
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

COMERA: COM Extensible Remoting Architecture

Yi-Min Wang
Microsoft Research

Woei-Jyh Lee
New York University

COMERA: COM Extensible Remoting Architecture

Yi-Min Wang
Microsoft Research

Woei-Jyh Lee
New York University

Abstract

In a distributed object system, remoting architecture
refers to the infrastructure that allows client programs
to invoke methods on remote server objects in a
transparent way. In this paper, we study the strength
and limitations of current remoting architecture of
COM (Component Object Model), and propose a new
architecture called COMERA (COM Extensible Re-
moting Architecture) to enhance the extensibility and
flexibility. We describe several application scenarios
and implementations to demonstrate the power of
such a componentized remoting architecture.

1. Introduction

Distributed object systems such as DCOM
[Brown96], CORBA [CORBA95][Vinoski97], and
Java RMI [Wollrath95], have become increasingly
popular. In essence, they provide the infrastructure
for supporting remote object activation and remote
method invocation in a client-transparent way. A cli-
ent program obtains a pointer (or a reference) to a
remote object, and invokes methods through that
pointer as if the object resides in the client’s own ad-
dress space. The infrastructure takes care of all the
low-level issues such as packing the data in a standard
format for heterogeneous environments (i.e., mar-
shaling and unmarshaling), maintaining the commu-
nication endpoints for message sending and receiving,
and dispatching each method invocation to the target
object. In this paper, we use the term remoting ar-
chitecture [COM95] to refer to the entire infrastruc-
ture that connects clients to server objects.

In general, a distributed object system does not have
to specify how the remoting architecture should be
structured. It can be treated as a black box as far as
user applications are concerned. This black-box ap-
proach has the advantage of allowing vendors to put
in their best performance optimization techniques. A
disadvantage is that such architectures are usually not
extensible. As a result, when low-level system prop-
erties such as load-balancing and fault tolerance are

desirable, they need to be either tightly integrated
with the infrastructure [Maffeis95] or provided
through interception mechanisms outside the infra-
structure [Narasimhan97].

In this paper, we propose an extensible remoting ar-
chitecture and demonstrate that it facilitates the in-
corporation of low-level system properties into the
infrastructure and allows them to be customized in a
flexible way. We use COM’s remoting architecture
[COM95] [Brown96] as a starting point for the fol-
lowing two reasons. First, it has built-in extensibility.
By supporting a mechanism called custom marshal-
ing, COM allows a server object to bypass the stan-
dard remoting architecture and construct a custom
one without requiring source code modifications to
the former. Second, it is componentized. COM’s re-
moting architecture not only provides the basis for
building distributed component-based applications,
but also can be a distributed component-based appli-
cation by itself. More specifically, the remoting ar-
chitecture is constructed at run time by instantiating
and connecting various dynamic components, and so
a custom architecture can reuse some of the binary
components from the standard one.

We point out the limitations of current COM remot-
ing architecture, and propose a truly componentized,
extensible architecture called COMERA. The ap-
proach is to use custom marshaling to implement
COMERA, and then use COMERA to implement the
low-level system properties. Three application cate-
gories are used to demonstrate the flexibility provided
by COMERA: configurable multi-connection chan-
nels allow clients to use a single pointer to transpar-
ently talk to multiple server objects for performance
or fault tolerance; transport replacement allows ap-
plications to run DCOM on any transport by wrap-
ping protocol-specific client and server programs as
COM objects and plugging them into COMERA;
client-transparent object failover and migration al-
lows a client to use an existing pointer to reach an
object that has moved to another machine.

The paper is organized as follows. Section 2 gives the
background for COM, and describes the current COM
remoting architecture. Section 3 discusses the limita-
tions of current architecture, presents the new COM-
ERA architecture and specifies the interactions
among its components. Section 4 describes the three
application categories. Section 5 surveys related
work, and Section 6 summarizes the paper.

2. Component Object Model

2.1. Overview of COM

In COM, an interface is a named collection of ab-
stract operations (or methods) that represent one
functionality. An object class (or class) is a named
concrete implementation of one or more interfaces.
An object instance (or object) is an instantiation of
some object class. An object server is an executable
(EXE) or a dynamic link library (DLL) that is respon-
sible for creating and hosting object instances. A cli-
ent is a process that invokes a method of an object.
Figure 1 shows a client holding a pointer to one of the
interfaces of an object. Each interface of an object
represents a different view of that object and is identi-
fied by a 128-bit globally unique identifier (GUID)
called the interface ID (IID). The object server con-
tains multiple object instances from different classes,
each of which is identified by a GUID called the class
ID (CLSID). COM objects are usually created by
class factories, which are themselves COM objects
with standard interfaces for creating other COM ob-
jects.

COM specifies a binary standard that objects and
their clients must follow to ensure dynamic
interoperability. Specifically, any COM interface
must follow a standard memory layout, which is the
same as the C++ virtual function table [Roger-
son96][Box98]. This allows COM applications to
reuse binary code at run time through the client/server
relationship, in contrast with the common notion of
source code reuse at compile time. In addition, any
COM interface must inherit from the IUnknown in-
terface, which consists of a QueryInterface() call for
navigating between interfaces of the same object, and
two calls AddRef() and Release() for reference
counting.

2.2. Remoting architecture

Figure 2 shows the current COM remoting architec-
ture. The initial mechanism by which the client con-

nects to the server is not shown. It can be an object
activation call such as CoCreateInstance(), a bind-
ing call through a moniker (specifying a CLSID as
well as particular persistent data) [Chappel96], or a
lookup from a naming service. When the server ob-
ject is created and is about to export an interface
pointer, COM run-time will ask the object if it sup-
ports an IMarshal interface. If no such interface is
supported, COM starts the following standard mar-
shaling process [Chung97]:
• A standard marshaler is invoked to marshal the

interface pointer, i.e., to pack sufficient informa-
tion in an object reference (OBJREF) to be
shipped to the client so that the client can use the
remote pointer in a transparent way.
• The standard marshaler loads and creates an

interface stub according to the requested IID.
An interface stub is itself a COM object that
knows how to unmarshal input parameters
and marshal output parameters for all
method calls of an interface identified by a
particular IID.

• The standard marshaler gives the pointer to
the created interface stub to a stub manager,
and gets back an Interface Pointer ID
(IPID). The stub manager will be in charge
of dispatching each client call to the target
interface stub based on the IPID tagged to
the call.

• The standard marshaler packs the IPID, the
communication endpoint information (e.g.,
RPC string binding), and other information
into a standard OBJREF and gives it to
COM run-time.

• COM run-time ferries all the information ob-
tained from the marshaler to the client side, acti-
vates a standard unmarshaler, and hands it the
OBJREF.

• The standard unmarshaler creates a standard ob-
ject proxy, which serves as the proxy for all IUn-
known method calls to the remote object. If the
requested interface is not IUnknown, the object
proxy also loads and creates an appropriate inter-
face proxy, aggregates it [Rogerson96], and ex-
poses the interface of the interface proxy as if it
is the object proxy’s own interface.

• The object proxy also loads and creates a stan-
dard RPC channel object, and uses the informa-
tion in OBJREF to initialize the channel. The
channel object can then use the communication
endpoint information to reach the server. It also
tags each call with the associated IPID so that it

can be properly dispatched once it reaches the
server.

• Finally, COM run-time returns to the client an
interface pointer. If it’s an IUnknown pointer, it
points to the object proxy; otherwise, it points to
an interface proxy aggregated into the object
proxy.

Once the standard remoting architecture is estab-
lished, the client can make calls through the obtained
pointer. Each call first enters a proxy, gets appropri-
ately marshaled in the Network Data Representation
(NDR) format [DCE95], sent by the channel object to
the server endpoint, dispatched by the stub manager,
gets unmarshaled by an interface stub, and finally
delivered to the server object. Since the entire process
is a sequence of local and remote function calls, the
reply is done by simply returning from those function
calls and reversing the marshaling procedure.

An object can declare that it wants to implement
custom marshaling by supporting the IMarshal inter-
face. In this case, the standard remoting architecture
is not created. Instead, the object specifies (or itself
acts as) a custom marshaler that is responsible for
constructing custom OBJREFs and specifying the
CLSID of a custom unmarshaler to be activated at
the client side to receive the OBJREFs. The custom
unmarshaler can create (or itself act as) a custom
proxy that does application-specific processing and
uses a application-specific communication mecha-
nism to interact with the server.

3. Extensible Remoting Architecture

3.1. Extensibility issues in current COM
remoting architecture

Custom marshaling provides the basis for extensibil-
ity in COM remoting architecture. Applications can
achieve stronger low-level system properties by plug-
ging in their own custom remoting architecture with-
out having to modify the source code of the standard
one. However, most such applications do not want to
rebuild the entire remoting architecture; instead, they
often want to reuse existing architecture as much as
possible and replace only those parts that are specific
to them. For example, very few applications need to
replace the interface proxies and stubs that do mar-
shaling and unmarshaling; some applications need to
replace only the client-side architecture, while some
need to modify only the server-side architecture. The

examples described in the next section illustrate these
different requirements.

The above discussion motivates the concept of a
componentized remoting architecture. In addition to
providing the infrastructure for higher-level compo-
nentized applications, if the remoting architecture
itself is also componentized, then the benefits of
software reuse can also be realized at the lower level.
Figure 2 shows that current COM remoting architec-
ture is partially componentized: the proxies, channels,
stubs, and marshalers are COM components, but the
server endpoints and stub managers are not. This
limitation makes it hard to replace the transport and to
control the IPID assignment and call dispatching. The
second limitation is a result of the intimacy between
object proxy and channel object. Although they inter-
act through COM interfaces, this intimacy makes it
hard to replace one of them without replacing the
other. Specifically, the CLSID of the standard RPC
channel object is not published, so it is hard for a
custom proxy to connect to a standard channel. Also,
the object proxy always creates and connects to a
standard channel, so it is hard to reuse the object
proxy while replacing the channel object.

Figure 2 illustrates the strength and the weakness of
current COM remoting architecture in terms of exten-
sibility. Basically, the architecture is extensible only
at the upper layer where it interfaces to the client and
the server applications. Applying custom marshaling
at this layer is usually called semi-custom marshal-
ing (or handler marshaling) as it essentially builds
custom marshaling on top of standard marshaling. An
arbitrary number of components connected in an ar-
bitrary way can be inserted between the server object
and the interface stubs as part of the interface pointer
marshaling process. Such extensibility is useful for
parameter tracing and logging, input value checking,
etc. Similarly, arbitrary components can be inserted
between the client and the proxies as part of the in-
terface pointer unmarshaling process. This can be an
ideal place for data caching logic, for example. In
contrast, current COM remoting architecture has lim-
ited flexibility for applications that require extensibil-
ity at the lower layers. For example, fault tolerance
mechanisms often need to get access to call parame-
ters in their marshaled format for efficient logging or
replication. Currently, that would require rebuilding
the entire remoting architecture.

3.2. The COMERA architecture

We propose a new architecture called COMERA
(COM Extensible Remoting Architecture) to address
the above issues. Our approach is to first use custom
marshaling to rebuild the standard remoting architec-
ture, and then redesign parts of it to enhance extensi-
bility. Figure 3 shows the overall COMERA archi-
tecture. Since the original interface proxies and stubs
are packaged as binary COM objects, COMERA can
reuse them without requiring a new IDL compiler or
any recompilation. COMERA improves upon current
COM remoting architecture in the following aspects:
• COMERA stub manager is a COM object and

that offers two advantages. First, applications can
replace the stub manager with a custom one to
control IPID assignment and call dispatching.
Second, COMERA marshaler interacts with the
stub manager through a specified COM interface,
and so replacing stub manager does not require
the marshaler to be replaced as well.

• COMERA endpoint is also a COM object. It can
be replaced to enable pre-dispatching message
processing such as message logging and decryp-
tion. Since it provides communication endpoint
information through a specified COM interface, a
custom endpoint object can work with a COM-
ERA marshaler.

• COMERA extends the IMarshal interface to
include one more method call GetChannel-
Class() that allows a server object to specify the
CLSID of a custom channel. When COMERA
object proxy receives the OBJREF (standard or
custom), it creates a channel object of the speci-
fied CLSID and initializes it with the OBJREF
through a specified COM interface.

• The CLSID of the COMERA RPC channel ob-
ject is specified so that any custom proxy can re-
use this standard channel.

4. Applications

In this section, we describe three application catego-
ries to illustrate the benefits of COMERA’s compo-
nentized remoting architecture. Configurable multi-
connection channels enable dynamic transparent fault
tolerance and support the notion of Quality-of-Fault-
Tolerance. Transport replacement facilitates the low-
level manipulation of marshaled data stream. Finally,
the ability to restore server-side communication and
dispatching state makes it possible to implement
transparent object failover and migration.

4.1. Configurable multi-connection chan-
nels

A generic mechanism for transparent fault tolerance
is for a client-side infrastructure to connect to multi-
ple equivalent servers. The infrastructure can then
mask server failures by retrying another server when
one fails, or by sending each request to multiple serv-
ers simultaneously. This can be implemented on cur-
rent remoting architecture using semi-custom mar-
shaling as follows. The server object IMarshal rou-
tine packs multiple standard OBJREFs
(corresponding to multiple equivalent objects) into
one custom OBJREF; a custom proxy extracts and
unmarshals each standard OBJREF into a pair of ob-
ject proxy and standard channel connecting to one of
the objects. Clearly, this is not efficient because the
object proxy and the aggregated interface proxies are
unnecessarily duplicated. Also, the marshaling and
unmarshaling routines may be unnecessarily executed
multiple times.

Figure 4 shows how COMERA allows the above fault
tolerance mechanism to be implemented in a more
natural and efficient way. In addition to packing mul-
tiple standard OBJREFs into a custom OBJREF, the
server object also specifies the CLSID of a configur-
able multi-connection channel object. Connections to
multiple objects are encapsulated inside the custom
channel instead of a custom proxy. This allows the
same marshaled data stream to be shared to reduce
both time and memory overhead. Such architecture
can also be used to provide configurable timeouts,
which is currently not supported by COM.

We have implemented a system based on the archi-
tecture shown in Figure 4 to support Quality-of-
Fault-Tolerance (QoFT). A server object dynami-
cally determines the level of fault tolerance that
should be provided for each client when the client
first connects to the object, based on the client’s login
account. If it is a base-level client, standard remoting
architecture without any fault tolerance is established.
Otherwise, the determined level and the OBJREFs of
the chosen server objects are transmitted to the client
side to initialize a QoFT channel, of which the
CLSID is also specified by the server. A level-1 client
normally connects to a primary object, but will switch
to a backup object when the primary server fails and
the call times out. For a level-2 client, every call is
sent to multiple objects and the first response is deliv-
ered to the client. This approach masks failures as
well as improves response time. The system also sup-

ports dynamic code downloading: the DLL code of
the QoFT channel object can be downloaded to the
client as part of the custom marshaling stream. A
custom unmarshaler is activated to extract the code
and register it with the registry so that a QoFT chan-
nel object can be instantiated from it. This feature
allows a service provider to try out different QoFT
plans without requiring clients to install new soft-
ware.

4.2. Transport replacement

According to the specification [Brown96], DCOM
runs on top of RPC. In turn, RPC can run on top of
different transports. For example, on Windows NT,
Microsoft RPC can be configured to run on TCP,
UDP, NetBIOS, and IPX by simply changing a regis-
try setting [Nelson97]. In addition to this flexibility,
applications may wish to replace the standard RPC
channel altogether for a number of reasons. For ex-
ample, running DCOM on HTTP may be necessary
for passing through certain firewalls. Some organiza-
tions may need to run DCOM on proprietary trans-
ports in order to interoperate with existing legacy
systems. Some applications may require encrypted
channels for additional security. Information-
dissemination applications may want to replace uni-
cast channels with multicast channels for efficiency.
Transport replacement can of course be accomplished
on current COM architecture by using custom mar-
shaling, but that would generally require rebuilding
the entire remoting architecture.

Figure 5 illustrates how a new channel can be plugged
into COMERA without modifying the upper layer of
the architecture. The custom endpoint object wraps
the transport-specific server code with a COM inter-
face. It hosts the server-side communication endpoint
and supplies binding information to the marshaler.
The custom channel object wraps the transport-
specific client code with two COM interfaces: one for
initialization with the binding information and one for
the actual communication. Some transports exist in
the form of protocol stacks and can be completely
wrapped inside the two COM objects. Others may
require the channel object to connect to a client-side
daemon, which is connected to a server-side daemon
that is in turn connected to the endpoint object.

4.3. Object migration

Object migration is a generic mechanism for load
balancing and fault tolerance. The goal is to move an
object to another machine while still allowing existing
clients to connect to it. On the one hand, the remoting
architecture facilitates implementing object migration
in a transparent way by providing a natural hiding
place for the migration logic. On the other hand, the
abstraction that it provides to the applications may
hide too many low-level details, which makes trans-
parent object migration difficult. Specifically, an ob-
ject instance is uniquely identified by an RPC string
binding (containing an IP address and a port number)
and an IPID. Since current COM remoting architec-
ture hides the assignment of port numbers and IPIDs
from the applications, it is difficult to migrate an ob-
ject while maintaining the same port number and
IPID so that existing client-side channels can still
reach the migrated object.

With current architecture, transparent object migra-
tion can be implemented using semi-custom mar-
shaling as follows. A custom proxy containing the
migration logic is inserted between the client and the
object proxy. When a migration occurs, the custom
proxy either gets notified through a special callback
interface or detects that when a call times out. It then
queries a migration manager process that maintains a
mapping between pre-migration OBJREF and post-
migration OBJREF for each migrated object. When
the custom proxy gets back the new OBJREF, it cre-
ates a new pair of object proxy and channel object to
connect to the migrated object, and discards the origi-
nal pair.

The COMERA architecture facilitates transparent
object migration in two ways. First, similar to the
discussions in Section 4.1, object migration should
involve only channel objects but not object proxies.
By pushing the migration logic from the proxy level
down to the channel level, COMERA allows a cus-
tom channel to simply update its RPC binding to con-
nect to the migrated object, without any object acti-
vation and deactivation overhead. Second, it is par-
ticularly useful for implementing transparent object
failover, which is a special case of object migration
where the migrated-to machine has the same IP ad-
dress as the original one. Figure 6 shows how COM-
ERA supports transparent failover without requiring
any custom objects or migration logic on the client
side. The failover of the IP address can be provided
by commercial clustering software [NTMag97]. The
failover endpoint object checkpoints and restores the
RPC string bindings. The failover stub manager
checkpoints and restores IPID assignments. Since the

RPC layer has a built-in reconnection capability when
an existing connection is broken, the client will be
able to automatically reach the failed-over object
(with the same IP, port number and IPID) upon the
reconnection.

5. Related Work

CORBA does not specify a standard remoting archi-
tecture. As a result, incorporating stronger system
properties such as fault tolerance into CORBA-based
systems is usually not done by exploiting the extensi-
bility in the remoting architecture. Instead, three other
approaches have been taken [Narasimhan197].
Electra [Maffeis95] and Orbix+Isis [Landis97] build
the mechanisms for object replication and consistency
management into the ORB itself. The Eternal system
[Narasimhan97] intercepts IIOP-related system calls
through the Unix /proc interface, and maps them to
routines supported by a reliable multicast group
communication system. In contrast with the above
two application-transparent approach, a third ap-
proach is to provide fault tolerance through a
CORBA-compliant Object Group Service [Felber96].

COM currently supports a channel hook mechanism
to allow piggybacking out-of-band data, which can be
considered as a simple form of extensibility. By sup-
porting an IChannelHook interface, a sender can fill
in additional data to be transmitted as body extensions
[Brown96] in a DCOM message, and a receiver can
retrieve each body extension using its unique ID. Iona
Orbix allows eight filters to be inserted at different
places to get access to marshaled or unmarshaled call
parameters or return parameters [Iona96]. Similar
capabilities can be implemented on COMERA
through component insertion or replacement.

The newly announced COM+ runtime and services
[Kirtland97] promise to provide a general extensibil-
ity mechanism called interceptors. The interceptors
are used to interpret special class attributes, to receive
events related to object creation/deletion and method
invocation, and to automatically enable appropriate
services. The Coign runtime system [Hunt97] pro-
vides similar instrumentation capabilities for Inter-
Component Communication Analysis (ICCA) that
serves as the basis for optimal distribution of compo-
nent-based applications across a network. Compared
to COM+ interceptors and Coign, COMERA does not
intercept object creation calls, but the architecture for
component insertion and replacement is more flexi-
ble.

Legion [Grimshaw96] is a metasystems software
project that aims at providing flexible support for
wide-area computing. Among its top design objec-
tives is an extensible core consisting of replaceable
components for customizing mechanisms and poli-
cies. The emphasis on transparent fault tolerance,
migration, and replication is similar to COMERA.
The main difference is that Legion targets high-
performance parallel computing, while COMERA
places more emphasis on client-server based systems.

The Globe project [Homburg96] proposed an archi-
tecture for distributed shared objects. Each local ob-
ject consists of four subobjects: a control object han-
dling local concurrency control; a semantics object
providing the actual semantics of the shared object; a
replication object responsible for state consistency
management; and a communication object that han-
dles low-level communication. COMERA can be
used to support this architecture by implementing the
control and the semantics objects in a custom proxy,
and the replication and the communication objects in
a custom channel.

6. Summary

We have proposed COMERA as an extensible re-
moting architecture for COM. By componentizing the
architecture into COM objects, COMERA makes the
low-level distributed objects infrastructure itself as
dynamic, flexible, and reusable as the applications
that it supports. We used three application categories
as examples to demonstrate the advantages of the new
architecture. For the multi-connection channels cate-
gory, we have implemented a Quality-of-Fault-
Tolerance subsystem on top of COMERA to support
dynamic determination of fault-tolerance levels and
dynamic code downloading for custom proxies and
channels. For the transport replacement category, we
have successfully plugged a commercial reliable
multicast protocol implementation into COMERA. A
programming wizard can be provided to further sim-
plify the tasks of channel and endpoint object wrap-
ping. For the object migration category, we have im-
plemented a transparent failover subsystem for COM
objects on top of IP failover. Future work includes
building active replication and distriuted shared ob-
jects on COMERA.

Acknowledgement

The authors would like to express thanks to Li Li
(Cornell) for his contributions to the initial imple-

mentation of COMERA, to Emerald Chung, Chung-
Yih Wang, and Yennun Huang from Lucent Tech-
nologies for their valuable discussions, and to the
software architects and engineers from the DCOM
mailing list for their positive feedback on the archi-
tecture.

References

[Box98] D. Box, Essential COM, Addison-Wesley,
1998.

[Brown96] N. Brown, C. Kindel, Distributed Compo-
nent Object Model Protocol -- DCOM/1.0,
http://www.microsoft.com/oledev/olecom/draft-
brown-dcom-v1-spec-01.txt.

[Chappell96] D. Chappell, Understanding ActiveX
and OLE, Redmond, Washington: Microsoft Press,
1996.

[Chung97] P. E. Chung, Y. Huang, S. Yajnik, D.
Liang, J. C. Shih, C. Y. Wang, and Y. M. Wang,
"DCOM and CORBA Side by Side, Step by Step, and
Layer by Layer," in C++ Report, Vol. 10, No. 1, pp.
18-29,40, Jan. 1998.

[COM95] The Component Object Model Specifica-
tion,
http://www.microsoft.com/oledev/olecom/title.htm.

[CORBA95] The Common Object Request Broker:
Architecture and Specification, Revision 2.0, July
1995, http://www.omg.org/corba/corbiiop.htm.

[DCE95] DCE 1.1: Remote Procedure Call Specifi-
cation, The Open Group,
http://www.rdg.opengroup.org/public/pubs/catalog/c7
06.htm.

[Felber96] P. Felber, B. Garbinato, and R. Guerraoui,
"Designing a CORBA group communication service,"
in Proc. the 15th Symp. on Reliable Distributed Sys-
tems, pp. 150-159, Oct. 1996.

[Grimshaw96] A. Grimshaw and W. A. Wulf, "Le-
gion," in Proc. the Seventh ACM SIGOPS European
Workshop, Sep. 1996.

[Homburg96] P. Homburg, M. van Steen, and A. S.
Tanenbaum, "An architecture for a wide area distrib-
uted system," in Proc. the Seventh ACM SIGOPS
European Workshop, Sep. 1996.

[Hunt97] G. C. Hunt and M. L. Scott, "Coign: Effi-
cient instrumentation for inter-component communi-

cation analysis," Tech Report 648, Dept. of Computer
Science, University of Rochester, Feb. 1997.

[Iona96] Orbix 2.1 Programming guide, Iona tech-
nologies Ltd., http://www.iona.com/.

[Kirtland97] M. Kirtland, "Object-oriented software
development made simple with COM+ runtime serv-
ices," Microsoft Systems Journal, Vol. 12, No. 11,
pp. 49-59, Nov. 1997.

[Landis97] S. Landis and S. Maffeis, "Building reli-
able distributed systems with CORBA," Theory and
Practice of Object Systems, John Wiley & Sons, New
York, 1997.

[Maffeis95] S. Maffeis, "Adding group communica-
tion and fault-tolerance to CORBA," in Proc. Usenix
Conf. on Object-Oriented Technologies, June 1995.

[Narasimhan197] P. Narasimhan, L. E. Moser, and P.
M. Melliar-Smith, "The interception approach to reli-
able distributed CORBA objects," in Proc. the 3rd
Conf. on Object-Oriented Technologies and Systems,
June 1997.

[Narasimhan97] P. Narasimhan, L. E. Moser, and P.
M. Melliar-Smith, "Exploiting the Internet Inter-ORB
Protocol interface to provide CORBA with fault tol-
erance," in Proc. the 3rd Conf. on Object-Oriented
Technologies and Systems, June 1997.

[Nelson97] Michael Nelson, "Using Distributed
COM with Firewalls",
http://www.wam.umd.edu/~mikenel/dcom/dcomfw.ht
m, 1997.

[Rogerson96] D. Rogerson, Inside COM, Redmond,
Washington: Microsoft Press, 1996.

[Vinoski97] S. Vinoski, "CORBA: Integrating di-
verse applications within distributed heterogeneous
environments," in IEEE Communications, vol. 14, no.
2, Feb. 1997.
http://www.iona.com/hyplan/vinoski/ieee.ps.Z.

[NTMag97] "Clustering Solutions for Windows NT,"
Windows NT Magazine, pp. 54-95, June 1997.

[Wollrath95] A. Wollrath, R. Riggs and J. Waldo, "A
Distributed Object Model for the Java System,"
USENIX Journal, Computing Systems, Vol. 9, No. 4,
pp.265-289, Fall 1996.

Figure 1. COM server, classes, objects, interfaces and client.

Figure 2. Limitations of current COM remoting architecture.

Figure 3. The COMERA architecture.

Figure 4. Configurable multi-connection channel on COMERA. (Inserted or replaced
components are indicated by the black boxes.)

Figure 5. Transport replacement by replacing the channel and the endpoint objects.

Figure 6. Client-transparent object failover with COMERA.

