
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3–7, 1999

JMAS: A Java-Based Mobile Actor System
for Distributed Parallel Computation

Legand L. Burge III
Howard University

K. M. George
Oklahoma State University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



JMAS: A Java-Based Mobile Actor System for Distributed Parallel Computation

Legand L. Burge III � K. M. George

Systems and Computer Science Computer Science Department

Howard University Oklahoma State University

Washington, DC 20059 Stillwater, Oklahoma 74078

blegand@scs.howard.edu kmg@a.cs.okstate.edu

Abstract

JMAS is a prototype network computing infrastruc-
ture based on mobile actors [10] using Java technology.
JMAS requires a programming style di�erent from
commonly used approaches to distributed computing.
JMAS allows a programmer to create mobile actors,
initialize their behaviors, and send them messages us-
ing constructs provided by the JMAS Mobile Actor
API. Applications are decomposed by the programmer
into small, self-contained sub-computations and dis-
tributed among a virtual network of Distributed Run-
Time Managers (D-RTM); which execute and manage
all mobile computations. This system is well suited
for course grain computations for network computing
clusters. Performance evaluation is done using two
benchmarks: a Mersenne Prime Application, and the
Traveling Salesman Problem.
Keywords: Distributed systems, parallel computing,
actor model, mobile agents, actors, network comput-
ing

1 Introduction

Multicomputers represent the most promising de-
velopments in computer architecture due to their eco-
nomic cost and scalability. With the creation of faster
digital high bandwidth integrated networks, hetero-
geneous multicomputers are becoming an appealing
vehicle for parallel computing, rede�ning the concept
of supercomputing. As these high bandwidth con-
nections become available, they shrink distances and
change our models of computation, storage, and in-
teraction. With the exponential growth of the World
Wide Web (WWW), the web can be used to exploit
global resources, such as CPU cycles, making them
available to every user on the Internet [7, 30]. The

�This work was supported in part by the USENIX Student

Research Grant

combined resources of millions of computers on the
Internet can be harnessed to form a powerful global
computing infrastructure consisting of workstations,
PCs, and supercomputers (Figure 1).

Figure 1 Global Computing Infrastructure.

The vision of integrating network computers into
a global computing resource is as old as the
Internet[7][23]. Such a system should hide the un-
derlying physical infrastructure from users and from
programmers, provide a secure environment for re-
source owners and users, support access and location
of large integrated objects, be fault tolerant, and scale
to millions of autonomous hosts. Some recent network
computing approaches include CONDOR [29], MPI
[24], PVM [31], Piranha [22], NEXUS [28], Network of
Workstations (NOW) [3], Legion [23], and GLOBUS
[20]. These network computing frameworks use low-
level communication systems, or high-level dedicated
systems. Although these systems o�er heterogeneous
collaboration of multiple systems in parallel, they in-
volve rather complex maintenance of di�erent binary
codes, multiple execution environments, and complex
underlying architectures.

Distributed computing over networks, has emerged
as a technology with tremendous promise and po-
tential, owing in part to the emergence of the
Java Programming Language and the World Wide
Web. Recently, researchers have proposed several



approaches to provide a platform independent Java-
based high-performance network computing infras-
tructure. These include Javalin [16], WebFlow [4],
IceT [14], JavaDC [15], Parallel Java [26], Parallel Java
Agents [27], ATLAS [5], Charlotte [6], ParaWeb [9],
Popcorn [12], and Ninet [32]. The use of Java as a
means for building distributed systems that execute
throughout the Internet has also been recently pro-
posed by Chandy et al. [13], Fox et al. [21] and imple-
mented in [33]. Java, because of its platform indepen-
dence, overcomes the complexity issues of maintain-
ing di�erent binary codes, multiple execution environ-
ments, and complex underlying architectures. It o�ers
the basic infrastructure needed to integrate computers
connected to the Internet into a distributed compu-
tational resource for running parallel applications on
numerous anonymous machines.

Mobile agents are a convenient paradigm for dis-
tributed computing [8, 18]. The agent speci�es when
and where to migrate, and the system handles the
transmission. This makes mobile agents easier to use
than low-level facilities in which the programmermust
explicitly handle communication, but more exible
and powerful than schemes such as process migration
in which the system decides when to move a program
based on a small set of �xed criteria. Mobile agents al-
low a distributed application to be written as a single
program.

In this paper we discuss the design and imple-
mentation of a prototype network computing system
(JMAS) based on the mobile actor model [10] using
Java technology [25]. The mobile actor model is a par-
allel programming paradigm for distributed parallel
computing based on mobile agents and the actor mes-
sage passing model [1]. Applications are decomposed
by the programmer into small, self-contained subcom-
putations and distributed among a virtual network of
Distributed Run-Time Managers (D-RTM); which ex-
ecute and manage all mobile computations. Lastly, we
evaluate the performance of our system, and show that
our system is well suited for course grain computations
in a network computing environment. Our experi-
ments were ran using two benchmarks: a Mersenne
Prime Application, and the Traveling Salesman Prob-
lem.

2 The Actor Model

Actors are self-contained, interactive, autonomous
components of a computing system that communicate
by asynchronous message passing. Actors are charac-
terized by an identity (i.e. mail address), a mailbox,

and a current behavior. Moreover, a mail address may
be included in messages sent to other actors - this al-
lows those actors to communicate with the actor whose
mail address they have received. The ability to com-
municate mail addresses of actors implies that the in-
terconnection network topology of actors is dynamic.
This dynamic interconnection network topology im-
plies that the underlying resources can be represented
as actors to build a system architecture. Each time
an actor processes a communication, it also computes
its behavior in response to the next communication
it may process. Acquaintances represent actors whose
mail addresses are known to the actor. Because all ac-
tor communication is asynchronous, all messages are
bu�ered in mail queues until the actor is ready to re-
spond to them. Messages sent are guaranteed to be
received with an unbounded but �nite delay.

Each actor may be thought of as having two aspects
that characterize their behavior:

1. its acquaintances which is the �nite collection
of actors that it directly knows about;

2. the action it should take when it is sent a mes-
sage. These actions provide a primitive set of
operations to:

� send messages asynchronsly to speci�ed ac-
tors,

� create actors with speci�ed behaviors, and

� become a new actor, assuming a new behav-
ior to respond to the next message.

The actor primitive operators (i.e. send, create, and

become) form a simple but powerful set on which to
build a wide range of higher-level abstractions and
concurrent programming paradigms. Although there
is su�cient research supporting the actor model to
solve �ne/large grain applications on a tightly cou-
pled system, there has been no actor-based solution
to solve large scale data intensive distributed appli-
cations which may be interconnected by costly com-
munication links. In order to support this environ-
ment, locality of reference and resource management
(i.e. load balancing) must be addressed; as processes
must be able to migrate throughout the system. In
the next section, we address the issue of locality of
reference and resource management through actor mo-
bility. We present a communication paradigm among
mobile agents that incorporates actor-based message
passing to support dynamic architecture topologies for
distributed parallel computing.



3 The Mobile Actor Paradigm

A mobile actor is an actor with the semantics of
mobility and navigational autonomy. Navigational
autonomy is the degree to which a message can be
viewed as an object with its own innate behavior, ca-
pable of making decisions about its own destiny. The
actor model inherently enforces navigational auton-
omy allowing addresses of actors to be communicated
and thus providing a dynamic interconnection network
topology. Such a computing model provides support
to deal with non-deterministic problems which require
network recon�gurations, non-deterministic communi-
cation, and dynamic process coordination. In many
practical distributed applications, the over consump-
tion of local resources don't allow computations to be
processed e�ciently. A more feasible solution would
be to migrate the process to least consumed resources,
or to move the process to a data server or communica-
tion partner in order to reduce network load by access-
ing a data server or communication partner by local
communication. The mobile actor model is a strategy
for remote execution and process migration using the
actor-message passing paradigm (i.e. for load balanc-
ing, and locality of reference of data/behaviors). A
remote execution includes the transport and start of
execution of a process on a remote location. Process
migration includes the transport of process code, ex-
ecution state, and data of the process; processes may
be restarted from their previous state. The execution
of computations may migrate across �le systems con-
sisting of networks of computers and/or computing
clusters.

We extend the actor primitive operations in re-
sponse to a message with semantics to support actor
mobility. The semantics of actor mobility are enforced:
upon receipt of a message, or when dynamically cre-
ating another actor on a remote location. These ex-
tended primitive operations allow computations to mi-
grate after state change.
The behavior of mobile actors consists of two kinds of
actions in response to a message:

1. becomeremote computes a replacement behavior
on the local machine and migrates to a location
on a remote machine. The migrated actor is char-
acterized by the identity (i.e. it's mail address),
and mailbox of a speci�ed location of an actor on
a remote machine.

2. createremote a new actor on the local machine and
migrate to the remote location, assuming a new
behavior to respond to the next message.

4 JMAS: A Java-Based Mobile Actor

System

Exploiting the resources of several interconnected
computers to form a powerful network computing in-
frastructure is the goal of this research. Such an infras-
tructure should provide a single interface to users that
provides large amounts of computing power, while hid-
ing from users the fact that the system is composed
of hundreds to thousands of machines scattered across
the country. Our vision is to create a system in which
a user sits at a workstation, and has the illusion of a
single very powerful computer. In this section, we dis-
cuss the technical issues associated with the construc-
tion of a network computing infrastructure which exe-
cutes mobile actor computations. A mobile actor sys-
tem is a multi-user, heterogeneous, network comput-
ing environment for executing distributed actor-based
computations. A mobile actor system must support
two basic tasks - the creation and migration of re-
mote actors, and the communication between actors
distributed throughout the system. In addition the
system should:

� provide language support for the mobile actor
programming model,

� provide a single consistent namespace for actors
within the system,

� provide an e�cient execution schedule between
actors maintained on the local machine,

� be able to distribute the load evenly among the
machines participating within the distributed sys-
tem,

� be fault tolerant, and

� be secure.

4.1 JMAS Infrastructure

JMAS is a network computing environment for exe-
cuting mobile actor computations. JMAS is designed
using Java technology [25], and requires a program-
ming style di�erent from commonly used approaches
to distributed computing. JMAS allows a program-
mer to create mobile actors, initialize their behaviors,
and send them messages using constructs provided by
the JMAS Mobile Actor API. As the computation un-
folds, mobile actors have the ability to implicitly nav-
igate autonomously throughout the underlying net-
work. New messages are generated, new actors are cre-
ated, and existing actors undergo state change. JMAS



also makes mobile actor locality visible to program-
mers to give them explicit control over actor place-
ment. However, programmers still do not need to
keep track of the location to send a message to a mo-
bile actor. Data ow and control ow of a program
in JMAS is concurrent and implicit. A programmer
thinks in terms of what an actor does, not about how
to thread the execution of di�erent actors. Communi-
cation of mobile actors is point-to-point, non-blocking,
asynchronous, and thus bu�ered.

4.2 Language Support in JMAS

JMAS is based on the Java Programming Language
and Virtual Machine of JDK1.1 [25]. JDK1.1 contains
mechanisms that allow objects to be read/written to
streams (object serialization), as well as, an API that
provides constructs to dynamically build objects at
run-time (i.e. Reection package [java.lang.reect]).
We exploit heterogeneity through Java's platform in-
dependent (i.e. write once run anywhere) framework.
We provide a Mobile Actor API for developing mo-
bile actor applications using the Java Programming
Language. Mobile actor programs are compiled using
a Java compiler that generates Java bytecode. Java
bytecode can be executed on any machine containing
a Java Virtual Machine. Actors in JMAS are light-
weight processes called threads. The API provides
constructs which allow programmers to create mobile
actors using static or dynamic placement, to change
an actor's state, and send communications to an actor.

4.3 Consistent Mobile Actor Names in
JMAS

JMAS implements a simple location-dependent
naming strategy tightly coupled with mobile actors
within the system. Each mobile actor within the sys-
tem is given a globally unique identi�er. This identi�er
is bound to only one address by the underlying mes-
sage system. These bindings may change over time;
if for example, a mobile actor migrates to a di�erent
machine. In such a case, messages are forwarded to
the new location by the underlying message system.
It has been shown in [11], that forwarding messages in
a distributed system consisting ofN machines requires
in the worst case N � 1 message rounds.

4.4 Scheduling and Load Balancing in
JMAS

The JVM implements a timeslice schedule of
threads on Window95 systems, and a pre-emptive

priority-based schedule for UNIX/Windows NT sys-
tems. JMAS forces a pre-emptive, priority-based
schedule among local threads; regardless of the under-
lying architecture. The e�ciency of an actor-based
computation on a loosely coupled architecture de-
pends on where di�erent actors are placed and the
communication tra�c between them. Thus, the place-
ment and migration of actors can drastically a�ect
the overall performance. We implement a decentral-
ized fault-tolerant load balancing scheme based on the
CPU market strategy proposed in [12]. The market
strategy is based on CPU-time. Entities within the
system consist of buyers and sellers. A seller allows
its CPU to be used by other programs. A buyer serves
as a machine wanting to o�-load work to a seller. A
meeting place in which buyers and sellers are corre-
lated is known as a market. Computations are dis-
tributed to seller using a round-robin schedule. This
strategy is intended for coarse-grain applications.

4.5 Security in JMAS

Security issues are not addressed in this version of
the prototype system. Policies could be enforced to
encrypt/decrypt all Java class �les and messages sent
throughout the system. Use of any strategy will com-
promise the overall performance of the system.

4.6 Fault Tolerance in JMAS

Machines used within the JMAS infrastructure are
fault tolerant to the extent necessary without com-
promising overall system performance. The limit of
our concern is with fail-stop faults of hardware com-
ponents, and the network. The underlying communi-
cation system will guarantee the delivery of messages
through the use of reliable, communication-oriented
TCP sockets. Further, if a host should fail, then JMAS
will remove that host from the current CPU Market
con�guration.

5 JMAS Architecture

The architecture of JMAS is organized as a series
of layers or levels, each one built upon its predeces-
sor (Figure 2). The lowest level(physical layer) is
the actual physical network, which may consist of a
LAN/WAN of PCs and/or workstations. It could also
represent a global network such as the Internet. The
second layer (daemon layer) consists of the collection
of daemons residing on all physical machines partici-
pating in the distributed system. Each daemon listens



on a reserved communication port receiving commu-
nications that could consist of messages or migrating
computations. Upon receipt of a communication, it
is passed to the third layer. The third layer consists
of Distributed Run-Time Managers (D-RTM). The
D-RTM is responsible for message handling from/to
local/remote processes, scheduling and load balancing
of processes. The forth layer (logical layer), consist
of the actual application speci�c computations on the
local machine. Computations are expressed as mobile
actors. Each actor is encapsulated with a behavior,
an identity, a mail queue, and one thread. The logical
layer shows each actor and its acquaintances (i.e. A
knows about B and C, ...etc).

A

B

C E

F
D

Logical

Network

arjuna.cs.okstate.edu a.cs.okstate.edu chester.cs.okstate.edu

Daemon DaemonDaemon

Network

Physical

Network

Daemon

Network

D-RTM

Figure 2. Four Layer Mobile Actor
Architecture.

In the following sections, we give a detailed descrip-
tion of the JMAS architecture. In particular, we dis-
cuss the components of each layer, and show how Java
technology is applied.

5.1 Physical Layer

The physical layer is the actual physical network,
which may consist of a LAN/WAN of PCs and/or
workstations. These systems are referred to as scalable
computer clusters (SCCs), or networks of worksta-
tions (NOWs) [3]. Both systems are developed within
a trusted environment. Therefore security issues are
not a major concern. The disadvantage is that the
scalability of these systems is limited to the resources
available to the system administrator. The physical
layer could also represent interconnected networks of
computer clusters.

5.2 Daemon Layer

The daemon layer is implemented as a collection
of daemon threads residing on all physical nodes par-
ticipating in the JMAS distributed environment. The
responsibility of the daemon thread is to continuously

monitor the network, receiving local/remote commu-
nication messages and mobile computations arriving
from other machines. JMAS supports a messages-
driven model of execution (Figure 3).

Figure 3. Message-driven model of
execution.

There is no local/remote peer-to-peer communication
between mobile actors within the system. All commu-
nication is routed through a reserved port of a daemon
thread residing on the local machine. The reserved
port for JMAS is 9000. Message reception by the dae-
mon thread creates a thread within the actor which
executes the speci�ed method with the message as its
argument. Only message reception can initiate thread
execution. Furthermore, thread execution is atomic.
Once successfully launched, a thread executes to com-
pletion without blocking.

5.3 Distributed Run-Time Manager

The Distributed Run-Time Manager (D-RTM) is
the most complex of the four layers. It is contained
within each daemon in the system. Therefore, the
daemon layer and D-RTM layer are tightly coupled.
The D-RTM contains the basic underlying software
that provides the transparent interface to the network
computing system. The D-RTM was designed using a
layered virtual machine design built on top of the Java
Virtual Machine (JVM) using JDK1.1 [25] (Figure 4).
The D-RTM has several functions:

� To handle all incoming Tasks (i.e. Message
Handler)

� To prepare actor processes to run on the local
system (i.e. Actor Context)

� To load java bytecode (e.g. java objects) from
local/remote locations(i.e. BehvLoader)

� To schedule local/remote threads using a pre-
emptive, priority schedule (i.e. Scheduler),



� To manage the CPU load on the local machine
(i.e. Load Balancer).

Figure 4. Distributed Run-Time Manager
(D-RTM).

5.3.1 Message Handler

The message handler is responsible for routing Tasks
which consist of communications to local actors. As
illustrated in Figure 5, messages are stored in a table
of message queues (i.e. mailboxes). A mailbox could
have one or more actors within the local actor con-
text associated to it. We implement the table of mail-
boxes as a hash table. We use Java's Hashtable class
provided by the java.util package. Because Java im-
plements its Hashtable as a synchronized object, each
access to the Hashtable is atomic. This is very use-
ful for our multi-threaded environment. Each mail
address hashes to one mailbox in the table. In or-
der to achieve maximum parallelism, the table is ac-
cessed by subprocesses. Messages from a desired mail-
box are forwarded asynchronously to actor processes
whose identity is denoted by the mail addresses of the
mailbox.

Figure 5. Message Handler.

5.3.2 Actor Context

The Actor Context is responsible for instantiating an
object, wrapping the object within a thread, and sup-
plying the thread to the Scheduler. It also maintains
a table of system information. Such as:

� The actor Identity

� The current behavior

� The current method (communication being exe-
cuted)

� The total (idle) time actor waited in ready queue
before receiving a communication (msec)

� The total time to load the actor (msec)

� The current running time (msec)

Objects in JMAS are built during runtime. In-
formation about an object during runtime is ob-
tained using Java Reection [25]. The classes needed
to perform these operations are obtained from the
java.lang.reect package of the JDK1.1.

5.3.3 Scheduler

JMAS implements a pre-emptive, priority-based
scheduler among local threads. Each thread is as-
signed a priority that can only be changed by the
programmer. The thread that has the highest pri-
ority is the current running thread. Processes with a
lower priority are interrupted. To ensure that star-
vation does not exists among threads we implement
a round-robin schedule among local processes. As il-
lustrated in Figure 6(a), incoming threads or threads
instantiated locally, are given a priority{initially low.
Threads are then placed into a queue data structure.
The scheduler dequeues a thread from the list and as-
signs it the highest possible priority{causing the this
thread to run. After a given time t, the thread is
stopped and inserted back into the list. This process
continues until all threads within the list terminate
(Figure 6(b)). The scheduler could be interrupted by
the load balancer; if the CPU reaches its computa-
tion threshold. This will cause the current running
thread to suspend and migrate to a remote machine
to continue its execution. Computations are migrated
to remote locations using a round-robin schedule.

Figure 6. Thread Scheduler.



5.3.4 ClassLoader

In order to load classes from remote locations, we im-
plemented our own classloader. The BehvLoader al-
lows classes to be loaded over the network and stored
within the local cache. The BehvLoader loads classes
to the interpreter using the following sequence of op-
erations (Figure 7).

1. Check if the class already exists in the local cache.
If not,

2. Check if the class is a system class. If not,

3. Check the local disk. If not found,

4. Check the remote disk where the request origi-
nated. If not found,

5. NoSuchClassFound exception is thrown.

Figure 7. Operation of JMAS ClassLoader.

Di�erent features can be added to the BehvLoader to
provide security. Such as:

� encryption/decryption of class �les

� use of signatures

5.3.5 Load Balancer

We implement a load balancing scheme based on the
CPU market strategy proposed in [12]. The market
strategy is based on CPU-time. Entities within the
system consist of buyers and sellers. A seller allows
its CPU to be used by other programs. A buyer serves
as a machine wanting to o�oad work to a seller. A
meeting place in which buyers and sellers are corre-
lated is known as a market. CPUs are chosen from
the market using three selection policies:

1. Optimal (Best) selection,

2. Round-Robin selection, or

3. Random selection.

5.3.5.1 Developing a Market of CPUs

We implement a decentralized hierarchical method
for organizing the CPU market. Each machine within
the system is responsible for managing a market.
Therefore, the process of managing a market is dis-
tributed throughout the system{increasing market re-
liability and availability. When starting the system,
the D-RTM initializes its market by registering it-
self with machines designated within a con�guration
�le set by the system administrator. Those machines
willing to sell their CPU respond with a message
SELLER, and are added to the market as sellers. Ma-
chines who wish to buy CPU time respond with a mes-
sage BUYER, and are added to the market as buyers.
Those who do not respond (i.e. system down) are not
added to the market. This market maintained by the
D-RTM, contains the secondary machines on which to
o�-load remote processes. As shown in Figure 8, this
creates a logical hierarchy of machines. Each node
within the hierarchy, with the exception of the bottom
most nodes, are denoted as market managers. Com-
munication overhead is minimal. CPUs wishing to sell
their time add themselves to the market by notifying
a market manager (Figure 8). Buying from the mar-
ket is a bottom up process. Nodes at the lowest level
become overloaded faster. Once a given node X is
denoted as a buyer, all nodes who are descendants of
X are also denoted buyers. This approach requires
collaboration among system administrators to orga-
nize an optimal hierarchy. This is not suitable for a
global environment which must scale to hundreds or
thousands of machines.

Figure 8. CPU Market Hierarchy.

We modify the hierarchical method, by allow-
ing market initialization and registration to be bi-
directional. Not only does the D-RTM register itself
with machines designated by the system administra-
tor, but machine also registers itself with the D-RTM.
In such a situation, the market is organized by man-
agers who are logically connected in a (complete) mul-
tidirectional topology. Because machines belong to



more than one market, this con�guration increases the
communication overhead substantially. Communica-
tion increased from one message round to an expensive
multicast. As shown in Figure 9, not only do machines
B, C, and D notify machine A when buying or sell-
ing their CPU time, but, machine A must also notify
machines B,C, and D when buying or selling its CPU
time. Changes in the CPU status (i.e. Buyer/Seller),
are noti�ed to all machines within a market using a
weak consistent replication strategy. We use weak con-
sistent replication in order to reduce the communica-
tion over head. Noti�cations are replicated through-
out the system by piggybacking the CPU status of
the current machine along with communication sends.
For example: when an actor on machine B receives
a communication from and actor on machine A, the
CPU market on machine B is updated with the new
CPU status of machineA. Although, machines are not
instantly noti�ed of a market change, use of this weak
replication strategy provide eventual message delivery
that is tolerated in our system [11].

Figure 9. Host A Noti�es Markets of B,C,
and D.

5.3.5.2 Load Balancing Policy

Each machine within the distributed system maintains
a data structure with information about the current
machines within its market. These machines are de-
noted as buyers, or sellers. The load factor on the
machine is relative to the number of threads currently
running on the local machine. Other factors could
also be used to determine the load. Such as: the to-
tal load on the machine, heuristic information, the
actual CPU utilization, and the size of the computa-
tion. Most of these metrics are more complicated to
determine. As shown in Figure 10, the Load Balancer
maintains a load below 75% of the threshold, and 25%
of the threshold above the minimum load (i.e. zero).

Figure 10. Load Balancing Policy.

Before starting a thread on the local machine, the load
balancer checks the current load to insure that it is
within the threshold. If the load is not within the
current threshold, the load balancer o�-loads a local
process to machines within its market who wish to sell
their CPU (Figure 11). If there are no sellers within
the market, the load balancer starts the process lo-
cally, and tries to o�-load processes later. Note that
the D-RTM is now a buyer of CPU time and needs to
inform its market managers of its new status. By de-
fault the status of a machine is seller. Therefore this
�eld is changed to status buyer.

Variable De�nitions:

t : Task (communication sent throughout system)

load : Integer to denote the current load on the local machine

Threshold : Integer to denote the load limit on the local machine

BUYER,SELLER : constant to denote the state of the machine

CPUStatus : enumerator to denote the state of the machine
(BUYER/SELLER)

host : contains the host location of an available CPU

scheduleLocal(t) : schedules the Task t (i.e. an actor) on the
local machine

scheduleRemote(t; host) : schedules the Task t (i.e. an actor) at
the location host

getAvailHost() : returns an available CPU (SELLER) from the
market,

updateMarket(t) : update the CPUStatus of the machine from
which the Task t originated

LoadBalancer :

1. Receive Task t

2. If t is an actor

if load + 1 � Threshold, then

set CPUStatus to SELLER
scheduleLocal(t)
increment load by 1

Else

set CPUStatus to BUYER
host = getAvailHost()
scheduleRemote(t; host)

Else if t is a communication

updateMarket(t)

forward task to Message Handler

3. goto 1

Figure 11. Load Balancing Algorithm.



5.4 Logical Layer

The logical layer consists of the actual application
speci�c computations that are executing on the local
machines. The computation model consists of mobile
actors which encapsulate: a behavior, an identity, a
mail queue, and one thread. Each computation runs in
its own thread, and may communicate with any other
thread on the local/remote machines. Computations
are expressed as Java programs using mobile actor se-
mantics provided by constructs of the JMAS Mobile
Actor API. The mobile actor API gives programmers
the ability to create actors, change the state, or send
communications to mobile actors within the global
system. The underlying resources can be logically rep-
resented as mobile actors to build dynamic architec-
ture topologies. This dynamic architecture gives the
programmer an illusion of a global computer that can
run concurrent, distributed, and parallel applications.
Implementation details of the underlying system are
transparent to the programmer in the logical layer.

6 Performance Evaluation

JMAS o�ers the basic infrastructure needed to in-
tegrate computers connected by a network into a dis-
tributed computational resource: an infrastructure for
running coarse-grain parallel applications on several
anonymous machines. Currently, cluster computing in
a LAN setting are already being used extensively to
run computation intensive applications [17],[19]. We
conducted our experiments in an environment consist-
ing of:

� 1 Sun MicroSystems Enterprise 3000, con�gured
with two UltraSparc processors each running at
256MHz.

� 1 Sun Ultra Sparc workstations, con�gured with
one 120 MHz processor.

� 14 Sun Sparc 20 workstations, each con�gured
with one 200 MHz processor.

� 1 Sun Sparc 10 workstations, con�gured with one
166 MHz processor.

Each machine is connected by a 10 and 100 Mbit Eth-
ernet. All experiments were conducted under the typ-
ical daily workloads. We tested each algorithm under
a controlled environment of D-RTMs that were used
strictly to run our experiments. CPU selection from
the CPU market, was performed by the D-RTM using

a round-robin selection policy. Under our controlled
environment, an optimal selection policy achieves the
same results as round-robin CPU selection. We did
not run our experiments using a random CPU selec-
tion policy. This was done to insure that all processes
mapped to one and only one machine. In order to
obtain a relative performance of our system, we cal-
culate the average of the execution times over N = 10
experiments, producing an arithmetic mean (AM):

AM =
1

N

NX
1

T imei

Where T imei is the execution time for the ith ex-
periment. All experiments are compared with perfor-
mance metrics obtained from similar computations on
stand-alone workstations.

6.1 Benchmarks

The overhead of migrating actors to remote loca-
tions and passing messages between remote actors are
of great interest. We present experimental results
for our prototype using two benchmarks: a Traveling
Salesman application, and a Mersenne Prime appli-
cation. We discuss their implementation and perfor-
mance using the JMAS infrastructure.

6.2 Factors That Limit Speedup

A number of factors can contribute to limit the
speedup achievable by a parallel algorithm executing
in a network computing infrastructure such as JMAS.
An obvious constraint is the size of the input pro-
gram. If there is not enough work to be done by the
number of processors available, then any parallel al-
gorithm will not show an increase in speedup. Sec-
ond, the number of process creations must be mini-
mized. In particular, we are concerned with the cre-
ation of remote actors throughout the distributed sys-
tem. Lastly, in a network computing environment
were communication cost is high, the number and
packet size of inter-process communications must be
limited. Table 1 shows the performance of two micro-
benchmarks to calculate the execution time for com-
munication sends, and remote class loading using the
JMAS prototype. A micro-benchmark is a small ex-
periment used to monitor the performance of underly-
ing system operations. Results were obtained using a
test packet to send a communication, and load a Java
class �le between two machines.



Overhead secs

Send .006-.010

Remote Class
Loading .15-.28

Table 1. Micro benchmarks for a 10 Mbit
Ethernet LAN using TCP sockets.

In general, the total cost of distributing a program for
parallel execution is de�ned as:

TCost = TotalloadT ime+TotalcommTime+TotalexecT ime

Where TotalloadT ime is the time to load the needed
Java class �les to each machine within the system,
TotalcommTime is the time spent sending commu-
nications between actors, and TotalexecT ime is the
time spent executing the fraction of the computation.
Moreover, the total time to distribute the needed Java
class �les across N machines is:

TotalloadT ime = (N � 1) � tload

Where tload is the average time to load the needed Java
class �les to one machine within the system. We as-
sume that the machines are organized using a master-
slave topology. Such that, the master is used to pro-
cess a subcomputation, as well as, distribute N � 1
subcomputations and receive the partial results from
the other N � 1 slave machines. Assuming we dis-
tribute the load evenly among N machines. Then the
time to execute a fraction of the computation is:

TotalexecT ime = tseq=N

Where tseq is the total sequential execution time for
the application. Given the load distribution above, if
each subcomputation sends at most k messages, then
the communication overhead TotalcommTime can be
de�ned as:

TotalcommTime = (N � 1) � k � tsend

Where tsend is the average time to send a commu-
nication between two machines. Given N machines,
we derive a general formula to de�ne the total cost of
distributing a program for parallel execution.

TCost(N) = (N�1)�tload+(N�1)�k�tsend+tseq=N

Using the equation above, we can estimate the per-
formance of a given application. As shown below, in
order to bene�t from parallelization the following in-
equality must hold:

TCost(N) < tseq

(N � 1) � tload + (N � 1) � k � tsend + tseq=N < tseq

Solving the inequality, we �nd that the total cost (i.e.
TCost(N)) is less than the sequential execution time
(i.e. tseq) for:

N < tseq=(tload + k � tsend)

6.2.1 Remote Execution of Actors

As a mobile actor computation unfolds, mobile actors
have the ability to implicitly navigate autonomously
throughout the underlying network; causing the mi-
gration of code. On each of the experiments conducted
in this chapter, we calculated the average time to load
a Java class �le over the network. On a standard 10
Mbit Ethernet network the time to load a remote class
�le ranges between .15 and .28 seconds (Table 1). On
average it takes .20 seconds to load a class �le across
the network. When considering distributing an ap-
plication across several machines, one must take into
consideration an upper bound on the amount of paral-
lelism that can be exploited by distributing processes
throughout a network computing system. In particu-
lar, we focus on the overhead associated with loading
Java class �les across the network (i.e. TotalloadT ime).
We can calculate the maximum number of machines p,
needed to distribute the parallel computation without
compromising the performance in speedup by �nding
the absolute minimum execution time for the contin-
uous function TCost(p) on a closed bounded interval
[1; p]; where p = tseq=(tload + k � tsend). Giving,

T 0

Cost(p) = tload + k � tsend � tseq=p
2

Setting T 0

Cost(p) = 0 and solving for p, gives

p =
q
tseq=(tload + k � tsend)

Therefore, we can estimate the maximum performance
in speedup S as:

S = tseq=TCost(p)

TCost(p) = 2 � tload

q
tseq=(tload + k � tsend)� tload

Giving,

S =
2 � tseq

p
tseq=(tload + k � tsend) + tseq

4 � tseq � (tload + k � tsend)

6.2.2 Message Passing

As stated in Chapter 5, communication in JMAS is
asynchronous, reliable and connection-oriented. Mes-
sages between two actors, must be routed through a



D-RTM on the local machine on which the two ac-
tors reside. The Java Virtual Machine requires all
communication to go through the Java network layer
(i.e. java.net) and the complete TCP stack of the un-
derlying OS. This causes a substantial software over-
head compared to communication libraries of paral-
lel machines. Using JMAS, a single message can be
sent from one actor to another within .006-.010 sec-
onds on a standard 10 Mbit Ethernet LAN (Table
1). As long as applications are coarse grained, the
overhead of opening a socket connection can be ig-
nored. Since message passing using Java TCP sockets
is slow compared to dedicated parallel machines, and
communication delays of large networks of heteroge-
neous machines is unpredictable, only computation-
intensive parallel applications bene�t from the JMAS
infrastructure.

6.3 Traveling Salesman Problem

Our �rst application is a parallel solution to the
Traveling Salesman Problem (TSP). The Traveling
Salesman Problem is as follows: given a list of n cities
along with the distances between each pair of cities.
The goal is to �nd a tour which starts at the �rst
city, visits each city exactly once and returns to the
�rst city, such that the distance traveled is as small as
possible. This problem is known to be NP -complete
(i.e. no serial algorithm exists that runs in time poly-
nomial in n, only in time exponential in n), and it is
widely believed that no polynomial time algorithm ex-
ists. In practice, we want to compute an approximate
solution, i.e. a single tour whose length is as short as
possible, in a given amount of time.

6.4 TSP Algorithm

We take a naive approach to solving the TSP us-
ing an Exhaustive-Search. The exhaustive-search al-
gorithm searches all (n�1)! possible paths, while keep-
ing the best path searched so far. We generate all pos-
sible paths using a Perm() function on the number of
cities n. The permutation function generates a lexi-
cographical ordering of all possible paths. We divide
the permutations equally among a set of processors
p; such that each processor searches (n � 1)!/p pos-
sible paths (Figure 12). Processors are arranged in a
master-slave design.

Variable De�nitions:

n : Integer to denote the number of cities

p : Integer to denote the number of machines

mintour : Integer to denote the permutation of the best tour
searched

start : Integer to denote the starting permutation in lexicograph-
ical order

stop : Integer to denote the ending permutation in lexicographical
order

resultTour : Integer to denote the best tour search for a specified
range lexicographically

itself : Actor address of itself

cust : Actor address to send result

range : Integer to denote the total permutations (tours) to check

Perm(i) : Generates the ith tour in lexicographical order

behavior Slave :

1. recv start, stop, and address of cust to send result

2. mintour = start

3. for i equal start to stop do

if Perm(i) distance � Perm(mintour) distance

set mintour to i

4. send mintour to cust

behavior Master :

1. mintour = 0

2. range = (n� 1)!=p

3. for each processor i : 1 to p � 1 do

create a Remote actor assume behavior Slave, return ad-
dress of actor as x

send start = (i*range), stop = ((i+1)*range), and the address
of itself to x

4. become itself and wait for p results

5. for i : 1 to p do

receive resultTour

if Perm(resultTour) distance � Perm(mintour) dis-
tance

set mintour to resultTour

Figure 13. TSP Algorithm.

6.4.1 Measurements

In order to complete our set of measurements in a
reasonable amount of time we chose to test our TSP
solution primality for N = f4; 5; 10; 13g cities. We
conducted the experiment in an environment consist-
ing of up to 15 machines, and compared the results
with a sequential application running on a SPARC 20
workstation. As shown in Figure 13, there is no signif-
icant gain in performance for N < 10. This is due to
the overhead associated with loading Java class �les
across the network. Figure 14 displays the execution
time of a TSP solution for N = 5 versus its remote
Java class loading time. As the number of machines
p increase, the load time increases, causing the exe-
cution time to increase; exceeding the execution time
for a sequential solution. Notice we achieve the best



performance for p = 4 machines. For N � 10, our
TSP solution gives a better performance. In partic-
ular, for N = 13 the speedup obtained is close to
linear. Due to limited resources, we were unable to
test the scalability of the application for large values
of p. We estimate the performance of our TSP appli-
cation using Equations 1,2 and an average load time
tload = :15 secs. As illustrated in Table 2, the aver-
age CPU utilization for the best possible number of
machines p is 50%. This is because, as the number of
processors p approach (N � 1)!, the speedup obtained
will decrease signi�cantly; due to under utilization of
processors and the overhead associated with loading
Java class �les across the network (Figure 15). The
estimates are also reected in Figure 13. These results
show that our framework is well suited for course grain
applications. The TSP application also scales well to
large computation sizes (Figure 16).

Prob. Size tseq secs Max. p Max. S Utilization

N=5 Cities 3.007 4 2.24 56%

N=10 Cities 24.441 12 6.33 52:7%

N=13 Cities 36655.848 494 247.42 50%

Table 2. Estimating the Performance of
TSP.

Figure 13. Speedup of TSP.

Figure 14. Execution Time vs Load Time.

Figure 15. CPU Utilization of TSP.

Figure 16. Scalability of TSP.

6.5 Mersenne Prime Application

For our second application, we implemented a
parallel primality test which is used to search for
Mersenne prime numbers [19]. This type of applica-
tion is well suited for our infrastructure. It is very
coarse grained with low communication overhead.

A Mersenne prime is a prime number of the form
2p � 1, where the exponent p itself is prime. These
are traditionally the largest known primes. Encryp-
tion and decryption methods are typical applications
which utilize large prime numbers. Searching and veri-
fying Mersenne primes using computer technology has
been conducted since 1952 [19]. To date 37 Mersenne
primes have been discovered. Only up to the 35th
Mersenne prime has been veri�ed. The current record
holder is 21398269 � 1 and was discovered through
the use of over 700 PCs and workstations worldwide.
With larger and larger prime exponents, the search for
Mersenne primes becomes progressivelymore di�cult.

6.5.1 Mersenne Prime Algorithm

In our implementation, each prime is tested based on
the following theorem:



Lucas-Lehmer Test: For p odd, the
Mersenne number 2p � 1 is prime i� 2p � 1
divides S(p�1); where S(n+1) = S(n)2�2,
and S(1) = 4. The proof can be obtained
from [19].

We develop a mobile actor program to test for
Mersenne primality, given a range of prime numbers
(Figure 18). Processors are arranged in a master-slave
design. As shown below, our application works as fol-
lows:

Given N machines and a range r of prime
numbers, we divide the search such that each
machine tests for a Mersenne prime using
the Lucas-Lehmer Test for a range of primes.
Each range is of size r=N .

Variable De�nitions:

r : Integer to denote the amount of primes to test

N : Integer to denote the number of machines

Lucas(x) : Performs Lucas-Lehmer test on x

itself : Actor address of itself

cust : Actor address to send result

range : Integer to denote the range of primes to check

start : Integer to denote the starting prime number

stop : Integer to denote the prime number used as a sentinel

recvcount : Integer to denote the total results received

PRIME : enumerator returned from Lucas(x); if x is a prime
number

SINK : message to denote the termination of a subcomputation

behavior Slave :

1. recv start, stop, and address of cust to send result

2. for i : start to stop do

if Lucas(i) is PRIME

send i to cust

3. send SINK to cust

behavior Master :

1. range = r=N

2. for each processor i : 1 to N � 1 do

create a Remote actor assume behavior Slave, return ad-
dress of actor as x

send start = (i*range), stop = ((i+1)*range), and the address
of itself to x

3. become itself and wait for N results

4. set recvcount = 0

5. receive result

6. if result is SINK

increment recvcount by 1

Else

print "2result � 1 is PRIME!"

7. if recvcount < N, then goto 5

Figure 17. Mersenne Prime Algorithm.

6.5.2 Measurements

For our measurements, we chose to test the Mersenne
primality for all exponents between 4000 and 5000.
Known primes within this range are 24253 � 1 and
24423 � 1. The reason for selecting this range is that:

1. we tried to make the number large enough to sim-
ulate the true working conditions of the applica-
tion,

2. we wanted to keep them small enough to be able
to complete our set of measurements in a reason-
able amount of time.

We conducted the experiment in an environment con-
sisting of up to 15 machines, and compared the results
with a sequential application running on a SPARC 20
workstation. As shown in Figure 18, our application
scales to 15 machines linearly. The speedup obtained
is slightly lower than linear speedup. This is because
we decompose the range of primes to be tested un-
evenly in terms of the amount of work to be done.

Figure 18. Speedup of Mersenne Prime.

For instance, testing if 24000� 1 is prime, can be done
much faster than testing if 24999�1 is prime. We split
the ranges in groups such that, the last machine re-
ceives the last group consisting of the largest numbers.
Due to limited resources, we were unable to test the
scalability of the application for large values of p. We
estimate the performance of the Mersenne Prime ap-
plication using Equations 1,2; where the average load
time tload = :20 secs, and the average sequential ex-
ecution time tseq = 83432 secs. As shown in Table
3, results show that the application scales up to 646
machines with an overall speedup of 323. From our
results we can assume that for p > 646, the range
of primes to test decreases causing under utilization
of CPUs (Figure 19). Also, for every new machine
added, the time to load Java class �les increases caus-
ing a decrease in performance.



Application tseq secs Max. p Max. S Utilization

Mersenne Prime 83432 323 646 50%

Table 3. Estimating the Performance of the
Mersenne Prime Test.

Figure 19. CPU Utilization of Mersenne
Prime.

7 Conclusion

In this paper we discuss the design and imple-
mentation of a prototype network computing system
(JMAS) based on the mobile actor model [10] us-
ing Java technology [25]. JMAS requires a program-
ming style di�erent from commonly used approaches
to distributed computing. JMAS allows a program-
mer to create mobile actors, initialize their behav-
iors, and send them messages using constructs pro-
vided by the JMAS Mobile Actor API. As the com-
putation unfolds, mobile actors have the ability to
implicitly navigate autonomously throughout the un-
derlying network. New messages are generated, new
actors are created, and existing actors undergo state
change. We evaluate the performance of our system
using two benchmarks: a Mersenne Prime Applica-
tion, and the Traveling Salesman Problem. The de-
gree of parallelism obtained from distributing mobile
actors throughout the system is limited due to the
overhead associated with migrating Java class �les,
and the amount of inter-process communication. In
particular, we are bound by the number of processors

p = O(b
q
tseq=(tload + k � tsend)c)

to distribute the parallel computation; where tseq is
the sequential execution time of the application, tload
is the average time to load the needed Java class �les

to one machine, k is the total message rounds sent
per machine, and tsend is the average time to send a
communication between two machines. Given p we
can estimate the speedup S as:

S = tseq=TCost(p)

Where the enhanced performance using p machines, is
denoted as a general formula

TCost(p) = (p� 1) � tload + (p� 1) � k � tsend + tseq=N

Our estimates for the TSP and Mersenne Prime ap-
plications, show that each application scales to large
numbers of machines N . But for N > p, we estimate
a decrease in performance; due to the under utiliza-
tion of CPUs, and the signi�cant overhead associated
with loading the needed Java class �les and sending
communications throughout the system. These results
show that our framework is well suited for course grain
applications.

7.1 Future Work

Issues such as fault tolerance and security need
to be addressed and implemented within the JMAS
framework. Also, experiments concerning the scal-
ability of the JMAS framework to support internet
(global) computing will be conducted in future work.
Support for high-level communication abstractions
will be addressed within the JMAS Mobile Actor API.
Examples are barrier actors, mutex actors, call/return
communication, and actorSpaces [2].

References

[1] Gul Agha, Chris Houck, and Rajendra Panwar. Dis-
tributed execution of actor programs. In Proceedings
of the Fourth Workshop on Languages and Compilers
for Parallel Computing. Santa Clara, 1991.

[2] Gul Agha and R. Panwar. An actor-based framework
for heterogeneous computing systems. Journal of Par-
allel and Distributed Computing, 21, 1991.

[3] T. Anderson, D. Culler, and D. Patterson. A case for
now (network of workstations). In IEEE Microcom-
puter. IEEE, 1995.

[4] NPAC at Syracuse University. WebFlow: A Vi-
sual Programming Paradigm for Web and Java Based
Coarse Grain Distributed Computing. Online Tech-
nical Report, http://www.npac.syr.edu/projects/
javaforcse/cpande/sufurm.ps, 1997.

[5] J. Baldeschwieler, R. Blumofe, and E. Brewer. At-
las: An infrastructure for global computing. In Pro-
ceedings of the 7th ACM SIGOPS European Work-
shop on System Support for WorldWide Applications.
ACM SIGOPS, 1996.



[6] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�.
Charlotte: Metacomputing on the web. In Proceed-
ings of the 9th Conference on Parallel and Distributed
Computing Systems. PDCS, 1996.

[7] T. Berners-Lee. Www: Past, present and future.
IEEE Computer, 18:69{77, 1996.

[8] L. Bic, M. Fukuda, and M. Dillencourt. Distributed
computing using autonomous objects. IEEE Com-
puter, 18:55{61, 1996.

[9] R. Brecht, H. Sandhu, M. Shan, and J. Talbot.
Paraweb: Towards world-wide supercomputing. In
Proceedings of the 7th ACM SIGOPS European Work-
shop on System Support for WorldWide Applications.
ACM SIGOPS, 1996.

[10] L. Burge and K. George. An actor based framework
for distributed mobile computation. In PDPTA - Par-
allel Distributed Processing Techniques and Applica-
tions. CSREA, 1998.

[11] L. Burge and M. Neilsen. Variable-rate timestamped
anti-entropy. In ISMM International Conference on
Parallel and Distributed Computing and Systems. 7th
IASTED, 1995.

[12] N. Camiel, S. London, N. Nisan, and O. Regen. The
popcorn project: Distributed computation over the
internet in java. In Proceedings of the 5th Internation
World Wide Web Conference. W3, 1997.

[13] K. Chandy, B. Dimitron, H. Le, J. Mandleson,
M. Richardson, A. Rifkin, P. Sivilotti, W. Tawaka,
and L. Weisman. A world-wide distributed system
using java and the internet. In Proceedings of the 5th
IEEE Internation Symposium on High Performance
Distributed Computing. IEEE HPDCS, 1996.

[14] Emory University Dept. of Computer Science. IceT:
Distributed Computing and Java. Online Technical
Report, http://www.mathcs.emory.edu/ gray/, 1997.

[15] Old Dominion University Dept. of Computer Science.
Web Based Framework for Distributed Computing.
Online Technical Report, http://www.cs.odu.edu/
~techrep/techreports/TR 97 21.ps.Z, 1997.

[16] University of California at Santa Barbara Dept. of
Computer Science. Javalin: Internet-Based Paral-
lel Computing Using Java. Online Technical Report,
http://www.cs.ucsb.edu/ danielw/Papers/wjsec97.ps,
1996.

[17] DESCHALL. Internet-linked computers challenge
data encryption standard. Technical report, Press Re-
lease, 1997.

[18] Online Document. Mobile Agents: Are they a good
idea? http://www.eit.com/goodies/list/www.lists/
www-talk.1995q1/0764.html, 1995.

[19] Online Document. Mersenne Primes: History, The-
orems and Lists. http://www.utm.edu/research/
primes/mersenne.shtml, 1998.

[20] I. Foster and C. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. International Journal of
Supercomputer Applications, 1, 1997.

[21] G. Fox and W. Formaski. Towards web/java based
high performance distributed computing - and evolv-
ing virtual machine. In Proceedings of the 5th IEEE
Internation Symposium on High Performance Dis-
tributed Computing. IEEE HPDCS, 1996.

[22] D. Gelernter and D. Kaminsky. Supercomputing out
of recycled garbage: Preliminary experience with pi-
ranha. In Proceedings of the 6th ACM International
Conference on Supercomputing. ACM, 1992.

[23] A. Grimshaw, W. Wulf, and the Legion Team. The
legion vision of a worldwide virtual computer. Com-
munications of the ACM, 20:39{45, 1997.

[24] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the Message-
Passing Interface. MIT Press, 1994.

[25] Sun Microsystems Inc. The Java Virtual Ma-
chine Speci�cation. Online Technical Report,
http://java.sun.com, 1995.

[26] L. Kale', M. Bhandarkar, and T. Wilmarth. Design
and implementation of parallel java with global object
space. In PDPTA International Conference, pages
235{244. PDPTA, 1997.

[27] A. Keren and Institute of Computer Science He-
brew University A. Barak. Parallel Java Agents.
http://cs.huji.ac.il/, 1998.

[28] Argonne National Laboratory and USC Informa-
tion Science Institute. The Nexus Multithreaded Run-
time System. http://www.mcs.anl.gov/nexus, 1997.

[29] M. Litzkow and M. Linwy. Condor - a hunter of
idle workstations. In Proceedings of the 8th Interna-
tional Conference of Distributed Computing Systems.
ICDCS, 1988.

[30] F. Reynolds. Evolving an operating system for the
web. IEEE Computer, 1:90{92, 1997.

[31] V. Sunderam. Pvm: A framework for parallel dis-
tributed computing. Concurrency: Practice and Ex-
perience, 2, 1990.

[32] H. Takagi, S. Matsuoka, and H. Nakada. Ninet:
A Migratable Parallel Object Framework using Java.
http://ninf.etl.go.jp/, 1998.

[33] L. Vanhelsuwe. Create your own supercomputer with
Java. http://www.javaworld.com/javaworld/jw-01-
1997/jw-01-dampp.html, 1997.


