
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Building a Scalable and Efficient Component Oriented 
System using CORBA—Active Badge System Case Study

Jakub Szymaszek, Andrzej Uszok, and Krzysztof Zielinski
University of Mining and Metallurgy, Kracow



Building a Scalable and E�cient Component Oriented System

using CORBA { Active Badge System Case Study

Jakub Szymaszek, Andrzej Uszok and Krzysztof Zieli�nski

Institute of Computer Science
University of Mining and Metallurgy (AGH)
Al. Mickiewicza 30, 30-059 Krak�ow, Poland

fjasz,uszok,kzg@ics.agh.edu.pl, http://galaxy.uci.agh.edu.pl~fjasz,uszok,kzg

Abstract

This paper presents experienc gathered when imple-

menting the localization system for an o�ce en-

vironment in CORBA. It describes methods which

enable preserving �ne-grained object-oriented struc-

ture of the system and achieving e�cient perfor-

mance at the same time. The presented study is a

practical lesson about the implementation of a scal-

able system oriented towards information dissemi-

nation. The key idea is to represent a large observ-

able collection of objects by a repository that pro-

vides access to them both as individual CORBA ob-

jects and data records. The proper usage of this du-

ality may have substantial in
uence on the overall

system performance. The repository is equipped with

a scalable noti�cation mechanism built around a no-

ti�cation dispatcher and noti�cation tree concepts.

Fundamental features of the proposed solution are

illustrated by a performance study and a represen-

tative application.

1 Introduction

Many existing information systems may be classi-
�ed as information dissemination applications [4].
Those systems deliver information about changes of
the interesting subset of data to the group of in-
terested users. New approaches to a construction
of dissemination systems, namely object-orientation
and distribution, introduce a new problem of sys-
tem scalability. So far, there are few attempts to
build such systems using those modern technologies
from scratch and there is no general answer to the
scalability problem. One of the most crucial design
decisions is the choice of a degree of an abstraction

level of objects composing the system. For example,
when building a CORBA-based system disseminat-
ing share prices, one should decide whether indi-
vidual share prices will be represented as CORBA
objects or not. Generally, this is a question how to
map the objects of the system model into CORBA
objects. Until now, there is a common conviction
that a CORBA-based system built of a huge num-
ber of CORBA objects is inherently ine�cient. The
solution presented in this paper relaxes this limita-
tion and proposes a template of a CORBA reposi-
tory component with the incorporated light-weight
mechanisms of noti�cation, persistency and secu-
rity.

This repository component combines and re�nes
some ideas that recently appear in component ori-
ented software environments such as Java Beans
[12, 16], San Francisco Components [3], or CORBA
Component proposed by Iona Ltd and others [15].
The major innovations are a dual form of access to
repository entities that is by value or by CORBA
references, and a scalable noti�cation mechanism
with built in smart proxies. Finally, the idea of dy-
namic attributes [7] has been exploited and three
di�erent types of the repository component have
been proposed.

The structure of the paper is as follows. In Section
2 Active Badge next generation project, which in-
duces the presented study is described. The repos-
itory component template is de�ned in Section 3.
It is an observable component with dynamic at-
tributes and a built-in searching engine. Changes of
its attributes are propagated via noti�cation mech-
anism. Implementation issues of this component
are described in Section 4. The noti�cation dis-
patcher concept used to built this mechanism is ex-
plained and a short description of the repository
persistency and security functionality is presented.

1



Features and scalability of the proposed noti�ca-
tion mechanisms are then analyzed in more details.
This section includes also comparison of the pro-
posed noti�cation mechanism with CORBA Event
Services. Next, in Section 5 performance evalua-
tion study that concerns the investigated scalability
is reported ad discussed. Section 6 presents basic
application utilizing information gathered by ABng
system. The paper ends with conclusions.

2 The Active Badges next generation

project

The system, called Active Badges, was originally in-
vented and developed at Olivetti Research Labo-
ratory, in Cambridge, UK [6] in 1990-92. It uses
hardware infrastructure whose key components are
infra-red sensors, installed in �xed positions within
a building, and infra-red emitters (active badges)
that are worn by people or attached to equipment.
Sensors are connected by a wired network which
provides a communication path to the controlling
device, called poller, and distributes low-voltage
power. A poller is implemented as a PC or a work-
station with a sensor control software active on it.
An active badge periodically transmits an infra-red
message containing a globally unique code (a badge
identi�er) using the de�ned data link layer protocol
[2]. Messages are received and queued by sensors. A
poller periodically polls sensors, and retrieves badge
messages from sensor queues. Each badge message
as well as an identi�er of the sensor which received
the message is forwarded to the software part of the
Active Badges system. The software layer maintains
a database that maps sensors to places in which sen-
sors are installed and badges to users wearing these
badges and to pieces of equipment which badges are
attached to. Using these data the system can infer
where users or pieces of equipment are currently lo-
cated. The information about the current location
of users and equipment is provided to various appli-
cations, such as presentation tools which display lo-
cation data or applications which use location data
to control users' environment. The software part of
the original Active Badge system developed at ORL
uses ANSAWare [1] distributed environment.

2.1 Goals of ABng project

The ABng project (Active Badges { next genera-
tion) aims at development of a new software layer
of the Active Badge system that ful�lls the following
assumptions:

� is 
exible and recon�gurable;

� separates the details of gathering of location
data from the application layer;

� provides location data �ltering;

� ensures privacy of location data and security;

� enables to build systems making a user's envi-
ronment location-aware.

To satisfy the �rst requirement, ABng uses the mod-
ern component and object-oriented technology. The
system is developed in CORBA-compliant environ-
ments: Orbix [8] and OrbixWeb [11]. It is based on
the object model in which all logical and physical el-
ements of the Active Badge system (users, locations,
sensors, badges, etc.) are represented as CORBA
objects.

The system has a layered architecture which hides
details of gathering location data. This makes it
possible to replace a localization method based on
infra-red sensors and emitters by another one. In
ABng location data are presented using abstract no-
tions of location and locatable objects rather than in
terms of sensors and badges. A location is a part
of an environment obtained as a result of partition
of the space according to an arbitrary, user-de�ned
rule. Typically, an o�ce space can be divided into
buildings, 
oors, rooms, etc. A locatable is an ob-
ject which can be observed by the system and whose
location changes within the environment space can
be monitored. A locatable can be a person or a
piece of equipment, such as a computer, a printer
or a book.

The basic ABng concept is View which is a collec-
tion of some location and locatable objects, i.e. it
represents a part of the environment space and a
subset of objects that can be localized within this
part. The precision of localization of View's locat-
ables is equal to the size of locations belonging to
the View. Within a system a number of View ob-
jects can exist, each of which can hold information



concerning current locations of users of equipment
belonging to di�erent groups and provided at di�er-
ent levels of abstraction with di�erent precision.

The concepts of locations, locatables and Views are
crucial for data �ltering and protection of privacy
of location data. Every application can individu-
ally decide which View and which locations or lo-
catables, contained in the View, it is willing to ob-
serve. It can subscribe to interesting objects and, as
a consequence, to receive the required data related
to these objects. With every View existing in the
system a list of users, who can access this View, is
associated. Thus only these users have access to lo-
cation data as well to other attributes of locations
and locatables contained in the View.

The ABng incorporates development of the Wonder

Room location-aware users' environment over the lo-
cation system. This environment consists of a num-
ber of applications which control various elements
of the users' equipment. Examples of such applica-
tions are redirection of phone calls to the currently
nearest phone or setting parameters of various home
appliances, such as air-conditioning, TV sets, VCR-
s, light, according to the preferences of users located
in the neighborhood of these appliances, period of
time, etc. Such applications may be used for per-
sonalization of user's equipment. Systems of this
type are examples of, so called, ubiquitous comput-
ing [17].

2.2 Design considerations

After the analysis of the desired functionality of the
ABng system many kinds of entities have been sin-
gled out which have to be represented in the soft-
ware. These entities could be divided into two main
categories:

� Closely related to Active Badge System con�g-
uration, such as Sensor and Badge on the low-
est level, and ABng Location Description and
Badge Holder above it,

� Describing o�ce environment in which Ac-
tive Badge System was installed such as User,
Equipment, Location Type, Location and View,
etc.

These entities do not only encapsulate their states
but also possess more or less complex functionality.

For instance, a request to play some sound could be
sent to the badge or particular instance of equip-
ment, such as air conditioning in the given room,
could be requested to change its state. The last
functionality is possible thanks to the integration
with the infra-red controlling system. Generally,
it was assumed that functionality linked with the
given types of entities could evolve and be signi�-
cantly extended, in the future.

Besides these numerous relationships between enti-
ties were grasped. A state of some entities depends
or even is composed of the states of others. Thus to
present the whole state of such an entity informa-
tion from many other entities has to be gathered.
It is for instance justi�ed to separate description of
particular part of location, such as room or 
oor,
from entity encapsulating a set of sensors installed
there. The su�cient reason for this is that descrip-
tion of a room or 
oor is universal while a set of
sensors is ABng speci�c. Combining these two enti-
ties into one will make evolution or replacement of
the ABng with other location system impossible.

Additionally, an entity should be immediately in-
formed about the changes in states of entities it
depends upon so as it can modify functionality of
this entity and of the system. For instance, when
a sensor is replaced or added to some room related
ABng Location Descriptions and Views have to be
informed, which in result will change processing of
the sighting. Source of changes in states of entities
can be:

1. a system administrator, when updating reposi-
tories with data describing ABng con�guration
and o�ce environment { this changes are rela-
tively rare and not bursty,

2. a movement of a locatable object { this changes
are usually very often,

3. changes in the state of equipment { this changes
may be often.

Such a change should be propagated not only within
the system but should be further disseminated to
interested observers. Thus the appropriate mecha-
nism for managing lists of observers is necessary.

Because of all these reasons each of the singled out
entities appears to be complex enough to justify its
representation as a separate CORBA object. The
result of such a decision is that there is a large



number of independent CORBA objects in the real
ABng system with even moderate number of users.

3 Component template

The conclusions from the investigation of the previ-
ous system, which were applied during the system
development are:

� General templates for an entity as well as a
repository can and have to be designed,

� These templates should provide support for the
implementation of a mechanism eliminating the
overhead related to the representation of each
entity as a separate CORBA object,

� A light-weight noti�cation mechanism for
repository clients has to be invented.

In the ABng three types of entities, and in the result
three types of entity interfaces have been di�erenti-
ated, with:

� static attributes: Most of ABng entities
have a �xed and relatively small number of at-
tributes. Such entities are accessed via inter-
faces, in which each entity attribute is repre-
sented by a corresponding IDL attribute.

� dynamic attributes: Another approach is to
treat an entity as a collection of attributes of ar-
bitrary types and to provide an access to them
via an adequate interface. Such an interface
o�ers a pair of access operations to set and re-
trieve the value of a single attribute in which
an attribute is referred by its name and a value
is decoded using the IDL Any type. The inter-
face allows to retrieve all attributes as a list.
This approach is an example of the applica-
tion of the Dynamic Attribute design pattern
[7]. This type of an interface is provided by
entities which have many attributes or these
attributes are di�erent for individual entity in-
stances. The ABng example of such an entity
is the Location Description object, which de-
scribes a piece of an o�ce space, such as a 
oor,
a room or a building. These real-world objects
are inherently di�erent and it is impossible to
design a uniform set of attributes for them.

� hybrid attributes: This type of an inter-
face explicitly de�nes these attributes which
are common for all objects representing by en-
tities. Additionally, it uses the Dynamic At-

tribute paradigm to provide an access to object-
speci�c attributes. An example of an ABng
object providing such an interface is Equipment

whose instance describes a piece of o�ce equip-
ment. For all kinds of equipment a set of com-
mon attributes has been distinguished, such as
a name, a vendor name, etc., which has been
de�ned as explicit attributes.

For every type of interface a corresponding template
has been designed. Below, the template for inter-
faces with static attributes is described in details as
an example.

The template of an entity interface was de�ned as
follows:

interface Entity: Entity Observed,
Entity Commander f

struct Description f
Type1 attribute1;

// ...
TypeN attributeN;

g;

typedef sequence<Description> Descriptions;

struct Value Description f
Type1::Value Description attribute1;
// ...
TypeN::Value Description attributeN;

g;

typedef sequence<Value Description>

Value Descriptions;

struct Pattern f
boolean is any;
Type1::Pattern attribute1 pattern;

// ...
TypeN::Pattern attributeN pattern;

g;

readonly attribute Repository Item Id item id;

readonly attribute Description descr;
readonly attribute Type1 attribute1;

// ...
readonly attribute TypeN attributeN;

g

The template de�nes a set of attributes: at-

tribute1, ... ,attributeN. It also inherits from the
Entity Comander interface which de�nes its speci�c
functionality.



Each entity possesses a unique identi�er (item id)
inside a repository, which can be used by repository
clients to refer to objects. This is an alternative to
using object references for this purpose.

Besides, every entity inherits from the En-

tity Observed interface which enables other objects
to register their interest in changes of an entity
state. When the state is changed the registered par-
ties are informed about it.

The second uniform feature is the descr attribute of
the Description type, which is a structure possess-
ing �elds corresponding attributes of a given entity.
This structure is used to get the whole meaningful
state of the entity in just one request. This fea-
ture was mainly designed in order to be used by the
noti�cation mechanism based on smart proxies, de-
scribed in the next section. A smart proxy on the
client side can retrieve the whole state of the entity
when it is created and then serve a local request
using cached data. It will also retrieve the whole
state when cache is invalidated by the noti�cation
mechanism, which is described later on.

The next uniform element is a de�nition of the
Value Description structure. LikeDescription it has
a �eld for every entity attribute but the type of
this �eld is either the type of a corresponding at-
tribute, providing it is not an object reference, or
the Value Description structure from the entity ref-
erenced by this attribute. The purpose of this ap-
proach is to enable to return the entity state as a
set of already collected data without any references
to the outside objects.

Finally, there is the Pattern structure which is built
in a recursive way. It contains Pattern structures
for simpler data types. The is any �eld denotes if
the value �eld is meaningful or not. The Pattern

structure is used to specify searching criteria for the
given entity type.

The templates for interfaces with dynamic or hybrid
attributes (not presented here) are very similar to
the above mentioned one. The di�erence is that in
a dynamic interface the only attribute is a sequence
of name/value pairs and there are two additional
methods to set and retrieve a single value. In a in-
terfaces with hybrid attributes occur both explicit
attributes and a list of name/value pairs accompa-
nied by access operations.

Objects built according to any of the three tem-
plates are stored in repositories which also possess
a generic interface:

interface Entity Rep : Entity Rep Observed f

typedef sequence<Entity> Entities;
readonly attribute Entities entity list;

Entity add(in Entity::Description data record)
raises(Duplicate Data Record);

void remove(in Entity object to remove,
in Entity::Description data record)
raises(Unknown Object Ref,
Duplicate Data Record);

void remove(in Entity object to remove)
raises(Unknown Object Ref);

Entities �nd(
in Entity::Pattern data record pattern);

Entity::Value Descriptions �nd values(
in Entity::Pattern data record pattern);

Entities �nd and attach(
in Entity::Pattern data record pattern,
in Observer obs,

out Entity::Descriptions descritions);

void update(in Entity object to update,
in Entity::Description data record pattern)

raises(Unknown Object Ref,
Duplicate Data Record);

g

The operations of a repository are a follows.

� add { creates and adds a new entity to the
repository. The initial state of the created
object is determined by the contents of the
Description structure passed as an argument.
This method returns the object reference of the
new entity.

� update { replace the state of the entity denoted
by the reference with values stored in the De-

scription structure.

� remove { remove an entity denoted by the ref-
erence.

� �nd { returns a collection of references of these
entities which match the criteria speci�ed in the
Pattern structure passed to the operation.

� �nd values { returns a collection of the states
of the entities matching the given criteria. In
other words, this operation returns the match-
ing object by value rather than by reference.



� �nd and attach { works like the �nd method
but additionally registers the observer (obs) for
all returned entities in a repository. It also pos-
sesses an out parameter by which the sequence
of entities descriptions is returned.

The entity repository interface inherits from the En-
tity Rep Observed interface, enabling registration of
an interest in the arbitrary collection of entities.
This facilitates registration of an observer in the
large number of entities. A state of every entity
contained in a repository is made persistent by the
persistency mechanism used in the repository. The
access to an entity is guarded by the security service.

4 Implementation of component fa-

cilities

Every ABng component o�ers mechanisms for asyn-
chronous noti�cation about changes of components
attributes, for life cycle control, and security. They
are examined below.

4.1 Light noti�cation mechanism

A typical ABng application can use a lot of var-
ious information encapsulated by ABng objects.
To obtain this information an application inter-
acts with various ABng objects. To optimize
these interactions, ABng implements a caching al-
gorithm { Smart Proxy Layer (SPL), based on the
smart proxy mechanism available in Orbix and Or-
bixWeb. When the application obtains an entity
reference (for instance by executing the repository
�nd method), the smart proxy of the entity object is
instantiated within the application's address space
and entity's descriptions is cached. When the appli-
cation enquires about an attribute value, this value
is retrieved from the cache and no remote call is
performed.

If a value of an entity attribute changes, all proxies
active in di�erent applications have to be noti�ed
about this change. For this purpose, in ABng a
noti�cation mechanism based on the Observer [5]
architectural design pattern (also known as Pub-
lisher/Subscriber) has been designed. Every proxy
registers itself as an observer of the entity it repre-

sents. Each time, an attribute of the entity is up-
dated, the proxy is noti�ed and after that it marks
its cache as invalid. The next application's query
about an attribute value causes the proxy to con-
tact the entity and retrieve the whole description.
Registering smart proxies directly within an entity
object would be very ine�cient as for every smart
proxy a corresponding proxy object in the server
containing the entity would be created. To solve this
problem the mechanism of noti�cation dispatching
is employed. This is depicted in Figure 1 and ex-
plained below.

Smart Proxy 1 Smart Proxy 2 Smart Proxy n

attach_observer(Dispatcher)

client

server

notify

notify

1

2

3

4

notify

Notification Dispatcher

attach_observer(Observer)
Observer

5

6

...

...Entity 1 Entity 2 Entity m

Notification Dispatcher
Proxy

notify

7

new_proxy_appeared

Figure 1: ABng noti�cation mechanism

When a proxy representing the �rst entity from a
given repository is instantiated within an applica-
tion, an object, called noti�cation dispatcher associ-
ated with the repository, is created. The dispatcher
will represent all proxies associated with entities
contained in the given repository and dispatch no-
ti�cation messages to the proxies. The smart proxy
does not directly subscribe itself to the correspond-
ing entity. Instead, it calls the noti�cation dis-
patcher (arrow 1 in Figure 1). The dispatcher casts
the smart proxy reference to the reference of an ordi-
nary proxy and calls the real stub of the registration
method (attach observer) passing its own reference
as an argument (the dispatcher has to provide the
observer interface). This call results in a real remote
invocation on the entity (arrow 2). If the dispatcher
contacts the entity server for the �rst time, the dis-
patcher proxy is instantiated within the server at
the same time. Within the repository the number
of existing dispatcher proxies is equal to the num-
ber of applications which contain proxies observing



repository's entities. The entity stores a dispatcher
reference (a pointer to a dispatcher proxy) in a reg-
istry of its observers.

When the state of the entity is changed the entity
noti�es all noti�cation dispatchers via their proxies
(arrows 3 and 4). On the application's side, the
dispatcher obtains a reference of the updated entity,
which, in fact, points to the local smart proxy. The
dispatcher forwards noti�cation to the smart proxy
(arrow 5). Finally, the proxy marks its cache as
invalid.

Beside smart proxies maintaining caches, inside a
user's application there can be also ordinary ob-
jects which are interested in asynchronous noti�ca-
tion about entity updates. This noti�cation is also
performed using the described mechanism. An ap-
plication object, which wants to be noti�ed about
changes of an entity's state, calls the attach observer

operation of the interesting entity (arrow 6). This
call, however, is not transmitted to the entity. It
only a�ects a local registry of entity observers,
which is maintained by the smart proxy. After the
proxy is noti�ed about entity update, it forwards
this noti�cation message to all entity observers con-
tained within the application (arrow 7).

It should be noted that the above mechanism is com-
pletely transparent to the application. The applica-
tion which is assumed to use this mechanisms has to
be linked with the library containing smart proxies
and dispatchers.

4.2 Persistency

States of entities have to survive rebooting of the
system. Their persistency can be implemented us-
ing di�erent approaches. However, the heavy and
cumbersome mechanism could have a tremendous
impact on e�ciency and scalability of the system.
In the ABng two versions of persistency mechanism
are implemented:

� File-based { this primitive mechanism uses a
separate �le to store the serialized state of each
repository. It is implemented as coarse-grained,
which means that when one of the entities in
the repository is changed then the whole state
of the repository (all entities) is restored in the
appropriate �le.

� Object Database Object Adapter (ODOA) [10]

{ this sophisticated mechanism of achieving
CORBA objects persistency uses an object
database (ObjectStore [13]) to save separate
objects as well as collections of objects. Each
repository is a root for a collections of entities.
However, when particular entity is changed
only its state is updated in the database. The
disadvantage of this mechanism is that a trans-
action has to be created. The ODOA pro-
vided by Iona is only single-threaded and al-
ways opens a heavy update transaction. The
OOA used in the ABng was obtained as a
specialization of the Object Database Adapter
Framework [9]. Its special features enable mul-
tithreaded implementation of servers as well as
instrumentation of ODOA, during the compi-
lation of the program, with names of methods
(together with interface names) requiring cre-
ation of update database transactions. In the
other case the light read-only transaction is cre-
ated.

The version of the persistency mechanism used in
the given repository is determined during compila-
tion (possibility of postponing this to the execution
time is now investigated). There is no restriction
that all repositories in the running system have to
use the same persistency mechanism, each can adopt
an adequate version of it.

4.3 Security

The access to entities is granted basing on the View
level and thus it has to have e�ect on many other
objects in other repositories associated with the
given View. The authorization server connected
with the View Manager automatically grants a user
access to all data about locations and locatables of
the View. This authorization data is replicated in
caches within repositories. Therefore, when a user is
denied access to the View or the contents of the View
is changed (a location or a locatable is removed from
the View) the authorization server informs reposito-
ries caches about this changes. The same noti�ca-
tion mechanism as described in the previous section
is employed here.



4.4 The scalability of noti�cation mech-
anism

The light weight noti�cation mechanism described
in Section 4.1 seems to be promising for dissemina-
tion of information in a large community of clients
distributed in the network. In this section the issue
of its scalability is further analyzed.

The proposed solution of the noti�cation has the
following structural features:

� Noti�cation dispatcher is a CORBA object
which represents collection of smart proxies.

� The smart proxies are not CORBA objects and
may be e�ectively noti�ed using local method
invocation call.

� The collection of repository entity smart prox-
ies in the client space is represented in reposi-
tory only by one noti�cation dispatcher proxy.
It saves a signi�cant amount of memory and
makes the repository sever occupied space in-
dependent on the number of entities in the col-
lection and the global number of existing prox-
ies.

� A client may be not aware that noti�cation dis-
patcher is used. Its activity is completely trans-
parent to the client even from the programming
point of view.

� The number of the noti�cation dispatcher prox-
ies in the repository server is dependent only on
the number of clients in the system which con-
tain entity smart proxies.

� The proposed noti�cation mechanism is se-
lective, which means, that only this noti�ca-
tion dispatchers are noti�ed which have regis-
tered the smart proxies, corresponding to the
changed entity in the repository.

It is necessary to point out that the existence of a
noti�cation dispatcher does not in
uence scalability
of the system in terms of number of observer clients.

This last drawback could be overcome using replica-
tion. The client component with collection of smart
proxies and noti�cation dispatcher could be gener-
alized as a noti�cation component shown in Fig.2.
The scalability with respect to the number of clients
could be achieved by organizing the system into

noti�cation tree built of noti�cation components.
Each smart proxy has registered several noti�cation
dispatchers of the higher layer, etc. In the root node
the repository of entities exists. In other nodes only
smart proxies are present. The proposed architec-
ture represents in fact a distributed collection of en-
tities which could be highly available for large num-
ber of clients despite of geographic distribution.

The propagation of the repository entity update is
marked for example in Fig.2. It is easy to see that
the proposed solution has a similar scalability to no-
ti�cation based on multicast over IP communication
protocols that in fact propagate messages down to
a multicast tree. The advantage is that the noti�-
cation tree does not require any multicast protocol
support.

In context of this discussion it is necessary to
ask about comparison of proposed solution with
CORBA Event Services. There are some similar-
ities and di�erences. The most important di�erence
is that Event Service does not use a smart proxy
concept so caching has to be solved in separate way.
The noti�cation component is similar to the event
channel in the sense that it separates the reposi-
tory as a source of events from the client. Further
comparison is very much dependent on implemen-
tation details which are not de�ned by the OMG
speci�cation. For instance, in Iona's implementa-
tion based on a multicast protocol usage an events
producer does not even know the number of noti-
�ed consumers. This approach scales well but is
based on the proprietary protocol and is very di�-
cult to extend from LAN to WAN. To achieve se-
lective noti�cation it is necessary to de�ne as many
event channels as many sources of noti�cation exist.

5 ABng system evaluation

The ABng software, implemented according to the
design concepts presented in this paper, was subject
to intensive testing in regards to its performance and
scalability. The system was implemented in Orbix
2.2MT whereas clients, used in tests, were imple-
mented in OrbixWeb 2.01. OrbixWeb 3.0 was not
used as its mapping of a sequence of object refer-
ences, when returned by a server is faulty: smart
proxies are not created for returned references. This
results in incorrect operation of the Smart Proxy
Layer proposed in this paper.



Smart Proxy 1 Smart Proxy n...

Notification Dispatcher
Proxy

Smart Proxy 2

Notification Dispatcher

Notification Dispatcher
Proxy

...

Smart Proxy 1 Smart Proxy n...

Notification Dispatcher
Proxy

Smart Proxy 2

Notification Dispatcher

Notification Dispatcher
Proxy

...

Smart Proxy 1 Smart Proxy n...

Notification Dispatcher
Proxy

Smart Proxy 2

Notification Dispatcher

Notification Dispatcher
Proxy

...

Smart Proxy 1 Smart Proxy n...

Notification Dispatcher
Proxy

Smart Proxy 2

Notification Dispatcher

Notification Dispatcher
Proxy

...

...Entity 1 Entity 2 Entity m

Notification Dispatcher
Proxy

...

Notification Dispatcher
Proxy

...

Notification ComponentEntity Repository

Smart Proxy 1 Smart Proxy n...

Notification Dispatcher
Proxy

Smart Proxy 2

Notification Dispatcher

Notification Dispatcher
Proxy

...

Figure 2: Noti�cation Tree

Performance results presented in this section were
obtained in the environment consisting of 15 Sun Ul-
tra workstations and a Sun Enterprise 3000 server,
connected by 2 Ethernet 10Mb switches. ABng sys-
tem components were running on the server. All
other programs were executed on separate worksta-
tions, so all CORBA invocations went through the
network. One of the system component was chosen
for the test. However, results are representative of
all of them as they were implemented using the same
C++ template. All tests were repeated 100 times
and average values were calculated. The worksta-
tions were used for usual activities during the test,
but were rather slightly loaded.

Performance tests were carried out according to typ-
ical scenarios occurring in majority of ABng appli-
cations i.e: retrieving of the current state of the
entities in an application bootstrap and scalability
of noti�cation mechanism when numbers of appli-
cations observing changes in entities increase. Im-
provements of implementation of these activities
proposed in the paper { SPL and noti�cation were
also evaluated.

5.1 Costs of accessing repository enti-
ties

There are two di�erent ways of accessing entities in
repository: by their values, using �nd value and by
their references, using �nd. In order to obtain val-
ues of entities, when using �nd, subsequent get descr
methods have to be called. Time spent in these
calls executed in the OrbixWeb applet when num-
bers of entities in repository increase is presented in
Fig. 3 and Fig. 4. All these calls were invoked with
a patternmatching all entities in the repository. Re-
sults show that accessing entities by references is by
few magnitudes more costly than accessing them by
value. Thus access by references, in spite of its many
superior features, has to be used carefully and often
combined with access by value, as in the application
presented in Section 6.

These �gures present also performance of 2 subse-
quent invocations of the �nd method when SPL is
used. The execution time of the second �nd one is
obviously almost neglectable as it happens locally.
Additionally, the �rst call with SPL is about 40%
more costly than combined �nd without SPL and
get descr calls. This di�erence is caused by the SPL
construction time.



0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

tim
e 

[s
]

number of entities

find
find with subsequent get_descr

1st find with SPL
2nd find with SPL, see zoomed Fig. 4

find_values, see zoomed Fig. 4

Figure 3: Performance comparison of di�erent ways
of accessing states of repository entities

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600 700 800 900 1000

tim
e 

[s
]

number of entities

2nd find with Smart Proxy
find_values

Figure 4: Performance comparison of di�erent ways
of accessing states of repository entities, zoomed

5.2 Analysis of SPL construction cost

The process of constructing SPL was divided into
four basic steps:

1. acquiring of entity references by executing the
�nd method,

2. creating of smart proxy for each of the acquired
reference,

3. registering of the noti�cation dispatcher for
each of the references,

4. retrieving of entity descriptions by executing
the get desc method for each smart proxy.

All of these steps, except the second one, include re-
mote CORBA invocations. The �rst step includes

one remote invocation, the third and fourth ones
include as many remote invocations as many are
acquired references. In Fig. 5 the total SPL con-
struction time as well times sent in individual steps
are presented.

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

tim
e 

[s
]

number of entities

total time of 1st find with SPL
find

creation of smart proxies
attach calls for all proxies

get_desc for all proxies

Figure 5: Time consumption by basic steps of SPL
construction

These results show that majority of the time is used
for remote invocation. Most of these invocations
could be canceled by usage of the �nd and attach

repository method, which eliminates necessity of re-
mote calls from the third and fourth steps. This re-
duces the SPL construction time by 45%. However,
this approach additionally requires construction of a
smart proxy for the repository. In this smart proxy
a �nd call is replaced by a �nd and attach call, with
observer (parameter obs) initiated to the noti�ca-
tion dispatcher. The returned sequence of entities
values (out parameter descriptions) is used for �lling
smart proxy caches.

5.3 Noti�cation time

The method used to notify observers registered in
the repository about its changes are asynchronic
oneway operations invoked successively on the ob-
servers. The impact of growing number of entity
observers on the noti�cation time is presented in
Fig. 6.

The obtained results show that the time of execut-
ing update on an entity is almost independent of
a number of its observers. The total time of in-
forming all observers however increases by roughly
3 [ms] for each additional observer. It means that
in one second only 330 successive noti�cation calls



0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12

tim
e 

[s
]

number of observers

update
notification of all observers

Figure 6: Impact of growing number of observers on
entity update and noti�cation times

can be executed (obviously this number depends on
the performance of a computer server). Thus, in the
case of the used hardware, the product of a number
of observers (Obs) and an average number of events
per second (Evn) could be at most 330:

Obs * Evn <= 330

In the case of the ABng system only the second
source of events from these distinguished in Section
2.2, namely changes in location, can cause inten-
sive stream of events. Each badge generates a new
sighting every 10 [s], however statistically less than
4% of them carry meaningful information (every 4
minutes) i.e.: changes in location or clicking on one
of badge buttons. Only such events are reported
further to observing applications. By applying the
formula to these �gures we can expect that the sys-
tem will scale up to 500 badges and more then one
hundred observer applications, when an adequately
fast server computer is used. Moreover, �ltering of
events by the usage of the View concept, presented
earlier in this paper, further reduces the stream of
events.

To scale the system additionally it is necessary to
apply: some multicast protocol, the noti�cation tree
proposed in this paper or a combination of these
two approaches. In the case when a multicast pro-
tocol is used, for instance by the usage of the Iona's
implementation of the Event Service, a number of
observers in the formula Obs is equal to 1 and a num-

ber of meaningful events can reach 330 per second.
By adding the noti�cation component to the system
this �gure may be scaled further. The only disad-
vantage of this approach is a delay introduced by the
noti�cation component in the delivery of events to
its observers. Moreover, the noti�cation component
is necessary when the system has to be extended
geographically over WAN, which is very rarely con-
�gured for multicast.

6 A representative ABng application

The basic ABng application is the ABng viewer,
called Jabba. The primary function of the viewer
is to present a list of users with their current lo-
cations (Figure 7). Similarly, a list of equipment
can be displayed. For every object a number of its
attributes are presented (e.g. a user name, a user
address. a location name, location phone numbers,
etc). To perform these tasks the viewer has to col-
lect a lot of information which is distributed among
various repository servers. Additionally, informa-
tion presented to the user has to be refreshed after
any of the relevant repository object changes one of
its attributes. A change may concern the current
location of a user or a piece of equipment or other
attributes, such as a user address or a location de-
scription.

To work e�ciently the viewer has to maintain a lo-
cal copy of relevant information, i.e. to cache val-
ues of object attributes and to update values in
caches after their originals are modi�ed. In the �rst,
ANSA-based version of the Active Badge location
system, the viewer, called xab was a very sophisti-
cated and huge application and the most of the xab
code was related to maintaining caches. In ABng
viewer caching is implemented by the smart proxy
layer. This has three major advantages:

� The code related to caching is completely sep-
arated from the application code. The applica-
tion is not responsible for updates of the local
copies of information.

� The application code is not aware that any
caching algorithm is performed. It is com-
pletely transparent for the application. When
the application wants to obtain an attribute
value (e.g. in order to redisplay it on the
screen), when it got informed of the change,



Figure 7: ABng viewer { a list of locatable users

it just calls the operation of the remote object
which holds that attribute. However, the call
does not come out from the client application's
address space. It is caught by the smart proxy
layer and served locally.

� The smart proxy layer is universal and it can
be reused in any ABng application.

In the bootstrap of Jabba the hybrid approach to re-
trieving data from repositories was employed. First,
all entities are retrieved by value, so their attributes
can be very quickly displayed. In the background
references of these entities are acquired and SPL is
built. It takes considerable amount of time, how-
ever it is transparent for the user. When the SPL is
built it very e�ciently serves Jabba functionality.

7 Conclusion

Construction of scalable components in CORBA re-
quires solution of well known trade-o� between a
space and a simplicity of navigation in a large col-
lection of objects on the one hand and a system time
of reaction which is a major scalability factor on the
other hand. The access by CORBA references pro-
vides conceptually clear and elegant model of ac-
cess to objects in a distributed system but when
their number increases it induces not acceptable ac-
cess time. On the contrary access by value is much
faster but is loosing the ability of easy navigation in
a distributed system. So the solution is to build hy-
brid components which combine the both proposed
in this paper mechanisms. It is up to a programmer
to use them correctly. Some hints in this matter are
performance tests presented in the paper.

The similar conclusion could be drawn in respect to
the noti�cation mechanism proposed in this paper.
It works very well after the initial phase when the
noti�cation tree and smart proxies are already es-
tablished but this phase takes a substantial amount
of time. So for a client which needs fast response
time the initial value of entities should be get by
value at �rst place and the noti�cation tree should
be constructed in parallel for future accesses and
noti�cation.

The design and implementation solutions presented
in this article proved its correctness and scalability
in the working ABng system.

The presented repository component may be further
enhanced by using the POA [14] approach, that pro-
vides new standard scalability mechanisms. It is our
intention to follow in this direction.

8 Acknowledgments

This work is supported by Olivetti-Oracle Research
Laboratory, Cambridge, UK.

References

[1] ANSAware 4.0 { Application Programmer's

Manual, APM Ltd., Cambridge UK (1992).

[2] F. Bennett, A. Harter, Low bandwidth infra-red

networks and protocols for mobile communicat-

ing devices, Technical Report 93.5, Olivetti Re-
search Laboratory, Cambridge, UK (1993).



[3] K. Boher, Middleware Isolates Business Logic,
Object Magazin, 11 (1997).

[4] M. Franklin, S. Zdonik, \A Framework for Scal-
able Dissemination-Based Systems", Proceed-
ings of OOPSLA'97 (1997) p. 94{105.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns, Addison-Wesley (1994).

[6] A. Harter, A. Hopper, A distributed loca-

tion system for the active o�ce, IEEE Net-
work, Special Issue on Distributed Systems for
Telecommunications, 8(1), January (1994).

[7] T. Mowbray, R. Malveau, CORBA Design Pat-

terns, John Wiley and Sons, Inc. (1997).

[8] Iona Technologies Ltd.,Orbix 2.1 Programming

Guide (1996).

[9] Iona Technologies Ltd., Orbix Database

Adapter Framework { White paper (1997).

[10] Iona Technologies Ltd., Orbix+ObjectStore

Adapter Programming Guide (1997).

[11] Iona Technologies Ltd., OrbixWeb 3.0 Pro-

gramming Guide (1997).

[12] R. Orfali, D. Harkey, J. Edwards, The Essential
Distributed Objects Survival Guide, John Wiley
and Sons, Inc. (1996).

[13] Object Design, Inc., ObjectStore C++ API

User Guide, Release 4.0.1 (1996).

[14] Object Management Group, Speci�cation of

the Portable Object Adapter (POA), OMG
Document orbos/97-05-15 (1997).

[15] Object Management Group, CORBA Compo-

nents, Joint Initial Submission by IONA Tech-

nologies et al., OMG Document orbos/97-11-24
(1997).

[16] P. Sridharan, Java Beans, Developer's Re-

sources, Printice Hall (1997).

[17] M. Weiser, Some computer science issues in

ubiquitous computing, Communications of the
ACM, 6 (1993) p. 75{84.


