
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

IBDL: A Language for Interface Behavior Specification and Testing

Sreenivasa Viswanadha and Deepak Kapur
State University of New York, Albany

IBDL: A Language for Interface Behavior Speci�cation and Testing

Sreenivasa Viswanadha

Department of Computer Science

State University of New York

Albany, NY, 12222

sreeni@cs.albany.edu, http://www.cs.albany.edu/ sreeni

Deepak Kapur

Department of Computer Science

State University of New York

Albany, NY, 12222

kapur@cs.albany.edu, http://www.cs.albany.edu/ kapur

Abstract

A methodology and language for specifying behaviors

of interfaces (a la OMG's IDL, JavaTM, C++, etc.)

for object-oriented systems is proposed based on the

message-passing paradigm. Signatures of messages are

enhanced to include semantic information, expressing

behavior clients can expect from a server. Formulas are

given to disambiguate normal termination from abnor-

mal termination of a message using the return values and

exceptions to reect whether the pre-condition associ-

ated with the message is satis�ed or not. State changes

caused by a message invocation are speci�ed by explicitly

enumerating subsequent messages that a message invo-

cation enables (and/or) disables, by establishing (or vio-

lating, respectively) their pre-conditions. Special opera-

tors on sequences of messages are de�ned to specify such

semantic information. A speci�cation language IBDL,

Interface Behavior Description Language, based on this

methodology is developed. As IBDL speci�cations ex-

plicitly capture the interactions between messages, they

are ideal for validating implementation behaviors with

sequences of messages. We present a scheme for sequence

testing by translating IBDL speci�cations into code.

1 Introduction

An interface is a description of services o�ered by a sys-

tem to external clients. Interfaces have been in use for a

long time, starting with C standard header �les that de-

scribe the services (system functions) provided by the C

standard library. As object-oriented systems are becom-

ing popular, interface design has become an integral part

of system design since every object has an interface. An

interface de�nes a type, and objects of this type can be

created and used just like objects of other types. In this

sense, interfaces have the same status as types, especially

classes in systems such as JAVA and C++ [4, 15]. This

view of interfaces allows hiding implementations of ob-

jects from their use, providing restricted hooks to clients

for their use. For example, abstract classes of C++ can

be considered as interfaces. Even though interfaces have

been closely tied to their respective implementation lan-

guages, in recent years, interface languages have been

developed [3, 6] independent of programming languages,

to facilitate language interoperability.

The basic structure of an interface has remained largely

unchanged: an interface is simply a set of function

(method or message) declarations or signatures. A sig-

nature speci�cation consists of specifying the argument

types, return types and exception types for each mes-

sage. (In more modern languages such as ISL [6], addi-

tional attributes for messages like asynchronous can also

be speci�ed to indicate that clients need not wait for

those messages to �nish and return.) A signature speci-

�cation thus gives the typing rules for the messages with

very little semantic information. Because of this, inter-

faces are used mainly to facilitate compiler type-checking

in implementation languages.

A main advantage of interfaces is that they can facil-

itate language interoperability. For this purpose, it is

inadequate for interfaces to merely support message dec-

larations, which speci�es types of arguments and results.

Clients and servers also need to understand the behav-

ior of the underlying system (or object) being interfaced.

At the same time, it is desirable that interfaces not ex-

pose state information to the clients. Because of these

restrictions, it becomes di�cult for clients to infer any-

thing about the behaviors of interfaces.

This paper proposes a methodology and a language

IBDL, Interface Behavior Description Language for ex-

tending interface signatures to include semantic informa-

tion using the message passing framework. Client pro-

grams send messages to objects via their interfaces and

expect results back. Any message of the interface can be

sent at any time if a handle to the object is available.

But sending a message sometimes may not be appropri-

ate because of the messages previously received by the

server (in the case of multiple client/single server). For

this purpose, we identify two distinct types of behavior

of a message - normal and abnormal. Abnormal behavior

is further distinguished using exceptions.

One way for clients to know the behavior of the under-

lying object is to understand the interactions between

various messages. In the proposed methodology, this

interaction is speci�ed in terms of normal termination

of subsequent invocations of messages by enumerating

messages enabled and/or disabled by a given message in-

vocation. The next step in associating the semantic in-

formation is also to restrict return values from a client

by specifying the relationship between the return values,

and input parameters as well as with input of the previ-

ous relevant messages. Special primitives on sequences

of messages are supported in IBDL to extract informa-

tion about earlier messages relevant to the behavior of

the message under consideration. Information about the

state of the object is thus accessed through these con-

structs in a disciplined and restricted manner.

A main advantage of the proposed methodology is that

semantic information can be included in an incremental

fashion based on need and resources available for devel-

oping behavior speci�cation.

� enables/disables speci�cations that de�ne inter-

actions between messages,

� interpretations speci�cation of return values

for value-returning messages along with en-

ables/disables clauses.

As evidenced by examples described in the next sec-

tion, it is often easier to specify the interactions among

messages in terms of enables/disables than to develop

complete speci�cations including interpretations. We

believe this exibility will encourage practitioners to

write speci�cations along with signatures as they design

interfaces. We have deliberately kept the language sim-

ple (and perhaps less expressive) to facilitate this. In

particular, our methodology is very well-suited for shal-

low objects like GUI components. We are aware of its

limitations, particularly that the simplicity of the lan-

guage makes di�cult and awkward to specify arbitrary

collection type of objects like stacks and queues.

One of the important bene�ts writing IBDL speci�ca-

tions is that implementations can be tested against these,

especially using sequence-testing. In IBDL one explicitly

speci�es how the completion of a message a�ects the be-

havior of the subsequent messages. In a sequence test,

messages can be sent one after the other and checks can

be made to ensure that the behavior of the implemen-

tation satis�es the speci�cation after the completion of

every message in the sequence. This provides a sound

basis for validating sequence tests, unlike the traditional

way of manually inspecting test results for determining

success or failure of a test. In fact, we came up with

the proposed methodology while working on extend-

ing ADL/C++[17] for speci�cations for sequence-testing;

ADL/C++ is a a speci�cation language developed at Sun

Microsystems Laboratories for unit-testing of C++ pro-

grams.

Another bene�t of this methodology is that speci�ca-

tions can be developed in cases where clients do not have

access to state information, especially in a multi-client

environment. For example, a check clearing house usu-

ally does not have access to the balance in a bank ac-

count. In these cases the main concern for the clients

is to understand the result of sending a message to the

server, and have an idea about what messages can be

sent next that will exhibit their expected behavior.

The paper is organized as follows. Section 2 informally

introduces the methodology and the language by three

examples of increasing complexity. Section 3 is a detailed

discussion of the methodology and IBDL with intuitive

semantics. In section 4, we describe the scheme for val-

idating sequence tests. In section 5, we discuss some

related work. Section 6 concludes with a brief discussion

of ideas for future work.

2 Motivating Key Ideas using Examples

In interface declarations, the intention usually is not to

expose the state. This can make it di�cult to write spec-

i�cations using pre- and post-conditions (see the bank

account example below). However, one can get a fair

idea about the state of the object looking at the return

values of observers. The main idea is to partition the

messages of an interface into update and observer1 op-

erations, and specify how an update message sent will

change the behavior of other update and observer oper-

ations without explicitly using the state. This includes

specifying if subsequent messages will behave normally

or abnormally and what the return values, if any, would

be.

Below by a series of examples, we will illustrate our

methodology for writing interfaces and their behavior

speci�cations. We also introduce (most of) the new con-

structs of the language one by one. The language IBDL

is introduced fully in the next section with informal se-

1Some operations can be both updates as well as observers.

mantics.

We �rst introduce the enables and disables constructs

along with simple interface declarations.

Consider the following example of a simple read-write

object interface :

interface ReadWrite {

void Write(int x);

int Read();

ReadWrite();

};

Here Write is the update message and Read is the only

observer. ReadWrite is the constructor that creates ob-

jects of this type. If the state was exposed as a part of

the interface, then it is easy to write the post-conditions

for these two methods. Without access to state, however,

a post-condition cannot be given.

Our approach to speci�cation in these situations is to de-

�ne sequences of messages, classify terminations of mes-

sages and specify the return values of the observers based

on these sequences.

For the above example, this can be done as follows :

The Read message should not be invoked until some-

thing is written using the Write operation, assuming

initially the value stored is unde�ned. Similarly once

a message Write(k) is sent for some integer k, subse-

quently a Read() message will succeed and its return

value will be k until anotherWrite message is sent. Here

there is no explicit use of state in the speci�cation, even

though it can be observed using the observer operation

Read.

This can be written formally in IBDL as follows. The

complete syntax for IBDL is in the appendix.

specification ReadWrite {

interface ReadWrite semantics {

ReadWrite() { normal enables Write(x); }

void Write(int i) {

normal enables Read();

interpretations Read() = i;

}

}

}

Sometimes it is not possible to give complete speci�ca-

tions just by relating an update operation and its pa-

rameter values to subsequent messages. It is required

to look at the behavior of the messages before the call

to the update is made. We will introduce the \@" and

the enabled operators here that can be used for this pur-

pose. The \@"operator is used to access the state prior

to the message and the enabled operator is used to check

the enabledness of a particular message without actually

sending it.

Consider the following bank account interface :

interface Account {

void Deposit(int x);

boolean ClearCheck(int x)

raises InvalidAmount, NotEnoughFunds;

Account(int acNum, int initialBalance);

};

The objective here is not to allow clients sending the

ClearCheck message to access the balance. In practice

also, it is typical for clearing houses not to have access

to the balance when they try to clear a check. At the

same time, we want to be able to specify that if there is

not enough balance in the account, the ClearCheck op-

eration is going to fail. The methodology is particularly

geared towards these situations.

An IBDL speci�cation for this interface is :

specification Account {

interface Account semantics {

Account(int acNum, int initBalance) {

normal enables

Deposit(x) if (x >= 0);

ClearCheck(x) if (x >= 0 and

x <= initBalance);

}

void Deposit(int amount) {

normal enables

ClearCheck(amount + y)

if @enabled(ClearCheck(y));

}

boolean ClearCheck(int amount) {

normal disables ClearCheck(z)

if @(not enabled(

ClearCheck(z + amount)));

abnormal defined by

raised(InvalidAmount) or

raised(NotEnoughFunds)

(amount < 0)

if raised(InvalidAmount)

}

}

}

The informal semantics of this interface can be given by

the following rules :

1. After creating a new object using the message

Account(a, ib), a message Deposit(k) for any in-

teger k � 0 or ClearCheck(l) for any integer l such

that l � 0 and l � ib can be sent to that object.

2. A message Deposit(k) with k � 0 will always suc-

ceed because it is enabled immediately after the con-

structor and does not appear in a disables clause of

any message.

3. After a Deposit(k) message to an Account ob-

ject returns normally, a message ClearCheck(l

+ k) would succeed by returning true if a

ClearCheck(l) would have succeeded prior to the

Deposit(k)message. Also, any message that would

terminate normally prior to the Deposit(k), would

remain so.

4. If a message ClearCheck(k) terminates nor-

mally, a subsequent ClearCheck(l) would fail if

ClearCheck(l + k) would have failed prior to it

and all other messages would succeed only if they

would do so prior to the ClearCheck(k) message.

Otherwise, it should raise one of the two listed

exceptions and if the InvalidAmount exception is

raised, then the value of amount should be less

than 0.

In rules 2 and 3, the speci�cation of the behavior of

ClearCheck depends on its behavior prior to a Deposit

or a ClearCheck respectively using the \@" operator to

denote the state before the message.

A state-based speci�cation for this interface would re-

quire the use of balance explicitly to specify the post-

condition. One such speci�cation in ADL/C++ using

the state variable long balance of a C++ implemen-

tation of this interface is given in[17]. The reader will

notice the dependence of the post-condition speci�cation

on the state variable balance, whereas our methodology

uses only the messages of the interface and their parame-

ters; it does not require the state information for writing

speci�cations.

The above speci�cation de�nes all possible sequences by

specifying all the extensions of a given pre�x that will

guarantee normal behavior, assuming initially only the

constructor is enabled. In that sense this is a construc-

tive de�nition of all the normal traces (sequences of mes-

sages) for an object. As motioned earlier in the related

work section, this is not the case with other trace spec-

i�cation methodologies such as in [8]. In these, one can

only check for the validity of a given sequence of mes-

sages and value(s) returned, but cannot generate (in a

straightforward manner) legal sequences.

Even the ability to look at the behavior of observers prior

to an update message is not enough to describe the be-

havior fully in some cases. It may also be necessary to

look at a message that was sent much earlier and its pa-

rameter values. For this, two new operators on sequences

- param - to access the parameters of a particular mes-

sage sent earlier and \#" - to count the number of times

a particular kind of message sent, are introduced.

For example, consider an IBDL speci�cation of an un-

bounded queue of integers :

specification Queue {

interface Queue semantics {

Queue() {

normal enables Enqueue(x);

}

void Enqueue(int elem) {

normal

enables Dequeue();

interpretations

Dequeue() = param(#(Dequeue)+1,

Enqueue, elem);

}

int Dequeue() {

normal

disables

Dequeue() if (#(Dequeue) =

#(Enqueue));

interpretations

Dequeue() = param(#(Dequeue) + 1,

Enqueue, elem);

}

}

}

All the operations have their usual meanings and Queue

is the constructor for queue objects. Following is the

intuitive meaning of the above speci�cation :

1. When a queue is created using the Queue()message,

only a message Enqueue(k), for any integer k, can

be sent to the created Queue object.

2. After a message Enqueue(k), a message Dequeue()

will terminate normally. Its return value (the next

element in the Queue) is the parameter to the i

th occurrence of the Enqueue message if there are

i - 1 occurrences of normal-terminating calls to

Dequeue() so far (before this Enqueue message).

3. Similarly, after the message Dequeue() is sent, a

subsequent message to Dequeue() will succeed only

if there are more Enqueue messages than Dequeue

messages prior to that. Once again, the return value

of an enabled Dequeue message is going to be deter-

mined same way as in the previous step.

The \#" operator counts the number of times a partic-

ular message is sent and terminated normally since the

time of creation of the object (including this message).

The param operator returns the value of a certain pa-

rameter to a message given a message name and the

number of occurrence in the sequence of messages prior

to this one. This all abnormal messages are ignored for

counting purposes.

As the above example shows, sometimes it is also nec-

essary to know how many times a particular message is

sent and its corresponding parameters for giving a com-

plete speci�cation.

This particular example can be much simpli�ed if we

allow trace simpli�cation rules, i.e., equations to spec-

ify that a dequeue message will cancel the �rst Enqueue

message, immediately following the constructor, in the

current sequence giving a new trace without either being

present. This will be similar to incorporating some al-

gebraic axioms as simpli�cation rules into the language.

We are currently investigating such an extension to the

language.

3 Speci�cation Methodology and IBDL

We have informally attempted to give the avor of the

language and the methodology using a series of examples

in the previous section. We now give more details of

the language in a systematic manner. All the features

of the language are explained with informal semantics.

A formal denotational semantics will be presented in a

separate paper.

In order to use an interface e�ectively and correctly, it

is necessary to understand interactions among di�erent

messages supported by an interface. As examples in

the previous section demonstrate, message signatures (or

declarations) of an interface need to be enhanced with

behavior speci�cations. We discuss the methodology and

a speci�cation language - Interface Behavior Description

Language (IBDL), designed to support this methodology.

3.1 Hierarchical Speci�cations

This methodology supports hierarchical speci�cation of

interfaces and their behaviors as :

� Simple interfaces declarations (signatures),

� Interface declarations with enables/disables clauses

that de�ne interactions between messages,

� Speci�cation of return values for value-returning

messages along with enables/disables clauses.

Each higher level in this hierarchy allows more power-

ful speci�cations of behavior. Depending on the need, a

particular level of speci�cation can be chosen. For exam-

ple, if the goal of speci�cations is to do sequence testing,

then enables/disables speci�cation (possibly along with

some other state-based speci�cation) can be used. Sim-

ilarly, if the goal is to do reasoning, the return value

speci�cations and/or trace simpli�cation rules may also

be needed.

Speci�cations can be developed in a top-down fashion

for new systems as well as in a bottom-up manner for

existing systems using this methodology.

3.2 The Model

In our model, every object has an associated sequence

of messages sent to it since its creation. A handle to an

object can be obtained by clients using the constructors

speci�ed in the interface and the only interactions be-

tween a client and an object are through the messages

provided in the interface. The �rst message in every se-

quence is a successful constructor message that de�nes

(a handle to) the object to which all the subsequent mes-

sages are sent.

Every message has a name and a value for each of its

parameters. We also assume that given a sequence of

messages (to an object), one can count the number of

occurrences of messages with a given message name and

can access the parameter values of a message in a se-

quence.

Throughout this section we assume that T is the se-

quence of messages sent so far to the object, with the

�rst message being a constructor message that uniquely

de�nes the object.

3.3 Modules and Declarations

The �rst step in the system design is to come up with

the desired interfaces, what services need to be o�ered

to clients and the message names for those services.

In IBDL, a system can be organized as a set of named

modules. A module consists of a set of named interface

and exception declarations. The messages of these inter-

faces can optionally be annotated with behavior speci-

�cations. An IBDL module can import other modules

using the with clause. Declarations in a module can use

all the interfaces and exceptions declared in the imported

modules.

3.4 Interfaces

An interface has a name and consists of a set of mes-

sage declarations and one or more constructor declara-

tions. We do not allow (state) variable declarations2 at

present because the idea is to support speci�cations in

the absence of state information.

An interface de�nes a type, a set of messages (services)

that the object can handle and constructors for creating

new objects of the type. Message declarations can be

overloaded.

The ReadWrite interface described in section 2 has

two messages Read(), Write(int i) and a constructor

ReadWrite(). An object created using the constructor

ReadWrite() is of ReadWrite type.

3.5 Exceptions

Exceptions are named records of basic values. They can

be used only by messages to signal exceptional condi-

tions. The record �elds (members) can be used to give

more information about the error that caused it. It is de-

sirable to name an exception in such a way as it reects

the kind of error that it is supposed to indicate.

In speci�cations, checks can be made to see the presence

of exceptions using the raised expression. A raised(e)

2These can be easily emulated using set/get methods, but we

don't encourage that.

expression evaluates to true after a message m i� m ter-

minates raising the exception e. Expressions can use

values of the data members of an exception for writing

speci�cations.

3.6 Types

The primitive types available are the usual int, boolean,

char and String types. A message that does not return

a value has void as the return type.

3.7 Speci�cations for Messages

A message scheme m(x1; :::; xn) where x1; � � � ; xn; n � 0

are formal parameters of a message name m associated

with an interface is speci�ed in the following steps :

Type Signature

Firstly, the name of the message, the types and names

of parameters and the return value, if any, are speci-

�ed. Parameters can be of any type except void. Each

parameter in a message declaration has a distinct name.

Exception Speci�cations

Names of exceptions possibly raised by the message in

case of errors without returning any values, are speci-

�ed. An exception is raised to indicate to the client that

the (intended) pre-condition for that message is violated.

Di�erent exceptions signal di�erent ways a pre-condition

is violated. We do not specify other exceptions that may

be thrown by an implementation, e.g., errors due to run-

ning out of memory etc. We also assume that after a

message, at most one exception can be raised.

Termination Classi�cation

Classify the termination of a message by de�ning the

predicates

� normal which is true, if the message terminates

without raising any exception and possibly return-

ing a value.

� abnormal , which is false, if the message terminates

raising an exception.

normal should always be the negation of abnormal. If

a message scheme does not raise any exception, then

abnormal defaults to false and normal defaults to true.

The IBDL syntax for specifying this is :

(abnormal j normal) de�ned by expression

The de�ned by clause is optional. If it is not given,

then abnormal defaults to

raised(e1) or raised(e2) or ::: or raised(ek)

where e1; :::; ek are di�erent exceptions speci�ed in the

message scheme. In that case, normal defaults to

not(abnormal).

The message can a�ect the behavior of di�erent sets of

messages depending on whether it terminates normally

or abnormally. The subsequent speci�cation (of e�ects of

the message) have to be labeled as normal or abnormal.

In the current language we don't allow updates in case

of abnormal termination, but we might relax this later

if we �nd the need for it.

E�ect of a Message

It is speci�ed how the given message a�ects the behav-

ior of subsequent messages. Firstly, subsequent messages

enabled, i.e., will terminate normally, and disabled dis-

abled, i.e., will terminate abnormally, if invoked, are

speci�ed.

This is speci�ed in IBDL using the enables and disables

clauses with formulas of the form

(enables j disables) g(y1; :::; yk) if

p(xi1 ; :::; xil ; y1; :::; yk)

where g is a message of the same interface3, xij is in

fx1; :::; xng; 0 � j � il, y1; :::; yk, k � 0 are new vari-

ables, p is a predicate.

The above formula appearing in a enables (or disables)

clause de�nes the set of all messages g(d1; :::; dk) which

are enabled (or disabled), after a particular invocation

m(c1; :::; cn), if the condition p(ci1 ; :::; cil ; d1; :::; dk) eval-

uates to true.

A message that is neither in the enables nor in the dis-

ables set will continue to exhibit the same behavior as it

did before the message m(c1; :::; cn).

A speci�cation for a message is not well-formed if it en-

ables and disables a message at the same time.

E�ect of a Message on Observers

The behavior of a given message is further captured by

specifying the return values of observers a�ected by the

updates caused by it.

These are given using the interpretations clause with for-

mulas of the form

interpretations g(y1; :::; yk) = h(xi1 ; :::; xil ; y1; :::; yk)

if p(xi1 ; :::; xil ; y1; :::; yk)

3This restriction may be relaxed in the future.

where h can be another observer of the same interface,

an arithmetic, relational or logical operator or one of the

operators on sequences of messages discussed below.

The meaning of the above formula is that, af-

ter an invocation m(c1; :::; cn), the return value of

the message g(d1; :::; dk) will be equal to the value

of the expression h(ci1 ; :::; cil ; d1; :::; dk) evaluated af-

ter the message m(c1; :::; cn) terminates normally and

p(ci1 ; :::; cil ; d1; :::; dk) evaluates to true.

If the return value of an observer is not in the set of

interpretations de�ned, it returns the same value as it

before the invocation of m(c1; :::; cn).

A speci�cation for a message is not well-formed if there is

an enabled message whose interpretation is not de�ned.

Observers

Speci�cations for observers have the de�ned by clause,

as they don't a�ect the behavior of any subsequent mes-

sage. For example, in the ReadWrite interface, the Read

operation can be called any number of times without

a�ecting the behavior of either the Read or the Write

message. Return value speci�cations of an observer are

given in the interpretations clauses of the updates that

can a�ect it.

Constructors

Borrowing the notation from C++ [15], constructors are

messages with the same name as the interface, and they

create new objects. For simplicity, we restrict the pa-

rameters to constructors to be of basic types.

Each constructor returns a (handle to a) unique new ob-

ject that is di�erent from all other objects in the system.

A new object is assumed to exist only if the constructor

terminates normally, i.e., without raising any exception.

The abnormal clause of a speci�cation for a constructor

cannot enable, disable or change the interpretation of

any message. All the other components can be speci�ed

just like any other message.

Predicates and return values in the above are speci�ed

using the usual arithmetic, relational and logical opera-

tors. In addition, there are special IBDL operators on

sequences. We de�ne these below.

3.8 Special Operators

In the following, let m be the name of the message be-

ing speci�ed, T be the sequence of messages sent to the

object so far including m and S1 be the sequence just

before m is sent.

3Throughout these speci�cations, the (same) object handle is

assumed to be implicit to all the messages in the interface.

� Message expressions - of the form m(arg1 ; :::; argn)

denote values that the message m will return when

called with actual parameter values of arg1; :::; argn.

� The \@" operator - this speci�es that the expres-

sion following the \@" should be evaluated using S1
as the sequence for any operator(s) requiring a se-

quence.

Consider the following sequence of messages to a

Queue object

Queue() Enqueue(10) Dequeue() Enqueue(5)

The value of the expression @enabled(Dequeue)

is false for this sequence, whereas the value of

enabled(Dequeue) is true.

� The \enabled" operator - takes a message and re-

turns true i� extending the current sequence of mes-

sages by that message will return normally. A re-

cursive de�nition of this operator can be given as

follows.

An expression enabled(m) , where m is a message,

evaluates to true at T i�

{ m is in the enables clause of m, or

{ m is not in the disables clause of m and

@enabled(m) is true.

Consider the Queue example and the sequence

Queue() Enqueue(10) Dequeue() Enqueue(5)

Here, enabled(Dequeue) is true, whereas

@enabled(Dequeue) is false.

� The \#" operator - takes a message name. It counts

the number of messages in T with the given name

that terminated normally.

Consider the following sequence of messages to a

Queue object.

Queue() Dequeue() Enqueue(10)

The value of the expression #(Dequeue) is 0 because

the �rst Dequeue would terminate abnormally.

On the other hand, consider the sequence

Queue() Dequeue() Enqueue(10) Dequeue()

Here #(Dequeue) evaluates to 1 and so does

#(Enqueue).

� The param operator - takes 3 arguments - the num-

ber of occurrence of the message name in the se-

quence T , a message name and a parameter name.

An expression param(k, m, n) returns the value of

the parameter named n of the message with name

m, in the shortest subsequence T 0 of T containing

m, such that at T 0, the value of #(m) is k. Value of

this expression is unde�ned if no such (nonempty)

T 0 exists.

Consider the Queue example and the sequence

Queue() Dequeue() Enqueue(10) Enqueue(5)

At the end of the sequence, the expression param(2,

Enqueue, elem) evaluates to 5.

The sequence parameter in the above discussed operators

on sequences of messages is implicit. It is always either

the current sequence, or the subsequence excluding the

last message (when using the \@" operator).

4 Sequence Testing and Validation

One of the main design goals of IBDL is to provide for-

mal support and automation to testing. Speci�cations

written in IBDL can be compiled into code that can be

used to validate tests. IBDL can support sequence test-

ing very well, as a speci�cation explicitly expresses the

behaviors of subsequent messages after a message com-

pletion. One can send a sequence of messages one after

the other to the implementation, and check for every

message with respect to all the previous messages, if it

is behaving as de�ned by the speci�cation.

The sequence testing and validation system (Fig. 1) con-

sist of

1. a test driver,

2. a validation class generated from an IBDL speci�-

cation, and

3. a user-written implementation.

These components are discussed in the following subsec-

tions.

4.1 Test Driver

The test driver in this framework is somewhat di�er-

ent from a conventional test driver in that it not only

performs the tests, but it also validates tests either as

success or failure. This module has a handle to a val-

idation object of the validation class type. It takes a

sequence of messages as input and iterates over the se-

quence sending messages to the validation object (see

below) for invocation and validation of the message us-

ing the implementation.

The top level loop of the test driver works as follows :

� Create a validation object with the required param-

eters to the constructor.

� Send the messages one by one to the validation ob-

jects. If there is any inconsistent behavior, the vali-

dation throws an error indicating message behavior

not satisfying the speci�cation. Stop testing this

sequence any further, indicating test failure.

� If all the messages in the sequence get executed

without throwing any error, then the sequence test

succeeds otherwise, it fails.

4.2 Validation Class

This is a class generated from the IBDL speci�cation of

an interface. This class interfaces to the test driver as

well as the implementation. Every object of a validation

class has the generic part which implements the \#" and

param operators of IBDL, and a speci�c part that has a

handle to an actual implementation object and provides

interface to the test driver so that messages can be re-

ceived. In this sense, the validation class is a wrapper

class for the implementation, which intercepts messages

sent to and return values/exceptions from the implemen-

tation object for validation purposes.

The speci�c part of the validation class has code to

receive messages, store the parameters and return val-

ues and/or exceptions and invoke the message validation

code based on these. This class also includes the code

generated from the behavior speci�cation of each of the

messages, as described in the following subsections.

The validation class has a constructor with the same

signature (parameter types and exceptions) as the con-

structor speci�ed in the interface. This constructor cre-

ates the object under test and stores a handle to it so

that messages can be sent to the object using the handle.

This is done to ensure that the �rst message received is

a constructor as the IBDL semantics dictates.

IBDLObject Class

The IBDL IBDLObject class is a superclass of all valida-

tion classes (see below) that provides the implementation

of the IBDL operators \#" and param which are common

to the translation of any IBDL speci�cation. The imple-

mentation of these methods is fairly straightforward and

follows the informal semantics described in section 3.

It includes the record method that records a message

in the history only if the message terminated normally.

Validation Code for a Message Declaration

Every message declaration with a behavior description is

translated into a code which has a generic part that does

Test Driver

Implementation
Object

Message
Validator

Validation Object

Message

Test
Failures

Message
Sequence

Success or Failure
of the test

IBDL
Specification

IBDL
Compiler

Figure 1: Sequence Testing and Validation System

the general book-keeping of storing parameters, return

values and/or exceptions and a speci�c part that im-

plements the behavior speci�cation. Below, we discuss

the speci�c part related to implementing the behavior

speci�cation.

The speci�c part has 3 methods (or functions) - enabled,

interpretation, isNormal corresponding to the en-

ables/disables, interpretations and the de�ned by clauses,

respectively, of a speci�cation. These methods are for

validating subsequent messages, and they are de�ned be-

low :

� isNormal returns true if the predicate for normal

given in the speci�cation evaluates to true and

false if the predicate for abnormal evaluates to

true. It throws an error if neither normal nor ab-

normal predicate evaluates to true. Note that this

error is di�erent from the exceptions that can be

raised by a message sent to the interface.

� enabled takes a message name and a vector of pa-

rameters and returns true if the message formed

using the name and parameter values is enabled

subsequently to the current message as per the en-

ables/disables clauses.

� interpretation takes a message name, a vector of

parameters, and a return value and returns true

only if that combination of message name, param-

eter values and return value satis�es the predicate

given in the interpretations clauses of the speci�ca-

tion for this message.

The speci�c part also has a boolean method validate

that �rst checks if the message, given the history, be-

haves as expected. It raises an error, indicating a failure

of the test if

� either it is enabled after the last message before

this and isNormal returns false, or

� it is not enabled after the last message before this

and the method isNormal returns true, or

� the value returned does not satisfy the predicate for

the interpretationwhen evaluated in the previous

history.

The IBDL expressions used in the predicates are trans-

lated accordingly so that the above methods can be eval-

uated. A part of the generated class for the Account

interface as speci�ed in Section 2 is given in Fig. 2.

Validation of a Message

When the validator class receives a message from the

test driver, it validates it as follows :

� Store the parameters.

class IBDLAccount extends IBDLObject

implements Account

{

/* The object under test. */

final Account accountObj;

/* The constructor of this class. */

IBDLAccount(int acNum, int initialBalance)

{

MessageSend ms =

new AccountMsg(acNum, initialBalance);

record(ms); ms.Validate();

}

/* Class that represents a call to the

ClearCheck method. */

class ClearCheckMsg extends MessageSend {

ClearCheckMsg(int amount)

throws InvalidAmount, NotEnoughFunds

{

super("ClearCheck", 1);

AddParam(0, amount);

prev = lastMessage;

lastMessage = this;

try { /* Call the method. */

StoreReturnValue(

accountObj.ClearCheck(amount));

} catch (InvalidAmount t1) {

StoreException(t1);

}

catch (NotEnoughFunds t2) {

StoreException(t2);

}

catch (Throwable t) {

StoreException(t);

}

}

public boolean IsNormal() {

if ((exception instanceof

InvalidAmount ||

exception instanceof

NotEnoughFunds)) {

if (exception instanceof

InvalidAmount) {

if (((Integer)GetParam(0)).

intValue() < 0)

return false;

throw new Error("Test failed."+

" The definition of abnormal" +

" is not satisfied");

}

return false;

}

return true;

}

public boolean Enabled(String name,

Object[] params)

{

if (IsNormal()) {

switch(messageNames.indexOf(name))

{

case 2 : // ClearCheck

int i = ((Integer)params[0]).

intValue();

Object[] newParams = {

new Integer(i +

((Integer)GetParam(0)).

intValue()), };

if (!prev.Enabled(name,

newParams))

return false;

break;

}

}

return prev.Enabled(name, params);

}

}

/* Method to call the ClearCheck method

on the Account object. */

public boolean ClearCheck(int amount)

throws InvalidAmount, NotEnoughFunds

{

MessageSend ms =

new ClearCheckMsg(amount);

record(ms); ms.Validate();

if (ms.exceptionThrown) {

throw ms.exception;

}

return ((Boolean)ms.retVal).

booleanValue();

}

/* Code for Deposit and the constructor

will be similar */

}

Figure 2: Class generated for the Account Interface

Speci�cation

� Send the message to the implementation object and

get the return value or exception.

� Using the stored parameters and the return value

or exception, evaluate the validate predicate. If it

throws an error, then return indicating a test failure.

� Evaluate the isNormal predicate of this message

and if it returns true, then append this message

to the history.

We are currently implementing the scheme as described

above and we expect to have the beta version ready

sometime in April 1998.

4.3 Language-Independent Testing

Testing implementation using IBDL can be done in an

implementation language-independent fashion. But it

will be dependent on the interface language binding. For

example, if we choose IDL [3] as the interface language

then the validation module can be generated to conform

to the binding of a speci�c implementation language, e.g.

Java, and the interface can be generated in IDL. Then

the implementation can use the generated interface to

develop the implementation in any language for which

a binding is de�ned, e.g., C++ and it will be (sequence)

testable using IBDL4.

5 Related Work

The proposed speci�cation method is similar in spirit to

the trace based speci�cation approach of [8]. However,

there are two crucial di�erences. Firstly, our approach

is more structured in that semantics is associated with

each message explicitly rather than merely giving rules

to describe legality of traces. One of the problems with

the approach in [8] is that exceptions cannot be speci�ed.

This is a severe restriction in practice as it is common

for servers to raise exceptions when a message is received

whose pre-condition is not satis�ed in the current state,

and subsequently, continue with other messages. Clients

that send such a message are in a position then to han-

dle such exceptions raised by the server and continue. In

the trace-based speci�cation approach in [8], such behav-

ior will not be allowed because a trace with a message

whose pre-condition is not satis�ed is considered illegal.

In contrast, the proposed methodology captures this by

characterizing the result of a message to be abnormal in

case the pre-condition for a message is not satis�ed, and

allows both the client as well as the server to continue

4For this paper, we considered Java as the interface as well as

the implementation language.

their respective operations, probably after taking some

corrective measure.

ObjLog [2] is a language based on trace model for object-

oriented analysis and design. It does not use states ex-

plicitly for speci�cation, but requires selector services

that return values from the state to give speci�cations

of updates. It uses transition equations to specify prop-

erties of updates. It is unclear how updates whose be-

havior is a�ected by other updates much before it (as in

the queue example below) can be speci�ed in ObjLog.

It might be possible to use transition equations for that

purpose, but we believe the resulting speci�cations will

be di�cult to develop as well as understand. In the pro-

posed methodology, operators on sequences of messages

are explicitly introduced for this purpose.

Borneo [12] is a language designed for low-level speci�ca-

tion of message behaviors of OMG's IDL using the ADL

framework [13]. The main problem with Borneo is that

if the interface does not expose any state, the only way

to specify the interface behavior is to use the auxiliary

de�nitions, akin to coming up with a crude implementa-

tion. This blurs any distinction between a speci�cation

and an implementation, thus making the speci�cation as

vulnerable to having bugs as the implementation is. The

proposed methodology does not su�er from this limita-

tion. Further, the key ideas of our methodology can be

easily adapted into the ADL family of languages and in

fact, we are working on incorporating them into extend-

ing ADL/C++.

Languages based on Algebraic methodology have long

been used for speci�cations. IBDL can be easily trans-

lated into any of those languages. But the purpose

of IBDL is to give programmers/designers using inter-

face languages, a simpler speci�cation language with

straightforward semantics, unlike algebraic speci�cation

languages which are usually based on equational theo-

ries. Algebraic languages, like Larch/CORBA [11] are

quite powerful and general in that almost any com-

putable function can be speci�ed. IBDL on the other

hand, is a less powerful language with a few reason-

ably easy-to-understand new concepts. As demonstrated

by the ADL [13] project, despite the simplicity, these

methodologies seem to be adequate for specifying many

practical problems. Also, this simplicity and the familiar

look-and-feel of the speci�cation language seems to en-

courage practitioners to write speci�cations at least for

some critical portions of their code.

IBDL also provides exibility to a designer of incremen-

tally specifying behavior at di�erent levels of detail at

di�erent stages of interface design. As a start, only nor-

mal and abnormal clauses for messages and exception

conditions, if any, raised by them can be speci�ed. This

can be followed by specifying enable and disable clauses

once interaction among messages is analyzed. Subse-

quently, interpretations can be given once the design and

the behavior of messages are �nalized.

The other aspect of IBDL that is di�erent from other

methodologies is that states need not be explicitly mod-

eled, instead observer methods give the ability to get

properties of states. State however comes up in the form

of history of messages received, but users never need

explicitly specify the state transformation after a mes-

sage; it is simply de�ned as extending the previous his-

tory by the current message. To see this, consider the

LARCH/CORBA speci�cation for a PrinterQueue in-

terface as given in [11].

interface PrinterQueue {

const int MAX_QUEUE_SIZE 20

uses PrinterQueueTrait(PrinterQueue for PQ);

initially self' = empty;

void enqueue(in int id) raises (QUEUE_FULL) {

requires true;

modifies self;

ensures if len(self^) = MAX_QUEUE_SIZE then

raise(QUEUE_FULL) /\ self' = self^

else self' = append(self^, id);

}

int dequeue() {

requires ~isEmpty(self^)

modifies self;

ensures

self' = tail(self^) /\ result = head(self^);

}

int size() {

ensures result = len(self^);

}

}

There are two main di�erences between the above speci-

�cation and an IBDL speci�cation for a similar interface

given in section 2. Firstly, there is (an abstract) rep-

resentation of the object in terms of self (see page 11

of [11]). The speci�cation for enqueue (and dequeue) is

given as their e�ect on the object to say that the new

value of self is same as appending (and removing the

head of) the old value of self.

In contrast, in the IBDL speci�cation, this behavior is

done in terms of messages by specifying that a dequeue

operation can be performed after an enqueue; if there

have been equal number of enqueue and dequeue mes-

sages, then a dequeue cannot be performed. This sec-

ond requirement is captured above in LARCH/CORBA

by the pre-condition (requires clause) using the state

of the queue object.

In algebraic methods, recursion is used extensively which

practitioners often �nd di�cult to understand. In IBDL,

we support a very restricted form of recursion using the

@ operator and to some extent, the # and param opera-

tors. We believe this will make it easier to develop and

understand speci�cations. We can certainly extend the

language to include more operations on sequences to en-

hance its power, but we purposely chose not to do it to

keep the semantics simple.

The other very important di�erence between IBDL and

other languages mentioned is the capability to test im-

plementations against speci�cations. We have come up

with a scheme for this using IBDL and we are actively

building a tool to support this scheme. To the best of

our knowledge, there are no speci�cation-based sequence

testing/validation tools using any of the other languages

discussed above.

6 Concluding Remarks And Future

Work

We have described a speci�cation methodology for in-

terface behaviors based on a message-based paradigm.

An important feature of the methodology is that speci�-

cations can be designed without needing access to state

information. A behavior speci�cation for a message is

a post-condition that distinguishes between normal and

abnormal termination as well as its e�ect on subsequent

messages vis-a-vis their pre-condition being satis�ed or

not. This supports the explicit (extensional) speci�ca-

tion of the normal traces of an interface. A simple speci-

�cation language, IBDL, is de�ned embodying the main

ideas of the methodology. Speci�cations at the client

level using normal/abnormal as well as at the server level

using the enables/disables constructs can be given. The

use of this methodology for validating sequence testing

of implementations is also developed.

Even though the speci�cation method is quite powerful

and expressive, specifying certain behaviors can be te-

dious. We are investigating the use of message sequence

axioms to simplify message sequences. Consider an ex-

ample of a Stack interface. With the proposed method-

ology, one has to write a complex formula on the pre�x

of a sequence just to specify that a Pop message is en-

abled only if the number of Pushmessages is greater than

the number of Pop operations in the pre�x. A simpler

speci�cation would be to specify that a Pop message will

cancel the latest Push message in the pre�x, thus simpli-

fying a message sequence. Such a rule, combined with

a speci�cation for Push that it enables a Pop, can com-

pletely de�ne the behavior of the Stack interface. We

are developing conditions on such rules on message se-

quences for speci�cations so as to keep the speci�cation

simple.

The proposed methodology as well as IBDL do not sup-

port explicit speci�cations of inheritance, an important

concept in object-oriented languages as well as in inter-

face languages. Inheritance is also supported in many in-

terface languages including [3]. We would like to ensure

that some form of behavioral subtyping [9, 1] is achieved

using the speci�cations as opposed to the syntactic sub-

typing that interfaces have. The expression language

used in IBDL is restrictive in that it only allows speci�-

cation of fully deterministic systems. But for top-down

design, non-deterministic speci�cations and constructs

may have to be supported. This may be useful for be-

havioral subtyping where the subtype has more speci�c

(deterministic) behavior than the supertype. We have

some preliminary ideas on this and are working on incor-

porating those into IBDL in such a way that it remains

testable. We have worked out the formal denotational

semantics of IBDL, which will be presented in a separate

paper.

References

[1] America, P. Designing an Object-Oriented Pro-

gramming Language with Behavioral Subtyping.

Foundations of Object-Oriented Languages, REX

School/Workshop, Noordwijkerhout, The Nether-

lands, Springer-Verlag Lec. Notes in Com. Sci. 489,

1991.

[2] Ted L. Briggs and John Werth. A Speci�cation

Language for Object-Oriented Analysis and De-

sign. Proceedings of the 8th European Conference on

Object-Oriented Programming, Bologna, Italy, July

1994.

[3] Digital Equipment Corporation, Hewlett-Packard

Company, HyperDesk Corporation, NCR Corpora-

tion, Object Design, Inc., and SunSoft , Inc. The

Common Object Request Broker : Architecture and

Speci�cation. Pages 45-80. OMG Document Num-

ber 91.12.1, Revision 1.1. December 1991.

[4] James Gosling, Bill Joy, and Guy Steele. The Javatm

Language Speci�cation. Addison-Wesley, 1996.

[5] John V. Guttag and James J. Horning with S. J.

Garland, K. D. Jones, A. Modet and J. M. Wing.

Larch : Languages and Tools for Formal Speci�ca-

tion. Springer-Verlag, 1993.

[6] Bill Janssen, Denis Severson and Mike Spreitzer.

ILU 1.8 Reference Manual. Xerox Corporation, May

1995.

[7] D. Kapur and D. R. Musser. Tecton: A Framework

for Specifying and Verifying Generic System Com-

ponents. Rensselaer Polytechnic Institute Computer

Science Technical Report 92-20, July, 1992.

[8] J. McLean. A Formal Method for the Abstract Spec-

i�cation of Software. J. ACM, vol. 31, no. 3, July

1984.

[9] Barbara Liskov and Jeannette M. Wing. A Be-

havioral Notion of Subtyping. ACM TOPLAS

16(6):1811-1841, Nov. 1994.

[10] OMG, CORBAservices: Common Object Services

Speci�cation, OMG Document Number 95-3-31,

Object Management Group, Framingham, MA,

(1995).

[11] Gowri Sankar Sivaprasad. Larch/CORBA: Specify-

ing the Behavior of CORBA-IDL Interfaces. De-

partment of Computer Science, Iowa State Univer-

sity, TR #95-27a, December 1995, revised December

1995.

[12] Sriram Sankar. Introducing Formal Methods To

Software Engineers Through OMG's CORBA Envi-

ronment And Interface De�nition Language. In Pro-

ceedings of the 5th International Conference on Al-

gebraic Methodology and Software Technology, Mu-

nich, Germany, July 1996.

[13] Sriram Sankar and Roger Hayes. ADL: An Interface

Language for Specifying and Testing Software. In

Proceedings of the Workshop on Interface De�nition

Languages, January 1994.

[14] J. M. Spivey. Understanding Z, A Speci�cation Lan-

guage and its Formal Semantics. Cambridge Univer-

sity Press, 1988. Tracts in Theoretical Computer

Science, Volume 3.

[15] Bjarne Stroustrup. The C++ Programming Lan-

guage. Addison-Wesley, 1991.

[16] Sun Microsystems Inc., U.S.A., and Informa-

tion Technology Promotion Agency, Japan. ADL

Translator Design Speci�cation. Document number

MITI/0001/D/0.1. August 1993.

[17] Sreenivasa Rao Viswanadha and Sriram Sankar.

Preliminary Design of ADL/C++ - A Speci�cation

Language for C++. In 2nd USENIX Conference

on Object-Oriented Technologies, Toronto, Canada,

June 1996.

A Appendix

Following is BNF syntax for IBDL. Keywords are given boldface.

f ... g represents zero or more elements and optional elements are

given within [...] .

speci�cation module ::=

speci�cation module name \f"
f interface declaration j exception declaration g

\g"

interface declaration ::=

interface interface name semantics \f"
f message declaration g

\g"

exception declaration ::=

exception exception name \f"
f variable declaration \;" g

\g"

variable declaration ::= type name variable name

type name ::=

boolean j char j int j String j void j interface name

message declaration ::=

type name message name

\(" [param list] \)"

[exception speci�cation]

f \f" behavior speci�cation \g" j \;" g

param list ::=

variable declaration f \," variable declaration g

exception speci�cation ::= raises \(" exception list \)"

exception list ::=

exception name f \," exception name g

behavior speci�cation ::=

f (normal j abnormal)

[de�ned by expression]

f (enables clause j disables clause) g
[interpretations]

g

enables clause ::=

enables f message [if expression] g

disables clause ::=

disables f message [if expression] g

interpretations ::=

interpretations f message \=" expression

[if expression] g

message ::=

[expression \."] message name

\(" [actual param list] \)"

actual param list ::= expression f \," expression g

expression ::= message

j binary expression

j unary expression

j sequence expression

j variable name

j raised expression

binary expression ::=

expression binary op expression

binary op ::=

\." j \+" j \-" j \/" j \<" j \>" j \<=" j \>="
j and j or

unary expression ::= unary op expression

unary op ::= \-" j not j \@''

sequence expression ::=

enabled "(" message ")"

j \#" \(" message name \)"

j param \(" expression \," expression \," expression \)"

raised expression ::= raised "(" exception name ")"

