, etc.

Symantec
BlockBuster

software
producer

software
renter

software renter
department

renting
company

renting company
department

Symantec Symantec

BlockBuster
Symantec

BlockBuster
BlockBuster@Cambridge

opengroup

Symantec

BlockBuster
BlockBuster@Cambridge

opengroup@Grenoble

BlockBuster@Cambridge

opengroup

still continue to be functional, e.g. by cooperating with,
or visiting other available locations (e.g. another police
car that is also in the tunnel).

Security. Even though mobile agents are considered to
suffer from (still) inadequate security, they can help to
solve some security problems. In certain cases it is not al-
lowed to give access to the actual data stored in a security
domain, whereas it is allowed to provide some attributes
of the data or some other information about the data. For
example, Swiss banks do not allow WWW access to its
old accounts since World War II, but they allow anyone
checking if the user (or someone from his family, based
on the last name) had an account opened. This type of ap-
plication is a relatively simple query. Imagine a more
complex application, where queries need to do complex,
arbitrary searches across the whole security domain.
Such an application can be easily achieved using mobile
agents. A mobile agent would be allowed to enter the se-
curity domain. While in the security domain, it can do ac-
tivities within certain limitations. Before leaving the
security domain, agent data could be inspected to see
what data it takes out; alternatively only certain data
could be allowed to leave. There is an opportunity for es-
tablishing covert channels, but depending on how secret
the data is and how much information is allowed to
leave, this solution could be acceptable in a range of ap-
plications. The Open Group RI has an ongoing proposal
for the use of mobile agents for improving security.

In all three applications, communication, resource man-
agement and interoperability requirements are very im-
portant. Our belief is that MOA satisfies these
requirements well. For example, communication chan-
nels can be temporarily suspended or disabled during the
application lifetime, and mobile applications need to re-
connect from various sites, requiring the MOA migrate-
able channel support. For all applications, and especially
for security, resource management plays one of the most
important roles. Being able to track and limit resources is
invaluable for Web server applications. Finally, interop-
erability is one of the key requirements for many appli-
cation nowadays, particularly for mobile agents.

7. Lessons Learned

In this section we summarize lessons learned while de-
veloping MOA.

Operating System Support vs. Middleware. Recently,
work in the development of operating systems has signif-
icantly reduced. The current trend is toward using NT on
lower-end systems and some version of UNIX on high-
end servers. Linux is a dominating freely available ver-
sion of an OS, and there are also a few real-time execu-
tives. In many cases, operating system modules are being

replaced with middleware solutions (true for the MOA
project).

Nevertheless, many operating systems techniques can be
applied in the development of middleware systems.
Again, the same applies in the development of MOA. We
have drawn on substantial experience in the area of oper-
ating systems, such as communication channels and
messaging protocols; locating and naming of mobile
agents; resource management; negotiation policies, syn-
chronization among agents, etc.

Transparency in communication (maintaining chan-
nels across migration) was more complex to support than
we originally thought. We were aware that this is a hard
goal to achieve, but we hoped that relaxing assumptions
would make it simpler to implement.

Resource management was straightforward to design
and implement. We believe that its extensive usage will
demonstrate its ultimate benefits even more. We strongly
recommend that resource management be initially
planned for the development of agent systems. We shall
heavily rely on it for some of the future work related to
policies for management of agent based systems.

Component-based computing has somewhat slowed us
down during the development. Compliance with the
component model does not come for free. There are costs
both in terms of development effort, as well as run-time.
The learning curve was high to get accustomed to Java
Beans; we had to provide additional methods to inspect/
set properties; we had to take care that all classes are se-
rializable; we had to create jar files for both the agent ap-
plication and system; it is required to link (or wire)
components once they are loaded. Nevertheless, we feel
that the benefits have at least returned the investment so
far, and that the benefits will significantly outweigh the
investment once we start using and especially configur-
ing the MOA system and MOA applications.

Immediate benefits of complying with the component
model were stronger enforcement of component bound-
aries than is the case with object boundaries. The
components are loaded instead of constructed and com-
ponent boundaries enforced careful design of what is se-
rialized, particularly useful for application development.

In the future, we expect even higher benefits from the
component model, allowing for inspection of visiting
agents, reconfiguring agent applications, and agent sys-
tems. Evolvement of the MOA system will be easier,
since changes will be isolated to single components.

Interoperability . It is too early elaborate on the benefits
of participating in theOMG MASIF proposal. It was a
useful experience to collaborate with implementors of

other mobile agent systems. We were solving similar
problems, sometimes finding different solutions. Be-
cause of the different underlying infrastructure, the cur-
rent compliance is still a future goal, because we need to
come up with a reference implementation first. At the
moment, we have taken care that nothing stands in the
way of the MOA design to prevent us from switching to
different communication infrastructure.

8. Related Work

There are three classes of related work to MOA. The first
class consists of process migration, the second of distrib-
uted systems on the Web and the third of mobile agents.

Charlotte process migration [3] dealt with the interpro-
cess communication among the migrating processes and
introduced forwarding as a locating scheme. Process mi-
gration in theSprite operating system supported the no-
tion of a home node [12]. In the V Kernel process
migration [31], migrating processes are located by
searching them.Emerald supports fine grain mobility
on a small scale network, addressing mobility at the lan-
guage level [19]. In Mach task migration, transparency
of communication and resource maintenance is achieved
at the microkernel level [23]. A comprehensive survey of
process migration is available at [22]. A theoretical de-
scription of mobility in form of Actors is presented in
[1].

Two distributed object-based systems on the Web ex-
plore similar issues as MOA.Legion is an object-based,
meta-systems software project, developed at University
of Virginia [14] that provides a single, coherent virtual
machine and that addresses issues of scalability, fault tol-
erance, site autonomicity, and security.Globe is an ob-
ject-based wide-area distributed system constructed as a
middleware layer on top of existing networks and oper-
ating systems [17]. It is based on the concept of a distrib-
uted shared object whose state can be physically
distributed and that encapsulates implementation aspects
(communication, replication, and migration).

Telescript is the first commercial implementation of the
mobile agent concept [34]. Recently, it was discontinued
and re-implemented in Java, under the name Odyssey.
AgentTcl is a mobile agent system implemented in the
Tcl language [20]. It has two components: a special Tcl
interpreter that executes the Tcl agents, and a server that
runs on each machine to which agents can be sent. It uses
the SafeTcl model for security.Aglets is one of the first
mobile agent systems written in Java [1]. It supports rich
communication semantics (location independency, syn-
chronous, asynchronous and multicast).Mole project at
University of Stuttgart was one of the first academic ef-
forts in mobile agents in Java [4]. It collaborates with a

few industrial partners, such as Siemens and Tandem.
Concordia supports agent persistence and recovery [9].
Collaborative work is based on event manager and two
forms of asynchronous distributed events: selected and
group-oriented.Ara is a Java-based agent system that
applied some changes to the JVM in exchange for in-
creased functionality, such as maintaining thread execu-
tion context and imposing limits on memory usage [27].
Tacoma and its descendent T2 address fault tolerance
and security issues [18].Voyager is a Java-based system
for developing distributed applications using mobile ob-
jects and agents. It includes an ORB with support for mi-
gration, services for persistence, scalable group
communication, and basic directory services.

Of the systems presented, the most elaborate schemes for
maintaining communication channels across migration
were implemented in process migration. This was
achieved at the cost of complexity introduced in the op-
erating system [12, 23, 24]. Voyager also supports com-
munication with the migrated away agent, but it relies
only on the forwarding strategy. Even though this strate-
gy may appear superior to others (see Section 4.4), it is
really the combination of different strategies that offers
most benefits to an application writer.

Almost all the systems described provide some support
for resource management. None of them, to our knowl-
edge, have made an elaborate use of resource informa-
tion to pursue negotiation and control.

None of the systems that we described is compliant with
the component model. MOA was developed later than
most of the agent systems, allowing it to overlap in a
timely fashion with the development of Java Beans. This
is one of the rare cases when being late happened to be
an advantage. Voyager is integrated with the Java Beans
event model, but the Voyager system is not built from
components.

Of the agent systems we described, Aglets is the only
other agent system that plans to pursue a MASIF refer-
ence implementation. MOA and Aglets are currently
similar with regards to MASIF compliance, i.e. both are
Java-, rather than CORBA-oriented. It will be required to
adapt security and communication models to adjust to
MASIF requirements.

In summary, the MOA system is different from other
agent systems in the following unique aspects. The MOA
system and applications are Java Beans compliant. The
place in MOA can be retained after an agent leaves.
Agent naming supports families and generations of
agents that can be managed. Agents are tracked using
four, per-agent, configurable locating schemes. Commu-
nication channels are migrateable.

9. Conclusion and Future Work

In this paper, we described the design and
implementation of the MOA project. In particular we
presented the MOA object and component models and
described its components, such as communication,
naming and locating, mobility, and resource
management. We also discussed some lessons learned
during its development and presented some preliminary
performance measurements.

MOA contributions consist of: supporting agent
collaboration by maintaining communication channels
across migration; providing basic support for denial of
service attacks by extensive resource management and
negotiation policies; compliance with the Java beans
component model, leading to better configurability; and
complying with the OMG MASIF standard.

There are many mobile agent systems available
nowadays, both from academia and from industry. Even
though MOA represents yet another new mobile object
system among many research vehicles today, we believe
that we have distinguished it sufficiently enough to
justify its development. In particular, we believe that it
was easier to achieve compliance with the component
model while designing the system; similar reasoning
applies to managing resources, and to maintaining
communication channels.

The lessons we learned range from resemblance of
middleware solutions to experience with operating
systems. Our experience with the component model
distinguishes between costs and benefits of complying
with the component model. We strongly believe the
latter will outweigh the former already for moderate
requirements for configurability. We introduced a lot of
complexity by maintaining communication
transparency. Resource maintenance proved to be very
useful with expectations to significant benefits in the
future. Finally, OMG MASIF standard impacted only the
design decisions of MOA so far. We expect to learn more
about MASIF as we pursue the reference
implementations.

The future work consists of four areas. First, we plan to
extensively improve security. In particular, we plan to in-
clude authentication, authorization, integrity checking,
and the trust model of MOA. The second area consists of
applications, which we plan to support a few. The third
area addresses improvements to the current implementa-
tion, in particular related to performance and robustness.
Finally, we plan to demonstrate interoperability in prac-
tice, by interoperating with another OMG MASIF refer-
ence platform, such as Aglets.

Acknowledgments
We are grateful to Shai Guday and Holger Peine for re-
viewing this paper. They significantly improved its pre-
sentation and contents. Rosemary Hudson and Jackie
Clark undertook the impossible task to insert all missing
articles and to eliminate the superfluous ones that an au-
thor, a non-native English speaker, introduced.

Availability
The MOA project is available for scientific and research
purposes under a Collaborative Research Agreement
from The Open Group. The URL of the project is: http:/
/www.camb.opengroup.org/RI/Techno/OS/moa.html.

References
[1] Agha, G., “A Model of Concurrent Computation in Dis-

tributed Systems”,MIT Press,Cambridge, MA, 1987.

[2] ANIMA Project, http://www.gr.opengroup.org/anima.

[3] Artsy, Y. and Finkel, R. (September 1989). Designing a
Process Migration Facility: The Charlotte Experience.
IEEE Computer, pp 47–56.

[4] Baumann, J., Hohl, F., Rothermel, K., Strasser, M.,
“Mole, Concepts of a Mobile Agent System”, to appear
in the WWW Journal, Special Issue on Applications and
Techniques of Web Agents,Baltzer Science Publishers.

[5] Black, D., Milojicic, D., Langerman, A., Dominijanni,
M., Dean, R., Sears, S., “Distributed Memory Manage-
ment”, accepted for publication, Software Practice & Ex-
perience, 1997.

[6] Bradshaw, J., “Software Agents”,AAAI/MIT Press, 1996.

[7] Chess, D., Grossof B., Harrison, C., Levine, D., Parris,
C., Tsudik, G., “Itinerant Agents for Mobile Comput-
ing”, IEEE Personal Communications Magazine, Octo-
ber 1995.

[8] Cockayne, W., and Zyda, M., “Mobile Agents: Explana-
tions and Examples”,Manning, 1997.

[9] Concordia: “Concordia: An Infrastructure for Collaborat-
ing Mobile Agents” Proc. of Workshop on Mobile
Agents MA’97, Berlin, April 7-8th. LNCS 1219, Spring-
er Verlag.

[10] Cybenko, G., Spontaneous comment during Transport-
able Agents Workshop, September 1997.

[11] DARPA Broad Agency Announcement, 98-01, “Agent-
Based Systems”, http://ballston.prc.com/baa9801/
abspipv1.htm.

[12] Douglis, F. and Ousterhout, J. (August 1991). Transpar-
ent Process Migration: Design Alternatives and the
Sprite Implementation.Software-Practice and Experi-
ence, 21(8):757–785.

[13] Ford, W., Baum, M., “Secure Electronic Commerce”,
Prentice Hall, New Jersey, 1997.

[14] Grimshaw, A., et al. “The Legion Vision of a Worldwide
Virtual Computer”, CACM, vol 40, no 1, Jan. 1997, pp
39-45.

[15] Goldszmidt, G., Yemini, Y., “Distributed Management
by Delegating Mobile Agents”, Proc. of the 15th
ICDCS, Vancouver, British Columbia, June 1995.

[16] Guideware Corporation, http://www.guideware.com.

[17] Homburg, P., van Steen, M., and Tanenbaum A., “An Ar-
chitecture for A Wide Area Distributed System”, Proc.
of the Seventh SIGOPS European Workshop, Connema-
ra Ireland, September 1986, pp 75-82.

[18] Johansen, D., van Renesse, R., and Schneider, F., “Oper-
ating system support for mobile agents”,Proc. of the
5th. IEEE HOTOS Workshop, Orcas Island, USA (4th-
5th May, 1995),.

[19] Jul, E., Levy, H., Hutchinson, N., Black, A., “Fine-
Grained Mobility in the Emerald System”,ACM TOCS,
vol 6, no 1, February 1988, pp 109-133.

[20] Kotz, D., et al., “Mobile Agents for Mobile Internet
Computing”, July/August 1997, IEEE Internet Comput-
ing, vol 1, no 4, pp 58-67.

[21] Lange, D., Oshima, M., “Java Agent API: Programming
and Deploying Aglets with Java”, Addison Wesley, ex-
pected publication date, Winter 1998. (Aglets Web Page:
http://www.ibm.co.jp/trl/projects/aglets/).

[22] Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler, R.,
Zhou, S., “Process Migration Survey”,The Open Group
Research Institute, Collected Papers, vol. 5, March 1997.

[23] Milojicic, D., Zint, W., Dangel, A., Giese, P., “Task Mi-
gration on the top of the Mach Microkernel”, Proc. of
the third USENIX Mach Symposium, April 1993, pp
273-290, Santa Fe, New Mexico.

[24] Milojicic, D., Douglis, F., Wheeler, R., Guday, S., “Mo-
bility, and Edited Collection”, and “Mobility in Distribut-
ed Systems”, Addison Wesley, expected dates of
publication, Winter 1998 and Fall 1999 respectively.

[25] Odyssey Web Page, http://www.genmagic.com/agents/
odyssey.html.

[26] OMG Mobile Agent Systems Interoperability Facilities
Specification (MASIF), OMG TC Document ORBOS/
97-10-05, also available from http://www.opengroup.org/
~dejan/maf/draft10.

[27] Peine, H., and Stolpmann, T., “The Architecture of the
Ara Platform for Mobile Agents”,Proc of the First Intl
Workshop on Mobile Agents MA’97, Berlin, April 7-8,
Springer Verlag, http://www.uni-kl.de/AG-Nehmer/Ara

[28] Riggs, R., et al.,”Pickling State in the Java System,”
Proc. of the USENIX 1996 Conference on Object-Orient-
ed Technologies (COOTS), pp 241-250.

[29] Ranganathan, M., Acharya, A., Sharma, S., Saltz. J.,.,
“Network-aware Mobile Programs”,Proceedings of the
Annual Usenix 1997 Conf., January 6-10, Anaheim, Cali-
fornia, USA.

[30] Shoch, J., Hupp., J., “The Worms Programs - Early Ex-
perience with Distributed Computing”, Communications
of the ACM, 25 (3), pp 172-180, March 1982.

[31] Theimer, M., Lantz, K., and Cheriton, D. (December
1985). Preemptable Remote Execution Facilities for the
V System.Proc. of the 10th ACM SOSP, pp 2–12.

[32] Vitek, J., and Tschudin, C., “Mobile Objects Systems:
Towards the Programmable Internet”,Springer Verlag,
April 1997.

[33] Voyager Technical Overview, ObjectSpace, http://
www.objectspace.com/voyager.

[34] White, J., “Telescript Technology: Mobile Agents”, Gen-
eral Magic White Paper (http://www.genmagic.com/
Telescript/Whitepapers/wp4/whitepaper-4.html).

[35] White, J., et al., “System and Method for Distributed
Computation Based upon the Movement, Execution, and
Interaction of Processes in a Network”,United States
Patent, no 5603031, February 1997.

[36] Wollrath, A., et al., “A Distributed Object Model for the
Java System,”Proc. USENIX 1996 Conf. on Object-Ori-
ented Technologies (COOTS), pp. 219-231.

