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One Microsoft Way University of Rochester
Redmond, WA 98052 Rochester, NY 14627
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Abstract and locking, cross-standard middleware inter-

Binary standard object models, such as Microsoft'soperability, automatic distributed partitioning, security
Component Object Model (COM) enable the developenforcement, clustering and replication, just-in-time
ment of not just reusable components, but also an irctivation, and transparent component aggregation.
credible variety of useful component services through In this paper, we describe an interception system
run-time interception of binary standard interfaces.proven on over 300 COM binary components, 700
Interception of binary components can be used fothiqgue COM interfaces, and 2 million lines of code [5].
conformance testing, debugging, profiling, transactionWe have extensively tested our COM interception sys-
management, serialization and locking, cross-standardem on three major commercial-grade applications: the
middleware interoperability, automatic distributed MSDN Corporate Benefits Sample [12], Microsoft
partitioning, security enforcement, clustering, just-in- PhotoDraw 2000 [15], and the Octarine word-processor
time activation, and transparent component aggregafrom the Microsoft Research COM Applications Group.
tion. The interception system serves as the foundation for the

We describe the implementation of an interceptiorfooign Automatic Distributed Partitioning System
and instrumentation system tested on over 300 CONADPS) [7] [8], the first ADPS to automatically parti-
binary components, 700 unique COM interfaces, 2 miltion and distribute binary applications.
lion lines of code, and on 3 major commercial-grade In the next section, we describe the fundamental
applications including Microsoft PhotoDraw 2000. features of COM as they relate to the interception and
The described system serves as the foundation for t@gstrumentation of COM applications. Sections 3 and 4
Coign Automatic Distributed Partitioning System €Xplain and evaluate our mechanisms for intercepting
(ADPS), the first ADPS to automatically partition and object instantiation requests and inter-object communi-
distribute binary applications. cation respectively. We describe related work in Sec-

While the techniques described in this paper werdion 5. In Section 6, we present our conclusions and
developed specifically for COM, they have relevance t@ropose future work.
other object models with binary standards, such as in-
dividual CORBA implementations. 2. COM Fundamentals

1. Introduction COM is a standard for creating and connecting com-
ponents. A COM component is the binary template

Widespread adoption of Microsoft's Componentfrom which a COM object is instantiated. Due to

Object Model (COM) [16, 25] standard has produced“OM's binary standard, programmers can easily build

an explosion in the availability of binary components,appIIcatlons from components, even components for

reusable pieces of software in binary form. It can bavhich they have no source code. COM's major fea-

argued that this popularity is driven largely by COM'stures include multiple interfaces per object, mappings

binary standard for component interoperability. for common programming languages, standard-
While binary compatibility is a great boon to the _mandat.ed binary compatibility, and location-transparent

market for commercial components, it also enables #vocation.

wide range of uniqgue component services through in- .

terception. Because the interfaces between COM conf»1. Polymorphic I nterfaces

ponents are well defined by the binary standard, a i L

component service can exploit the binary standard tg Al first-class communication in COM takes place

intercept inter-component communication and interposfough interfaces.  An interface is a strongly typed

itself between components. r_eference t.o a coIIe_chn of. _semantlcally re!ated func-
Interception of binary components can be used follonS- An interface is identified by a 128-bit globally

conformance testing, debugging, distributed communitinique identifier (GUID). - An explicit agreement be-

cation, profiling, transaction management, serializatioffWé€n two components to communicate through a



named interface contains an implicit contract of the
binary representation of the interface.

Microsoft Interface Definition Language (MIDL)

Figure 1 contains the definitions of two interfaces:
| Unknown and | st reamin the Microsoft Interface
Definition Language (MIDL). Syntactically, MIDL is
very similar to C++. To clarify the semantic features of
interfaces, MIDL attributes (enclosed in square brackets
[]) can be attached to any interface, member function,
or parameter. Attributes specify features such as the
data-flow direction of function arguments, the size of
dynamic arrays, and the scope of pointers. For exam-
ple, the [in, size_ is(cb)] attribute on the pb
argument of the Wi t e function in Figure 1 declares
that pb isan input array with cb elements.

[ uui d( 00000000- 0000- 0000- CO00- 000000000046) ]
i nterface | Unknown

HRESULT Querylnterface(
[in] REFIIDTriid,
[out,iid_is(riid)] void **ppQhj);
ULONG AddRef () ;
ULONG Rel ease();

b

[ uui d(b3c11b80- 9e7e- 11d1- b6a5- 006097b010e3) ]
interface I Stream: | Unknown
{
HRESULT Seek(
[in] LONG nPos);
HRESULT Read(
[out,size_is(ch)]
[in] LONG ch);
HRESULT Wi te(
[in,size_is(cb)]
[in] LONG ch);

BYTE *pb,

BYTE *pb,
b

Figurel. MIDL for Two Interfaces.

The MIDL definition of an interface describes its member
functions and their parameters in sufficient detail to support
| ocation-transparent invocation.

terface. Through run-time invocation @uery-
I nt erface, clients can determine the exact function-
ality supported by any object.

2.2. Common L anguage M appings

The MIDL compiler maps interface definitions into
formats usable by common programming languages.
Figure 2 contains the C++ abstract classes generated by
the MIDL compiler, for the interfaces in Figure 1.
MIDL has straightforward mappings into other com-
piled languages such as C and Java. In addition, the
MIDL compiler can store metadata in binary files called
type libraries. Many development tools can import
type libraries. Type libraries are well suited for script-
ing languages such as the Visual Basic Scripting Edi-
tion in Internet Explorer [11].

cl ass | Unknown

{
publi c:
virtual HRESULT Querylnterface(
REFIID riid,
void **ppOhj) = 0;
virtual ULONG AddRef() = 0;
virtual ULONG Rel ease() = O;
b
class I Stream: | Unknown
{
publi c:
virtual HRESULT Seek(
LONG nPos) = 0;
virtual HRESULT Read(
BYTE *pb,
LONG cb) = 0;
virtual HRESULT Wi te(
BYTE *pb,
LONG cbh) = 0;
b

Figure2. C++ Language Mapping.

The MIDL compiler maps a COM interface into an abstract
C++ class.

| Unknown

The | Unknown interface, listed in Figure 1, is spe-
cial. All COM objects must support | Unknown. Each
COM interface must include the three member func-
tions from | Unknown, namdy: Queryl nterface,
AddRef , and Rel ease. AddRef and Rel ease are
reference-counting functions for lifetime management.

When an object’s reference count goes to zero, the o

ject is responsible for freeing itself from memory.
COM objects can support multiple interfaces.

ents dynamically bind to a new interface by calling
Queryl nterface takes as

input the GUID of the interface to which the client
would like to bind and returns a pointer to the new in

Queryl nterface.

2.3. Binary Compatibility

In addition to language mappings, COM specifies a
platform-standard binary mapping for interfaces. The
binary format for a COM interface is similar to the
common format of a C+wirtual function table (VTBL,

ronounced “V-Table”). All references to interfaces
re stored as interface pointers (an indirect pointer to a
virtual function table). Figure 3 shows the binary map-
ping of thel St r eaminterface.

Each object is responsible for allocating and releas-
ing the memory occupied by its interfaces. Quite often,
objects place per-instance interface data immediately



following the interface virtual-function-table pointer. because COM proxies and stubs are only used when
With the exception of the virtual function table and the  inter-object communication crosses process boundaries.
pointer to the virtua function table, the object memory | ,_Pr ocess Communication

areais opaque to the client.

The standardized binary mapping enforces COM's For best performance, compo.nen_ts rgside in the (.:"'
language neutrality. Any language that can call afunc(-amS addre_ss space. An apphcatlon_ invokes an In-
tion through a pointer can use COM objects. Any lanProcess object directly through the !nterface virtual
uage that can exoort a function pointer .can Creatfeunctlon table. In-process communication has the same
%OI\%I objects P P cost as a C++ virtual function call because it uses nei-
COM com.ponents are distributed either in applica-the.r interface Proxies nor Stubs. The primary drawback
tion executables (.EXE files) or dynamic link librar- of in-process objects is that they share the same protec-

; tion domain as the application. The application cannot
ies (DLLs). . -

protect itself from erroneous or malicious resource ac-
- -Client __ Component_____________. cess by the object.
| 1 Interfaces  Virtual Code |  Cross-Process Communication
 IET=T Ny F‘;f;‘;'gn oueryintarace! To provide the application with security, objects can
i A P SouyaTa Vel AddReF i be located in another operating-system process. The
: Data TTAGIRT Prad Release application communicates with cross-process objects
! o PRalcase ad : through interface proxies and stubs. The application
1 ! 1 Seek 1 . . . . .
! o pfSeck —P e ! invokes the object through an indirect call on an inter-
! o prRead —» : face virtual function table. In this case, however, the
Vo prwite P Wite virtual function table belongs to the interface proxy.

------------------------------------ The proxy marshals function arguments into a buffer
Figure 3. Binary Interface Mapping. and transfers execution to the object's address space
COM defines a standard binary mapping for interfaces. The ~ Where the interface stub unmarshals the arguments and
format is similar to the common representation of a C++ pure  calls the object through the interface virtual function
abstract virtual function table. table in the target address space. Marshaling and un-

marshaling are completely transparent to both applica-
tion and component.

2.4. Location Transparency Cross-M achine Communication

Binarv compatibility is important because it facili- Invocation of distributed objects is very similar to

tates m?; Iocar:ion traﬁspareﬁcy A client can Commui_nvocation of cross-process objects. Cross-machine
ricae i s COM object n the same process (071N Lses e same ieace proes
process), in a different proceseross-process), or on an P : P y

entirely different machinecfoss-machine). The loca- difference is that once the function arguments have
. . . been marshaled, COM sends the serialized message to
tion of the COM object is completely transparent to

both client and component because in each case invthe destination machine using the DCOM protocol [3],

. . . g'superset of the Open Group’s Distributed Computing
;:iigclr;btlaekes place through an interface’s virtual funC'Environment Remote Procedure Call (DCE RPC) pro-

tocol [4].
Inter face Proxies and Stubs

Location transparency is achieved through proxies, I nter ception of Object Instantiations

and stubs generated by the MIDL compilelProxies

marshal function arguments into a single message that com objects are dynamic objects. Instantiated

can be transported between address spaces or betweg¥ing an application’s execution, objects communicate

machines. Stubs unmarshal messages into functionith the application and each other through dynami-

calls. Interface proxies and stubs copy data structurggly bound interfaces. An object frees itself from

with deep-copy semantics. In theory, proxies and stub;emory after all references to it have been released by

come in pairs—the first for marshaling and the seconghe application and other objects.

for unmarshaling. In practice, COM generally com-  appjications instantiate COM objects by calling API

bines code for the proxy and stub for a specific interfynctions exported from a user-mode COM DLL. Ap-

face into a single reusable binary. COM proxies angjications bind to the COM DLL either statically or

stubs are similar in purpose to CORBA [19, 23] stubgjynamically.

and skeletons. However, their implementations vary " static binding to a DLL is very similar to the use of
shared libraries in most UNIX systems. Static binding



is performed in two stages. At link time, the linker em-
beds in the application binary the name of the DLL, a
list of all imported functions, and an indirect jump table
with one entry per imported function. At load time, the

Figure 5 enumerates the techniques available for in-
tercepting functions; namely: source-code call replace-
ment, binary call replacement, DLL redirection, DLL
replacement, breakpoint trapping, and inline redirec-

loader maps all imported DLLs into the application’stion.

address space and patches the indirect jump table en
tries to point to the correct entry points in the DLL im-

age.

Dynamic binding occurs entirely at run time.

DLL is loaded into the application’s address space by
calling the LoadLi brary Win32 function.
loading, the application looks for procedures within the
DLL using theGet Pr ocAddr ess function.
trast to static binding, in which all calls use an indirect
jump table,Get Pr ocAddr ess returns a direct pointer

to the entry point of the named function.

After

In con-
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Figure4. Object I nstantiation Functions.

COM supports approximately 50 functions capable of creat-
ing ingtantiation a new object. However, most instantiations
request use either CoOr eat el nstance or CoCr eat e-

| nst anceEx.

| Application Source g
CoCr eat e(“(.Zl si d) g XCoCreate (Clsid)
.. Application Binary§

push dsid
call [XCoCreat e]
CoCr eat e: CoCr eat e:
word _ COM CoCreat e p- Word X XCoCreate

COM DLL Bi nary

push O sid
call [CoCreate]

COM DLL Bi nary
Repl acenent

. COM CoCr eat e:

— call XCoCreate
push ebp
) nov ebp, esp

. COM_CoCr eat e:
Y trap
: COM _CoCr eat e: T 2 oV ebp, esp

push ebp = MR -CEITTIoooooooooooooo Z
mov  ebp, esp i COM CoCreate:
= jnp _X XCoGreate

nov ebp, esp

. 0OM CoCr eat e:
push ebp
nov ebp, esp

COM DLL Bi nary

Figureb5. Intercepting Instantiation Calls.

Object instantiation calls can be intercepted by 1) cal re-
placement in the application source code; 2) call replacement
in the application binary; 3) DLL redirection; 4) DLL re-
placement; 5) trapping in the COM DLL; and 6) inline redi-
rectioninthe COM DLL.

The COM DLL exports approximately 50 functions
capable of instantiating new objects; these are listed
Figure 4. With few exceptions, applications instantiate™"

objects exclusively through tH@oCr eat el nst ance
function or its successoiCoCr eat el nst anceEx.
From the instrumentation perspective there is little difplaced with calls to the instrumentation by modifying

ference among the COM API functions.

Call replacement in application sour ce code.

Calls to the COM instantiation functions can be re-
placed with cals to the instrumentation by modifying
application source code. The mgor drawback of this

iHachnique isthat it requires access to application source

de.

Call replacement in application binary code.
Calls to the COM instantiation functions can be re-

For brevity,application binaries. While this technique does not

we useCoCr eat e as a placeholder for any function require source code, replacement in the application bi-
that instantiates new COM objects.

3.1. Alternativesfor Instantiation I nterception

nary does require the ability to identify all applicable
call gtes. Tofacilitate identification of all call sites, the
application must be linked with substantial symbolic
information.

To intercept all object instantiations, instrumentation
should be called at the entry and exit of each object

instantiation function.



DLL redirection.

The import entries for COM APIs in the application
can be modified to point to another library. Redirection
to another DLL can be achieved either by replacing the
name of the COM DLL in the import table before load
time or by replacing the function addresses in the indi-
rect jump table after load. Unfortunately, redirecting to
another DLL through either of the import tables fails to
intercept dynamic calls usng LoadLi brary and
Get Pr ocAddr ess.

DLL replacement.

The only way to guarantee interception of a specific
DLL function is to insert the interception mechanism
into the function code. The most obvious method is to
replace the COM DLL with a new version containing
instrumentation. DLL replacement requires source ac-
cess to the COM DLL library. It also unnecessarily
penalizes all applications using the COM DLL, whether
they use the additional functionality or not.

Breakpoint trapping of the COM DLL.

Rather than replace the DLL, the interception
mechanism can be inserted into the image of the COM
DLL after it has been loaded into the application ad-
dress space. At run time, the instrumentation system
can insert a breakpoint trap at the start of each target
instantiation function. When execution reaches the
function entry point, a debugging exception is thrown
by the trap and caught by the instrumentation system.
The major drawback to breakpoint trapping is that de-
bugging exceptions suspend all application threads. In
addition, the debug exception must be caught in a sec-
ond operating-system process. Interception via break-
point trapping has a high performance penalty.

Inlineredirection of the COM DLL.

The most favorable method for intercepting DLL
functionsisto inline the redirection call. At load time,
the firg few instructions of the target ingtantiation
function are replaced with a jJump instruction to a de-
tour function in the instrumentation. Replacing the first
few instructions is usually a trivia operation as these
instructions are normaly part of the function prolog
generated by a compiler and not the targets of any
branches. The replaced instructions are used to create a
trampoline.  When the modified target function is in-
voked, the jump instruction transfers execution to the
detour function in the instrumentation. The detour
function passes control to the remainder of the target
function by invoking the trampoline.

3.2. Evaluation of Instantiation I nter ception
Our ingtrumentation system usesinline indirection to

intercept object instantiation calls. At load time, our
instrumentation replaces the first few instructions of the

target function with a jump to the instrumentation de-

tour function. Pages for code sections are mapped into

a processes’ address space using copy-on-write seman-
tics. Calls toVirtual Protect and Fl ush-

I nstructi onCache enable modification of code
pages at run time. Instructions removed from the target
function are placed in a statically allocated trampoline
routine. As shown in Figure 6, the trampoline allows
the detour function to invoke the target function without
interception.

COMDLL Binary i i; COMDLL Binary
: COM_CoCr eate: : COM_CoCr eate:
push ebp =g | np _Coi gn_CoCreate
nov ebp, esp : COM_CoCr eat e+5:
push ebx push edi
push esi .
push edi
Tranpol i ne ., Tranpoline
. Trp_CoCreate: . Trp_CoCreate:
jmp _COM CoCreate push ebp
-~ OV ebp, esp
6 push ebx
push esi
jnmp _COM CoCreate+h

Figure®6. Inline Redirection.

The first few ingructions of the target APl function are
moved to the trampoline and replaced with a jump to the in-
terception system. The trampoline effectively invokes the
API function without interception. On the Intel x86 architec-
ture, ajump instruction occupies five bytes.

: :
. o]
Function =
g J2
VS. T Q
. . >, B
Interception Technique S 18]
g 3
L
Direct Call 0.11us 14.84us
DLL Redirection 0.14us 15.19us
DLL Replacement 0.14us 15.19us
Breakpoint Trap 229.56us | 265.85us
Inline Redirection 0.15us 15.19us

Tablel. Interception Times.

Listed are the times for intercepting either an empty function
or CoCr eat el nst ance ona200MHz Pentium PC.




Although inline indirection is complicated by the
variable-length instruction set of the Intel x86 archi-
tecture, its low run-time cost and versatility more than
offset the development penalty. Inline redirection of
the CoCr eat el nst ance function has less than a 3%
overhead, which is more than an order of magnitude
smaller than the penalty for breakpoint trapping. Table
1 liststhe average invocation time of the target function
within aloop consisting of 10,000 iterations. The invo-
cation times include the cogt of redirection, but not any
additional instrumentation. Unlike DLL redirection,
inline redirection correctly intercepts both satically and
dynamically bound invocations. Finally, inline redirec-
tion is much more flexible than DLL redirection or ap-
plication code modification. Inline redirection of any
API function can be selectively enabled for each proc-
ess individualy at load time based on the needs of the
instrumentation.

To apply inline redirection, our instrumentation
system must be loaded into the application’s addre
space before the application executes. The curre
system is packaged as a DLL and post-linked to th

application binary with a binary rewriter. Once loaded :

sense, replacing the interface pointer is functionally
similar to using remote interface proxies and stubs. For
remote marshaling, COM replaces a remote interface
pointer with a local interface pointer to an interface
proxy.

Replace the interface virtual function table pointer.

The runtime can replace the virtual function table
pointer in the interface with a pointer to an instrumen-
tation-supplied virtual function table. The instrumenta-
tion can forward the invocation to the object by keeping
a private copy of the original virtual function table
pointer.

Replace function pointers in the interface virtual
function table.

Rather than intercept the entire interface as a whole, the
interception system can replace each function pointer in
the virtual function table individually.

I nter cept object code.

tinaIIy, the instrumentation system can intercept mem-

er-function calls at the actual entry point of the func-
on using inline redirection.

into the application address space, instrumentation
inlined into system DLL images. Mechanisms for in-

serting the interception system into an application’'s
address space are described fully in a paper on our D(;:‘—/

tours package [6].
4. Intercepting Inter-Object Calls

The bulk the interception system’s functionality is
devoted to identifying interfaces, understanding thei

i$St ream *pl St ream

C++ Synt ax
pl St r eam >Seek( nPos) ;

C Synt ax
pl St r eam >pVt bl - >pf Seek(pl Stream nPos);

Figure7. Invoking an Interface Function.

Clients invoke interface member functions through the inter-
face pointer. The first parameter to the function (hidden in
IC++) is the t hi s” pointer to the interface.

relationships to each other, and quantifying the com-

munication through them. This section describes how

our system intercepts interface calls.
Invoking an interface member function is similar to

invoking a C++ member function. The first argument

to any interface member function is thé ht s”

4.2. COM Programming Idioms

The choice of an appropriate technique for inter-
cepting member functions is constrained by COM's

pointer, the pointer to the interface. Figure 7 lists thayinary standard for object interoperability and common
C++ and C syntax to invoke an interface member funccom programming idioms. Our interception system

tion.

4.1. Alternatives for Invocation Interception

There are four techniques, described below, avail

able to intercept member function invocations:
Replace theinterface pointer.

attempts to deduce the identity of the each called object,
the static type of the called interface, the identity of the
called member function, and the static types of all
function parameters. In addition, our interception de-
grades gracefully. Even if not all of the needed infor-
mation can be determined, the interception system
continues to function correctly.

Rather than return the object’s interface pointer, the By design, the COM binary standard restricts the
interception system can return a pointer to an interfacénplementation of interfaces and objects to the degree
of its own making. When the client attempts to invokenecessary to insure interoperability. COM places four
an interface member function, it will invoke the instru-specific restrictions on interface design to insure object
mentation, not the object. After taking appropriateinteroperability.  First, a client accesses an object
steps, the instrumentation “forwards” the request to théwough its interface pointers. Second, the first item
object by directly invoking the object interface. In onepointed to by an interface pointer must be a pointer to a



virtual function table. Third, the first three entries of  interfaces use a common pair &ddRef and
the virtua function table must point to the Query- Rel ease functions to maintain the object reference
Interface, AddRef and Rel ease functions for  count.
theinterface. Finally, if aclient intendsto use an inter- M ultiple-I nstance and Tear -off I nterfaces
face, it must insure that the interface’s reference count . . . .
has been incremented Sometlmgs, an object must support multiple copies
S of a single interface.Multiple-instance interfaces are
As long as an object programmer obeys the fouE)ften used for iteration. A new instance of the interface
rules of the COM binary standard, he or she is com- ; o .
is allocated for each client. Multiple-instance interfaces

pletely free to make any other implementation ch0|cesare typically implemented usingtear-off interface. A

For example, the component programmer is free t%ear—off interface is allocated as a separate memory
choose any appropriate memory layout for object an lock. The tear-off interface contains the interface’s

per-instance interface data. This lack of implementa;: . . i e
tion constraint is not an accident. The original desiggyTBL pointer, an interface-specific reference count, a

ers of COM were convinced that no cmepointertothe object’s primary memory block, and any

implementation (even of something as universal as thﬁf;?fgiifp; Ca'l?.cogaiﬁérflgczgdglrgnoﬁe?nggf_:gsiﬁn?;
Queryl nt er f ace function) would be suitable for all ' P

users. Instead, they attempted to create a specificati(';ﬂent rarely accessed interfaces when object memory

that enabled binary interoperability while preserving allfc')i? Lnt::; ?grrglsl':'nl?liedéi(r:.tzr nggbtgitcizztt;r]:;g?set)g;a
other degrees of freedom. y P P )

Specification freedom breeds implementation diver_expenswe).

sity. This diversity is manifest in the number of com-Universal Delegators

mon programming idioms employed by COM  Objects commonly use a technique caliiebgation
component developers. These idioms are described export interfaces from another object to a client.
here in sufficient detail to highlight the constraints theyDelegation is often used when one object aggregates
place on the implementation of a COM interception andervices from several other objects into a single entity.
instrumentation system. Each of these idioms has brdrhe aggregating object exports its own interfaces,
ken at least one other COM interception system or prewhich delegate their implementation to the aggregated

liminary versions of our interception system. objects. The delegating interface calls the aggregated
et —— interfa_ce. This implementation is interface specific,

pooTmotL T L IR code intensive, and requires an extra procedure call

' i tlnstanceData  Virtual Function Code | during invocation. The implementation is code inten-

1[TOnknown * ey abl .

LMo P pinknownvtn | T oDIes Juayiterace | ! sive because delegating code must be written for each

EI'Daaﬂnk* > p:ga‘?i\"/‘:;’l‘b' \i‘“““:“‘“““ﬂl /oo i interface type. The extra procedure call becomes par-

‘[Pess__ X ;;r';mvml | Lo piQuayineiae ¥ /leocoe 5 ticularly important if the member function has a large

ECT g = rir E:g:f’e’:; / ! number of arguments or multiple delegators are nested

i gmm H e L3 otner i through Ia_yers of a_lggregation. o

! ' i pata... L oRead [y Functions || An obvious optimization and generalization of dele-

: o L prwrite > ! gation is theuniversal delegator. A universal delegator

1 1 1

---------- S is a type-independent, re-usable delegator. The data
Figure8. Smple Object Layout. structure for a universal delegator consists of a VTBL

The object instance is allocated as a single memory block. ~ Pointer, a reference count, a pointer to the aggregated
The block contains one VTBL pointer for each supported  interface, and a pointer to the aggregating object. Upon

interface, an instance reference count, and other object-  invocation, a member function in the universal delega-
specific data. All interfaces share common implementations  tor replaces thet‘hi s” pointer on the argument stack
of Queryl nterface, AddRef , and Rel ease. with the pointer to the delegated interface and jumps

directly to the entry point of the appropriate member
function in the aggregated interface. The universal
delegator is “universal’ because its member functions
need know nothing about the type of interface to which
they are delegating; they reuse the invoking call frame.
Implemented in a manner similar to tear-off interfaces,
universal delegators are instantiated on demand, one per
delegated interface with a common VTBL shared
8mong all instances.

Simple M ultiple-Interface Objects

Most objects support at most roughly a dozen inter-
faces with no duplicates. It is common practice to lay
out these smple objects in a memory block containing
one VTBL pointer per interface, a reference count, and
internal object variables; see Figure 8. Within the ob-
ject's member functions, a constant value is added t
the ‘t hi s” pointer to find the start of the memory
block and to access object variables. All of the object



Explicit VTBL Pointer Comparison. tral to correctly identifying the object that owns an in-

Rather than using explicit constant offsets some  terface.
COM components implemented in C locate the start of .
an object's main memory block by comparing VTBL 4-4. The Interface Ownership Problem
interface pointers. For example, the

| Stream : Seek member function of the object in In addition to intercepting interface calls, the inter-
Figure 8 starts with its “this’ pointer pointing to ception system attempts to identify which object owns

pl StreanmMt bl . The object locates the start of its &7 interface. A major breakthrough in the development
memory structure by decrementing thenis” pointer of our interception system was the discovery of heuris-

until it points to a VTBL pointer equal to the known tics to find an interface’s owning object. .
location of the VTBL forl Unknown. This calculation The interface ownership problem is complicated be-

will produce erroneous results if an interception systen¢@use to COM, to the application, and to other objects,
has replaced the VTBL pointer. an object is visible only as a loosely coupled set of in-

- . . . terfaces. The object can be identified only through one
Explicit Function Pointer Comparison. of its interfaces; it has no explicit object identity.

In a manner similar to VTBL pointer comparison, COM supports the concept of an object identity
some components perform calculations assuming thatrough thel Unknown interface. As mentioned in
function pointers in the VTBL will have known values. Chapter 2, every interface must inherent from and im-
These calculations break if the interception system hasiement the three member functions Idfnknown,

replaced a VTBL function pointer. namely: Querylnterface, AddRef, and Re-
. | ease. Through theQueryl nt er f ace function, a
4.3. Interface Wrapping client can query for any interface supported by the ob-

) ) ) ) ) ect. Every object must support th&nknown inter-
Our instrumentation system intercepts invocation O%ace. An object'd Unknown interface pointeis the
interface member functions by replacing the interfacq,bjectvsCOM identity. The COM specification states
po!nter given to t_he_ object_’s client with an _interfacethat a client caling Querylnterface-
pointer to a specialized universal delegator, ittier- (11D_I Unknown) on any interface must always re-

face wrapper. The implementation of interface wrap- cejve hack the sameUnknown interface pointer (the
pers was chosen after evaluating the functionality of;me com identity).
possible alternatives and testing their performance nfortunately, an object need not provide the same
against a suite of object-based applications. . COM identity (the samé Unknown interface pointer)
For brevity, we often refer to the process of creatingq gifferent clients. An object that exports one COM
an |nd|v.|dual mterface wrapper anq replacing the Inteligentity to one client and another COM identity to a
face pointer with a pointer to an interface wrapper agecond client is said to havesait identity. Split iden-
wrapping the interface. We also refer to interfaces asjties are especially common in applications in which
beingwrapped or unwrapped. A wrapped interface is piacts are composed together through a technique
one to which clients receive a pomter to t.he mtgrfaceknown as aggregation. In aggregation, multiple objects
wrapper. An unyvrapped_ interface is one either W'thoubperate as a single unit by exporting a common
a wrapper or with the interface wrapper removed t(bJefW nt erf ace function to all clients. Due to

yield the original object interface. ~_split identities, COM objects have no system-wide,
Interface wrapping provides an easy way to |dent|fyumque identifier.

an interface and a ready location to store informatioq_ . .
about the interface: in the per-instance interface wrap! e ©Obvious Solution
per. Unlike interface wrapping, inline redirection must A client can query an interface for its owning
store per-instance data in an external dictionary. Acl Unknown interface (its COM identity). In the most
cess to the instance-data dictionary is made difficulbvious implementation, the interception system could
because member functions are often re-used by multipl@aintain a list of known COM identities for each ob-
interfaces of dissimilar type. This is definitely the casdect. The runtime could identify the owning object by
for universal delegation, but common even for less exduerying an interface for its COM identity and com-
otic coding techniques. As a rule, almost all objectaring it to a dictionary of known identities.
reuse the same implementationQfer y! nt er f ace, In practice, callingQueryl nterface to identify
AddRef , andRel ease for multiple interfaces. the owning object fails becaug®ier yl nt er f ace is
Interface wrapping is robust, does not break applicatot free of side effects.Queryl nterface incre-
tion code, and is extremely efficient. Finally, as wements the reference count of the returned interface.
shall see in the next section, interface wrapping is cerf=alling Rel ease on the returned interface would dec-
rement its reference count. However, fRel ease
function also has side effectdRel ease instructs the



object to check if its reference count has gone to zero If at some point the person finds that she has passed
and to free itself from memory in the affirmative. into a room where the door is already colored, then she
There are afew identification scenarios under whichthe  knows the identity of the room (by the color on the
object’s reference count does in fact go to zero. In thdoor). She looks for any new doors in the room, paints
worse case scenario, attempting to identify an interthem the appropriate color, and finally leaves through
face’s owner would produce the unwanted side effect abne of the doors to continue her search.

instructing the object to remove itself from memory!  1he solution to the I nter face Owner ship Problem

Sour ces of Interface Pointers From the analogy, the solution to the interface own-
To find a correct solution to the interface ownershipership problem is quite simple. Each object is assigned
problem, one must understand how a client receives am unique identifier. Each thread holds in a temporary
interface pointer. It is also important to understandrariable the identity of the object in which it is cur-
what information is available about the interface. Arently executing. Any newly found interfaces are in-
client can receive an object interface pointer in one oftrumented with an interface wrapper. The current
four ways: from one of the COM API object instantia- object identity is recorded in the interface wrapper as
tion functions; by callingQueryl nterface on an the owning object. Finding the doors in a room is
interface to which it already holds a pointer; as an outanalogous to examining interface pointers passed as
put parameter from one of the member functions of aparameters to member functions. When execution exits
interface to which it already holds a pointer; or as aran object, any unwrapped interface pointers passed as
input parameter on one of its own member functionsparameters are wrapped and given the identity of their
Recall that our system intercepts all COM API func-originating object. By induction, if an interface pointer
tions for object instantiation. At the time of instantia-is not already wrapped, then it must belong to the cur-
tion, the interception system wraps the interface andent object.
returns to the caller a pointer to the interface wrapper.  The most important invariant for solving the inter-

An Analogy for the I nterface Owner ship Problem face ownership problem is that at any time the inter-

The following analogy is helpful for understandin ception system must know exactly which object is
. 9 gy P . 9 executing. Stored in a thread-local variable, the current
the interface ownership problem. A person finds her-

. o ) o - .~ object identifier is updated as execution crosses through
_self na Iar_ge muItl—dlmensmnaI. building. The_bundmg interface wrappers. The new object identifier is pushed
'osng';/c'g?:]j tl)ng)ng?r?:?/ ;_c;]oemservg/g?] igoz:srssi Iﬁzg'?ﬁe ];g)g(o to a local stack on entry to an interface. On exit from
identifying all of the.roomspin the buiIdir? and deter—g interface wrapper (after executing the object’s code),

o 9 . 9 the object identifier is popped from the top of the stack.
mining which doors lead to which rooms. Unfortu-

nately, all of the walls in the building are invisible At any time, the Interception system can examine the
Additic,)nally from time to time new doors are added t.ot.Op values of the |dgnt|f|er stack to (_jeterm|ne the iden-
N . tity of the current object and any calling objects.

f[he building and old doors are removed from the build- There is one minor caveat in implementing the solu-

IngMapping the analogy to the interface ownershiption to the interface ownership problem. While.clients
problem; the building is the application, the rooms ar should only havc_a access to interfaces thrpugh interface
the obje<':ts and the doors are the interféces (?/vrappers, an object s_hould never see an interface wrap-
We deséribe the solution first in terms of.the invisi-P! msteaq O.f one of its own mterf_a ces because_ Fhe 0b-
ect uses its interfaces to access instance-specific data.

glsng;gm anregglgﬁ] thlenn tﬁ;’ ;tn;;c))phestht: ;2;; tilgael;;afo n object could receive an interface wrapper to one of
; P D T 9y, . its own interfaces if a client passes an interface pointer
assign each room a different color and to paint th

) ack to the owning object as an input parameter on an-
doors of that room as they are discovered. The PErSQfher call. The solution is simply to unwrap an inter-

starts her search in one room. She assigns the room.a. pointer whenever the pointer is passed as a
color—say red. Feeling her way around the room, sh

paints one side of any door she can find without Ieavin§ arameter to its owning object.

the room. The door must belong to the room becaus$5 Acquiring Static I nterface Metadata
she didn't pass through a door to get to it. After paint-

ing all of the doors, she passes through one of the doors |nterface wrapping requires static metadata about
into & new room. She assigns the new room a colorpterfaces. The interface wrapper must be able to iden-

say blue. She repeats the door-painting algorithm fofity o)l interface pointers passed as parameters to an
all doors in the blue room. She then passes through of&iarface member function. There are a number of

of the doors and begins the process again. The pers@grces for acquiring static interface metadata. Possible
repeats the process, passing from one room to anothergqrces include the MIDL description of an interface,

COM type libraries, and interface proxies and stubs.



Acquiring static interface metadata from the MIDL
description of an interface requires static analysis tools
to parse and extract the appropriate metadata from the
MIDL source code. In essence, it needs the MIDL
compiler. ldedly, interface static metadata should be
available to the interface wrapping code in a compact
binary form.

Another alternative is to acquire static interface
metadata from the COM type libraries. COM type li-
braries allow access to COM objects from interpreters
for scripting languages, such as JavaScript [18] or Vis-
ual Basc [13]. While compact and readily accessible,
type libraries describe only a subset of possible COM
interfaces. Interfaces described in type libraries cannot
have multiple output parameters. In addition, the meta-
data in type libraries does not contain sufficient infor-
mation to determine the size of all possible dynamic
array parameters.

Static interface metadata is also contained in the in-
terface proxies and stubs. MIDL-generated proxies and
stubs contain marshaling metadata encoded in strings of
marshaling operators (called MOP strings). Static inter-
face metadata can be acquired easily by interpreting the
MOP strings.  Unfortunately, the MOP grings are not
publicly documented. Through an extensive process of
trial and error involving more than 600 interfaces, at the
Univerdty of Rochester, we were able to determine the
meanings of all MOP codes emitted by the MIDL com-
piler.

Our interception system contains a MOP interpreter
and a MOP precompiler. A heavyweight, more accu-
rate interception subsystem uses our homegrown MOP
interpreter. A lightweight interception subsystem uses
the MOP precompiler to smplify the MOP strings (re-
moving full marshaling information) before application
execution.

The MOP precompiler uses dead-code elimination
and constant folding to produce an optimized metadata
representation. The simplified metadata describes all
interface pointers passed as interface parameters, but
does not contain information to calculate parameter
sizes or fully walk pointer-rich arguments. Processed
by a secondary interpreter, the simplified metadata al-
lows the lightweight runtime to wrap interfaces in a
fraction of the time required with full MOP strings.

While other COM instrumentation systems do use
the MOP strings to acquire static interface metadata,
ours is the first system to exploit a precompiler to opti-
mize parameter access

The interception sysem acquires MOP gtrings di-
rectly from interface proxies and stubs. However, in
some cases, components are distributed with MIDL
source code, but without interface proxies and stubs. In
those cases, the programmer can easily create interface
proxies and stubs from the IDL sources with the MIDL
compiler. OLE ships with about 250 interfaces without

MORP strings. We were able to create interface proxies
and stubs with the appropriate MOP string in under one
hour usng MIDL files from the OLE distribution.

4.6. Coping With Undocumented Interfaces

A final difficulty in interface wrapping is coping
with undocumented interfaces, those interfaces without
static metadata. While al documented COM interfaces
should have static metadata, we have found cases where
components from the same vendor will use an undocu-
mented interface to communi cate with each other.

When a function call on a documented interface is
intercepted, the interface wrapper processes the in-
coming function parameters, creates a new stack frame,
and calls the object interface. Upon return from the
object’s interface, the interface wrapper processes the
outgoing function parameters and returns execution to
the client. Information about the number of parameters
passed to the member function is used to create the new
stack frame for calling the object interface. For docu-
mented interfaces, the size of the new stack frame can
easily be determined from the marshaling byte codes.

When intercepting an undocumented interface, the
interface wrapper has no static information describing
the size of stack frame used to call the member func-
tion. The interface wrapper cannot create a stack frame
to call the object. It must reuse the existing stack
frame. In addition, the interface wrapper must intercept
execution return from the object in order to preserve the
interface wrapping invariants used to identify objects
and to determine interface ownership.

For function calls on undocumented interfaces, the
interface wrapper replaces the return address in the
stack frame with the address of a trampoline function.
The original return address and a copy of the stack
pointer are stored in thread-local temporary variables.
The interface wrapper transfers execution to the object
directly using a jump rather than a call instruction.

When the object finishes execution, it issues a return
instruction. Rather than return control to the caller—as
would have happened if the interface wrapper had not
replaced the return address in the stack frame—execu-
tion passes directly to the trampoline. As a fortuitous
benefit of COM'’s callee-popped calling convention, the
trampoline can calculate the function’s stack frame size
by comparing the current stack pointer with the copy
stored before invoking the object code. The trampoline
saves the frame size for future calls, and then returns
control to the client directly through a jump instruction
to the temporarily stored return address.

The return trampoline is used only for the first invo-
cation of a specific member function. Subsequent calls
to the same interface member function are forwarded
directly through the interface wrapper.



By using the return trampoline, the interception
system continues to function correctly even when con-
fronted with undocumented interfaces. To our knowl-
edge, our is the only COM instrumentation system to
tolerate undocumented interfaces.

4.7. Evaluation of Interface Wrapping

Detailed in Table 2, wrapping the interface by re-
placing the interface pointer adds a 36% overhead to
trivial function like I Unknown: : AddRef and just a
3% overhead to a function like | Stream : Read.
Processing the function arguments with interpreted
MOP strings adds on average about 20% additional
execution overhead while processing with precompiled
MOP strings adds under 3% additional overhead. Re-
placing the interface pointer is preferred over the alter-
native interception mechanisms because it does not
break under common COM programming idioms.

jo}
. x 3
Function 8 £
<
VS, £
v s | B
Interception Technique % 3
=
Direct Call 0.19us 15.73us
Replace Interface Pointer 0.26us 16.24us
Replace VTBL 0.26us 16.24us
Replace Function Pointer 0.26us 16.24us
Intercept Object Code 0.30us 16.29us

Table 2. Interface I nterception Times.

Listed are the times for intercepting the | Unknown: : -
AddRef and | St ream : Read (with 256 bytes of payload
data) on a 200MHz Pentium PC.

5. Related Work

Brown [1, 2] describes an interception system for
COM using Universal Delegators (UDs). To use

HookOle [10] is a general interception system for in-
strumenting COM applications. Like our system,
HookOle extracts interface metadata from MIDL MOP
strings. However, rather than replacing interface point-
ers, HookOLE replaces function pointers (in the VTBL)
and assumes that the same function will not be used to
implement multiple, dissimilarly typed interfaces.
HookOLE breaks whenever an object uses universal
delegation. HookOle provides no support for undocu-
mented interfaces. The ITest Spy Utility [14] uses
HookOle to provide a test harness for OLE DB compo-
nents.

Microsoft Transaction Server (MTS) [21] intercepts
inter-component communication to enforce transaction
boundaries and semantics. MTS wraps COM interfaces
in @ manner similar to our interception system. How-
ever, MTS supports only a subset of possible COM
interfaces and does not provide support for undocu-
mented interfaces.

COM+ [9] provides a generalized mechanism called,
interceptors, for intercepting communication between
COM+ objects. A significant redesign of COM, COM+
has complete control over the memory layout of all
objects. This control significantly reduces the com-
plexity of interception, but only works for newly de-
signed COM+ components.

COMERA [24] is an extensible remoting architec-
ture for distributed COM communication. COMERA
relies on existing DCOM [3] proxies and stubs to inter-
cept cross-process communication. Neither COMERA
nor DCOM support in-process interception.

Eternal [17] intercepts CORBA [IOP-related mes-
sages via the UnixX proc mechanism. Intercepted
messages are broadcast to objects replicated for fault
tolerance. Thé pr oc mechanism is limited to cross-
process communication and extremely expensive (re-
quiring at least two crossings of process boundaries).

Finally, a number of CORBA [23] vendors support
interception and filtering mechanisms. In general, in-
strumenting COM applications is more difficult than
equivalent CORBA applications. COM standardizes
interface format, but not object format. Each ORB
specifies parts of the CORBA object format related to
interception. So for example, the interface ownership
problem has no equivalent in CORBA, but the problem
of instrumenting binary CORBA application independ-
ent of ORB vendor remains unsolved.

Brown’s UD, the application programmer is entirely 6. Conclusonsand Future Work

responsible for wrapping COM interfaces.

The pro-
grammer must manually wrap each outgoing or in-

We have described a general-purpose interception

coming parameter with a special call to the UD codesystem for instrumenting COM components .and appli-
While providing robust support for applications such agations. Important features of our interception system

object aggregation, Brown’s UD is not suitable for bi-include

nary-only interception and instrumentation.

inline redirection of all COM object-
instantiation functions, interception of COM interfaces
through interface wrappers, accurate tracking of inter-



face ownership, and robust support for undocumented
interfaces.

Our interception system has been tested on over 300
COM bhinary components, 700 unique COM interfaces,
and 2 million lines of code. Using our interception
system, the Coign ADPS has automatically partitioned
and distributed three major applications including Mi-
crosoft PhotoDraw 2000.

While our interception syssem is COM specific, the
techniques described are relevant to CORBA ORBs.
For example, inline redirection and interface wrappers
could be used to intercept Portable Object Adapter
(POA) [20] functions and object invocations [22].
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