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Abstract

Texas is a highly portable, high-performance persistent
object store that can be used with conventional compil-
ers and operating systems, without the need for a prepro-
cessor or special operating system privileges. Texas uses
pointer swizzling at page fault timeas its primary ad-
dress translation mechanism, translating addresses from
a persistent format into conventional virtual addresses
for an entire page at a time as it is loaded into memory.

Existing classifications of persistent systems typically
focus only on address translation taxonomies based on
semantics that we consider to be confusing and ambigu-
ous. Instead, we contend that thegranularity choices
for design issues are much more important because they
facilitate classification of different systems in an unam-
biguous manner unlike the taxonomies based only on ad-
dress translation. We have identified five primary design
issues that we believe are relevant in this context. We
describe these design issues in detail and present a new
general classification for persistence based on the gran-
ularity choices for these issues.

Although the coarse granularity of pointer swizzling at
page fault time is efficient in most case, it is sometimes
desirable to use finer-grained techniques. We examine
different issues related to fine-grained address transla-
tion mechanisms, and discuss why these are not suitable
as general-purpose address translation techniques. In-
stead, we argue for a mixed-granularity approach where
a coarse-grained mechanism is used as the primary ad-
dress translation scheme, and a fine-grained approach is
used for specialized data structures that are less suitable
for the coarse-grained approach.

We have incorporated fine-grained address translation in
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yThis research was supported by grants from the IBM Corporation

and the National Science Foundation.

Texas using the C++smart pointeridiom, allowing pro-
grammers to choose the kind of pointer used for any
data member in a particular class definition. This ap-
proach maintains the important features of the system:
persistence that is orthogonal to type, high performance
with standard compilers and operating systems, suitabil-
ity for huge shared address spaces across heterogeneous
platforms, and the ability to optimize away pointer swiz-
zling costs when the persistent store is smaller than the
hardware-supported virtual address size.

1 Introduction

The Texas Persistent Store provides portable, high-
performance persistence for C++ [16, 8], using pointer
swizzling at page fault time [23, 8] to translate addresses
from persistent format into virtual memory addresses.
Texas is designed to implement and promoteorthogonal
persistence[1, 2]. Orthogonal persistent systems require
that any arbitrary object can be made persistent without
regard to its type; that is, persistence is viewed as the
storage class1 of an object rather than as a property of its
type. In other words, persistence is a property of individ-
ual objects, not of their classes or types, and any object
can be made persistent regardless of its type. In contrast,
class-basedpersistent systems require that any type or
class that may be instantiated to create persistent objects
mustinherit from a top-level abstract “persistence” class,
which defines theinterfacefor saving and restoring data
from a persistent object store.

Texas usespointer swizzling at page fault timeas the
primary address translation technique. When a page is
brought into memory, all pointers in the page are iden-
tified and translated (or swizzled) into raw virtual ad-

1A storage class describes how an object is stored. For example,
the storage class of an automatic variable in C or C++ corresponds to
the stack because the object is typically allocated on the data stack,
and its lifetime is bounded by the scope in which it was allocated.



dresses. If the corresponding referents are not already
in memory, virtual address space isreservedfor them
(using normal virtual memory protections), allowing for
the address translation to be completed successfully. As
the application dereferences pointers into non-resident
pages, these are intercepted (using virtual memory ac-
cess protection violations) and the data is loaded from
the persistent store, causing further pointer swizzling
and (potential) address space reservation for references
to other non-resident data. Since running programs only
see pointers in their normal hardware-supported format,
conventionally-compiled code can execute at full speed
without any special pointer format checks.

This page-wise address translation scheme has several
advantages. One is that it exploits spatial locality of ref-
erence, allowing a single virtual memory protection vio-
lation to trigger the translation of all persistent addresses
in a page. Another is that off-the-shelf compilers can
be used, exploiting virtual memory protections and trap
handling features available to normal user processes un-
der most modern operating systems.

However, as with any other scheme that exploits locality
of reference, it is possible for some programs to exhibit
access patterns that are unfavorable to a coarse-grained
scheme; for example, sparse access to large indexing
structures may unnecessarily reserve address space with
page-wise address translation than with more conven-
tional pointer-at-a-time strategies. It is desirable to get
the best of both worlds by combining coarse-grained and
fine-grained address translation in a single system.

In Texas, we currently support a fine-grained address
translation strategy by usingsmart pointers[17, 7, 12]
that can replace normal pointers where necessary. Such
pointers are ignored by the usual swizzling mechanism
when a page is loaded into memory; instead, each
pointer is individually translated as it is dereferenced us-
ing overloaded operator implementations. The mixed-
granularity approach works well, as shown by experi-
mental results gathered using the OO1 benchmark [4, 5].

The remainder of this paper is structured as follows.
In Section 2, we describe existing well-known address
translation taxonomies put forth by other researchers,
and motivate the need for a general classification of per-
sistence presented in Section 3. In Section 4, we discuss
issues about fine-grained address translation techniques,
and why we believe that a pure fine-grained approach is
not suitable for general use. We describe the implemen-
tation of mixed-granularity address translation in Texas
in Section 5 and the corresponding performance results
in Section 6, before wrapping up in Section 7.

2 Address Translation Taxonomies

Persistence has been an active research area for over
a decade and several taxonomies for pointer swizzling
techniques have been proposed [13, 9, 11, 19]. In this
section, we describe important details about each of
these taxonomies and highlight various similarities and
differences among them. We also use this as a basis to
provide motivation for a general classification of persis-
tent systems based on granularity issues, which we de-
scribe in Section 3.

2.1 Eager vs. Lazy Swizzling

Moss [13] describes one of the first studies of different
address translation approaches, and the associated termi-
nology developed for classifying these techniques. The
primary classification is in terms of “eager” and “lazy”
swizzling based onwhenthe address translation is per-
formed. Typically, eager swizzling schemes swizzle an
entire collection of objects together, where the size of
the collection is somehow bounded. That is, the need
to check pointer formats, and the associated overhead, is
avoided by performing aggressive swizzling. In contrast,
lazy swizzling schemes follow an incremental approach
by using dynamic checks for unswizzled objects. There
is no predetermined or bounded collection of objects that
must be swizzled together. Instead, the execution dy-
namically locates and swizzles new objects depending
on the access patterns of applications.

Other researchers [9, 11] have also used classifications
along similar lines in their own studies. However, we
consider this classification to be ambiguous and confus-
ing for general use. It does not clearly identify the funda-
mental issue—thegranularity of address translation—
that is important in this context. For example, consider
pointer swizzling at page fault time using this classifi-
cation. By definition, we swizzle all pointers in a vir-
tual memory page as it is loaded into memory and an
application is never allowed to “see” any untranslated
pointers. There is no need to explicitly check the format
of a pointer before using it, making pointer swizzling
at page fault time an eager swizzling scheme. On the
other hand, the basic approach is incremental in nature;
swizzling is performed one page at a time and only on
demand, making it a lazy swizzling scheme as per the
original definition.

In general, a scheme that is “lazy” at one granularity is
likely to be “eager” at another granularity. For example,



a page-wise swizzling mechanism is lazy at the granular-
ity of pages because it only swizzles one page at a time,
but eager at the granularity of objects because it swizzles
multiple objects—an entire page’s worth—at one time.
As such, we contend that the granularity at which ad-
dress translation is performed is the fundamental issue.

2.2 Node-Marking vs. Edge-Marking Schemes

Moss also describes another classification based on the
strategy used for distinguishing between resident and
non-resident data in the incremental approach. The per-
sistent heap and various data structures are viewed as
a directed graph, where data objects representnodes
and pointers between objects representedgesthat con-
nect the nodes. The address translation mechanisms are
then classified as eithernode-markingor edge-marking
schemes.

Figure 1 shows the basic structure for node-marking and
edge-marking schemes. As the name suggests,edge-
marking schemes mark the graph edges—the pointers
between objects—to indicate whether they have been
translated into local format and reference resident ob-
jects. In contrast,node-markingschemes guarantee that
all references in resident objects are always translated,
and the graph nodes themselves are marked to indicate
whether they are non-resident. In other words, edges
are guaranteed to be valid local references but the actual
referents may be non-resident. Note that the marking ap-
plies only to non-resident entities, that is, either to nodes
that are non-resident or to (untranslated) edges that ref-
erence non-resident nodes.

Figure 2 shows a classic implementation of a node-
marking scheme; non-resident nodes are “marked” as
such by usingproxyobjects, that is, pseudo-objects that
stand in for non-resident persistent objects and contain
their corresponding persistent identifiers. When an ob-
ject is loaded from the database, all references contained
in that object must be swizzled as per the definition of
node-marking—pointers to resident objects are swizzled
normally while pointers to non-resident objects are swiz-
zled into references to proxy objects. When the appli-
cation follows a reference to a proxy object, the system
loads the referent (F in the figure) from the database and
updates the proxy object to reference the newly-resident
object (Figure 2b). Alternatively, the proxy object may
be bypassed by overwriting the (old) reference to it with
a pointer to the newly-resident object; if there are no
other references to it, the proxy object may (eventually)
be reclaimed by the system. Note, however, that the

compiled code must still check for the presence of proxy
objects oneverypointer dereference because of the pos-
sibility that any pointermay reference a proxy object.
This adds continual checking overhead, even when all
pointers directly reference data objects without interven-
ing proxy objects.

Pointer swizzling at page fault time is essentially a node-
marking scheme, because swizzled pointersalwayscor-
respond to valid virtual memory addresses, while the
referents are distinguished on the basis of residency.
However, it differs in an important way from the nor-
mal approach—unlike the classic implementation, there
are noexplicit proxy objects for non-resident in pointer
swizzling at page fault time. Instead, access-protected
virtual address space pagesact as proxy objects.2 As
the application progresses and more data is loaded into
memory, the pages that were previously protected are
now unprotected because they contain valid data. The
major advantage of this approach is that there is no need
to reclaim proxy objects (because none exist); conse-
quently, there are no further indirections that must be
dealt with by compiled code, avoiding continual format
checks that would otherwise be necessary.

2.3 General Classification for Persistence

We have seen that existing classifications focus only on
address translation techniques. While address transla-
tion is an important issue, it constitutes only one of sev-
eral design issues that must be considered when imple-
menting persistence. We have identified a set of design
issues that we believe are fundamental to efficient im-
plementation of any persistence mechanism. We believe
that a specific combination of these issues can be used
to characterize any particular implementation. In effect,
we are proposing a general classification scheme based
ongranularities of fundamental design aspects.

A classification based on “eager” and “lazy” swizzling is
ambiguous, because it does not attack the problem at the
right level of abstraction. The real issue in the distinction
between lazy and eager swizzling is the size of the unit
of storage for which address translation is performed.
This can range from as small as a single reference (as
in Moss’s “pure lazy swizzling” approach) to a virtual
memory page (as in pointer swizzling at page fault time),
or even as large as an entire database (as in Moss’s “pure
eager swizzling” approach).3

2In fact, unmapped virtual address space pages can also serve the
same purpose.

3While crude, this is actually not uncommon. Traditionally, Lisp
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We believe that it is preferable to consider address trans-
lation (and other design issues) from the perspective of
a granularity choicerather than anad hocclassifica-
tion based on confusing translation semantics. In fact,
the ambiguity arises primarily because the classifica-
tions either do not clearly identify the granularity, or,
because they unnecessarily adhere to a single predeter-
mined granularity. Discussing all design issues in terms
of granularity choices provides a uniform framework for
identifying the consequence of each design issue on the
performance and flexibility of the resulting persistence
mechanism. This is preferable to ambiguous classifi-
cations such as eager and lazy swizzling because many
schemes are both “eager” and “lazy” at different scales,
along several dimensions.

and Smalltalk systems have supported the saving and restoring of en-
tire heap images in a “big inhale” relocation.

3 Granularity Choices for Persistence

We have identified a set of five design issues (including
address translation) that are relevant to the implementa-
tion of a persistence mechanism. Each of these issues
can be resolved by making a specific granularity choice
that is independent of the choice for any other issue. The
combination of granularity choices for the different is-
sues can then be used to characterize persistent systems.
The specific design issues that we describe in this sec-
tion are the granularities ofaddress translation, address
mapping, data fetching, data cachingand checkpoint-
ing. In the remainder of this section, we define and dis-
cuss each issue in detail4 and also present the rationale
behind the granularity choices for these issues in our im-
plementation of orthogonal persistence in Texas.

4Note that while we describe each issue individually, these granu-
larity choices are strongly related. It is possible (and quite likely) that
a system may make the same granularity choice on multiple issues for
various reasons.



To a first approximation, the basic unit for all granular-
ity choices in Texas is a virtual memory page, because
pointer swizzling at page fault time relies heavily on vir-
tual memory facilities, especially to trigger data transfer
and address translation. The choice of a virtual mem-
ory page as the basic granularity unit allows us to exploit
conventional virtual memories, and avoid expensive run-
time software checks in compiled code, taking advan-
tage of user-level memory protection facilities of most
modern operating systems. Sometimes, however, it is
necessary to change the granularity choice for a partic-
ular issue to accommodate the special needs of unusual
situations. It is possible to address these issues at a dif-
ferent granularity in a way that integrates gracefully into
the general framework of Texas.

3.1 Address Translation

The granularity ofaddress translationis the smallest
unit of storage within which all pointers are translated
from persistent (long) format to virtual memory (short)
format. In general, the spectrum of possible values can
range from a single pointer to an entire page or more.

The granularity of address translation in Texas is typi-
cally a virtual memory page, for coarse-grained trans-
lation implemented via pointer swizzling at page fault
time. The use of virtual memory pages has several ad-
vantages in terms of overall efficiency because we use
virtual memory hardware to check residency of the refer-
ents. In addition, we also rely on the application’s spatial
locality of reference to amortize the costs of protection
faults and swizzling entire pages.

As described in Section 5, it is possible to implement a
fine-grained address translation mechanism for special
situations where the coarse-grained approaches are un-
suitable, because of poor locality of reference in the ap-
plication. Since Texas allows fine-grained translation on
individual pointers, the granularity of address translation
in those cases would be a single pointer.

3.2 Address Mapping

A related choice is the granularity ofaddress mapping,
which is defined as the smallest unit of addressed data
(from the persistent store) that can be mapped indepen-
dently to an area of the virtual address space.

To a first approximation, this is a virtual memory page in
Texas because any page of persistent data can be mapped

into any arbitrary page of the virtual address space of
a process. A major benefit of page-wise mapping is
the savings in table sizes; we only need to maintain ta-
bles that contain mappings from persistent to virtual ad-
dresses and vice versa on a page-wise basis, rather than
(much larger) tables for recording the locations of in-
dividual objects. This reduces both the space and time
costs of maintaining the address translation information.

However, the granularity of address mapping is bigger
than a page in the case of large (multi-page) objects.
When a pointer to (or into) a large object is swizzled,
virtual address space must be reserved for all pages that
the large object overlaps. This reservation of multiple
pages is necessary to ensure that normal indexing and
pointer arithmetic works as expected within objects that
cross page boundaries. The granularity of address map-
ping is then equivalent to the number of pages occupied
by the large object.

3.3 Data Fetching

As the name suggests, the granularity ofdata fetchingis
the smallest unit of storage that is loaded from the per-
sistent store into virtual memory. As with the two gran-
ularities presented above, we use a virtual memory page
for this purpose in the current implementation of Texas.
The primary motivation for making this choice was sim-
plicity and ease of implementation, and the fact that this
correlated well with the default granularity choices for
other design issues in our implementation.

It is possible to change the granularity of fetching with-
out affecting any other granularity choices. In essence,
we can implement our own prefetching to preload data
from the persistent store. This may actually be desir-
able for some applications when using raw unbuffered
I/O instead of normal file I/O [8]. Depending on the
access characteristics of the application and the dataset
size, the overall I/O costs can be reduced by prefetching
several (consecutive) pages instead of a single faulted-
on page. In general, the granularity of data fetching is
intimately tied to the I/O strategy that is selected in the
implementation.

3.4 Data Caching

The granularity ofdata cachingis defined as the small-
est unit of storage that is cached in virtual memory. For
Texas, the granularity of caching is a single virtual mem-



ory page, because Texas relies exclusively on the virtual
memory system for caching persistent data.

A persistent page is usually cached in avirtual memory
page as far as Texas is concerned. The virtual mem-
ory system determines whether the page actually resides
in RAM (i.e., physical memory) or on disk (i.e., swap
space) without any intervention from Texas. This is
quite different from some other persistent storage sys-
tems which directly manage physical memory and con-
trol the mapping of persistent data into main memory.
In general, Texas moves data between a persistent store
and the virtual memorywithout regard to the distinction
between virtual pages in RAM and on disk; that is, vir-
tual memory caching is left up to the underlying virtual
memory system, which does its job in the normal way.

It is, of course, possible to change this behavior such that
Texas directly manages physical memory. However, we
believe that this is unnecessary, and may even be unde-
sirable, for most applications. The fact that Texas be-
haves like any normal application with respect to virtual
memory replacement may be advantageous for most pur-
poses because it prevents any particular application from
monopolizing system resources (RAM in this case). As
such, applications using Texas are just normal programs,
requiring no special privileges or resources; they “play
well with others” rather than locking up large amounts
of RAM as many database and persistent systems do.

3.5 Checkpointing

Finally, we consider the granularity ofcheckpointing,
which is defined as the smallest unit of storage that is
written to non-volatile media for the purpose of sav-
ing recovery information to protect against failures and
crashes.

Texas uses virtual memory protections to detect pages
that are modified by the application between check-
points. Therefore, the default unit of checkpointing in
the usual case is a virtual memory page. Texas em-
ploys a simple write-ahead logging scheme to support
checkpointing and recovery—at checkpoint time, mod-
ified pages are written to a log on stable storage before
the actual database is updated [16].

The granularity of checkpointing can be refined by the
use of sub-page logging. The approach relies on a page
“diffing” technique that we originally proposed in [16].
The basic idea is to save clean versions of pages before
they are modified by the application; the original (clean)

and modified (dirty) versions of a page can then be com-
pared to detect the exact sub-page areas that are actu-
ally updated by the application and only those “diffs”
are logged to stable storage. This technique can be used
to reduce the amount of I/O at checkpoint time, subject
to the application’s locality characteristics. The granu-
larity of checkpointing in this case is equivalent to the
size of the “diffs” which are saved to stable storage.5

Another enhancement to the checkpointing mechanism
is to maintain the log in a compressed format. As the
checkpoint-related data is streamed to disk, we can inter-
vene to perform some inline compression using special-
ized algorithms tuned to heap data. Further research has
been initiated in this area [24] and initial results indicate
that the I/O cost can be reduced by about a factor of two,
and that data can be compressed fast enough to double
the effective disk bandwidth on current machines. As
CPU speeds continue to increase fast than disk speeds,
the cost of compression shrinks exponentially relative to
cost of disk I/O. Further reduction in costs is also possi-
ble with improved compression algorithms and adaptive
techniques.

4 Fine-grained Address Translation

There are several factors that motivated us to develop a
coarse-grained mechanism over a fine-grained approach
when implementing pointer swizzling at page fault time
in Texas. The primary motivation is the fact that we
wanted to exploit existing hardware to avoid expensive
residency checks in software. However, we believe that
there are also other factors against using a fine-grained
approach as the primary address translation mechanism.
In this section, we discuss fine-grained address trans-
lation techniques and why we believe that they are not
practical for high-performance implementations in terms
of efficiency and complexity.

Overall, fine-grained address translation techniques are
likely to incur various hidden costs that have not been
measured and quantified in previous research. In gen-
eral, we have found most current fine-grained schemes
appear to be slower than pointer swizzling at page fault
time in terms of the basic address translation perfor-
mance.

5The basic “diffing” technique has been implemented in the con-
text of QuickStore [19]; preliminary results are encouraging, although
more investigation is required.



4.1 Basic Costs

Fine-grained address translation techniques usually in-
cur some inherent costs due to their basic implemen-
tation strategy. These costs can be divided into the
usual time and space components, as well as less tan-
gible components related to implementation complexity.
We believe that these costs are likely to be on the or-
der of tens of percent, even in well-engineered systems
with custom compilers and fine-tuned run-time systems.
Some of the typical costs incurred in a fine-grained ap-
proach are as follows:

� A major component of the total cost can be at-
tributed topointer validitychecks. These checks
can include bothswizzlingchecks andresidency
checks. A swizzling check is used to verify whether
a reference is translated into valid local format
or not6 while a residency check verifies whether
the referent is resident and accessible. These two
checks, while conceptually independent of each
other, are typically combined in implementations
of fine-grained schemes.

� Another important component of the overall cost
is related to the implementation of a custom ob-
ject replacement policy, which is typically required
because physical memory is directly managed by
the persistence mechanism. This cost is usually di-
rectly proportional to the rate of execution because
it requires a read barrier.7 We discuss this further in
the next subsection.

� As resident objects are evicted from memory, a pro-
portional cost is usually incurred in invalidating ref-
erences to the evicted objects. This is necessary for
maintainingreferential integrityby avoiding “dan-
gling pointers.” This cost is directly proportional
to the rate of eviction and locality characteristics of
the application.

� By definition, fine-grained translation techniques
permit references to be in different formats during
application execution. This requires that pointers
be checked to ensure that they are in the right for-
mat before they can be used, even for simple equal-
ity checks. It may also be necessary to check tran-
sient pointers, depending on the underlying imple-
mentation strategy. As such, there is a continual

6For example, all swizzled pointers in Texasmustcontain valid
virtual memory address values.

7The term read barrier, borrowed from garbage collection re-
search [21], is used to denote a trigger that is activated on every read
operation. A corresponding term,write barrier, is used to denote trig-
gers that are activated for every write operation.

pointer format checking cost that is also dependent
on the rate of execution and pointer use.

� Finally, it is possible to incur other costs that ex-
ist mainly because of unusually constrained ob-
ject and/or pointer representations used by the sys-
tem. For example, accessing an object through
an indirection via a proxy object is likely to re-
quire additional instructions.8 Another example is
the increased complexity required for handling lan-
guages features such as interior pointers.9

Note that all cost factors described above do not nec-
essarily contribute to the overall performance penalty in
every fine-grained address translation mechanism. How-
ever, the basic costs are usually present in some form in
most systems.

4.2 Object Replacement

Fine-grained address translation schemes typically re-
quire that the persistence mechanism directly manage
physical memory because persistent data are usually
loaded into memory on a per-object basis.10 Therefore,
it is usually necessary to implement a custom object re-
placement policy as part of the persistence mechanism.
This affects not only the overall cost but also the imple-
mentation complexity.

A read barrier is typically implemented for every object
that resides in memory. The usual action for a read bar-
rier is to set one bit per object for maintaining recency
information about object references to aid the object re-
placement policy. The read barrier may be implemented
in software by preceding each object read with a call to
the routine that sets the special bit for that object. Com-
piled code then contains extra instructions—usually in-
serted by the compiler—to implement the read barrier.
The read barrier is typically expensive on stock hardware
because, in the usual case,all read requests must be in-
tercepted and recorded. It is known that one in about ten
instructions is apointer store(i.e., a write into a pointer)
in Lisp systems that support compilation. Since read ac-
tions are more common than write actions, we estimate

8Some systems use crude replacement and/or checkpointing poli-
cies to simplify integration with persistence and garbage collection
mechanisms. These may incur additional costs due to the choice of
suboptimal policies.

9Interior pointersare those that point inside the bodies of objects
rather than at their heads.

10The data are usually read from the persistent store into a buffer
(granularity of data fetching) in terms of pages for minimizing I/O
overhead. However, only the objects required are copied from the
buffer into memory (granularity of data caching).



that between 5 and 20 percent of total instructions in an
application usually correspond to a read from a pointer.
The exact number obviously varies by application, and
more importantly, by the source language; for example,
it is likely to be higher in heap-oriented languages such
as Java. It may be possible to use data flow analysis
during compilation such that the read barrier can be op-
timized away for some object references; such analysis
is, however, hard to implement.

The object replacement policy also interferes with gen-
eral swizzling, especially if an edge-marking technique
is being used. In such cases, the object cannot be evicted
from memory without first invalidating all edges that ref-
erence it. This obviously requires knowledge about ref-
erences to the object being evicted. Kemper and Koss-
man [9] solve this by using a per-object data structure
known as aReverse Reference List (RRL)to maintain a
set of back-pointers to all objects that reference a given
object. McAuliffe and Solomon [11] use a different data
structure, called theswizzle table, a fixed-size hash table
that maintains a list of all swizzled pointers in the sys-
tem. Both these approaches are generally unfavorable
because they increase the storage requirements (essen-
tially doubling the number of pointers at the minimum)
and the implementation complexity.

4.3 Discussion

One of the problems in evaluating different fine-grained
translation mechanisms is the lack of good measure-
ments of system costs and other related costs in these
implementations. The few measurements that do ex-
ist correspond to interpreted systems (except the E sys-
tem [14, 15]) and usually underestimate the costs for a
high-performance language implementation. For exam-
ple, a 30% overhead in a slow (interpreted) implementa-
tion may be acceptable for that system, but will certainly
be unacceptable as a 300% overhead when the execution
speed is improved up by a factor of ten using a state-of-
the-art compiler.

Another cost factor for fine-grained techniques that has
generally been overlooked is the cost of maintaining
mapping tables for translating between the persistent and
transient pointer formats. Since fine-grained schemes
typically translate one pointer at a time, the mapping ta-
bles must contain one entry per pointer. This is likely
to significantly increase the size of the mapping table,
making it harder to manipulate efficiently.

We believe that the E system [14, 15] is probably

the fastest fine-grained scheme that is comparable to a
coarse-grained address translation scheme; however, it
still falls short in terms of performance. Based on the
results presented in [19], E is about 48% slower than
transient C/C++ for hot traversals of the OO1 database
benchmark [4, 5].11 This is a fairly significant consider-
ing that the overhead of our system iszerofor hot traver-
sals and much smaller (less than 5%) otherwise [8].

We believe that there are several reasons why it is likely
to be quite difficult to drastically reduce the overheads
of fine-grained techniques. Some of these are:

� Several of the basic costs cannot be changed or re-
duced easily. For example, the pointer validity and
format checks, which are an integral part of fine-
grained address translation, cannot be optimized
away.

� There is a general performance penalty (maintain-
ing and searching large hash tables, etc.) that is typ-
ically independent of the checking cost itself. As
mapping tables get larger, it will be more expen-
sive to probe and update them, especially because
locality effects enter the overall picture.12

� Complex data-flow analysis and code generation
techniques are required to optimize some of the
costs associated with the read barrier used in the
implementation. Furthermore, such extra optimiza-
tions may cause unwanted code bloat.

� Although the residency property can be treated as a
type so that Self-style optimizations [6] can be ap-
plied to eliminate residency checking, it is not easy
to do so; unlike types, residency may change across
procedure calls depending on the dynamic run-time
state of the application. As such, residency check
elimination is fundamentally a non-local problem
that depends on complex analysis of control flow
and data flow.

Based on these arguments, we believe that fine-grained
translation techniques are comparatively not as attrac-
tive for high-performance implementations of persis-
tence mechanisms.

Taking the other side of the argument, however, it can
certainly be said that fine-grained mechanisms have their

11The hot traversals are ideal for this purpose because they repre-
sent operations on data that have already been faulted into memory,
thereby avoiding performance impacts related to differences in load-
ing patterns, etc.

12Hash tables are known to have extremely poor locality because,
by their very nature, they “scatter” related data in different buckets.



advantages. A primary one is the potential savings in I/O
because fine-grained schemes can fetch data only as nec-
essary. There are at least two other benefits over coarse-
grained approaches:

� fine-grained schemes can support reclustering of
objects within pages, and

� the checks required for fine-grained address trans-
lation may also be able to support other fine-
grained features (such as locking, transactions, etc.)
at little extra cost.

In principle, fine-grained schemes can recluster data
over short intervals of time compared to coarse-grained
schemes. However, clustering algorithms are themselves
an interesting topic for research, and further studies are
necessary for conclusive proof. We also make another
observation that fine-grained techniques are attractive
for unusually-sophisticated systems, e.g., those support-
ing fine-grained concurrent transactions. Inevitably, this
will incur an appreciable run-time cost, even if that cost
is “billed” to multiple desirable features. Such costs may
be reduced in the future if fine-grained checking is sup-
ported in hardware.

5 Mixed-granularity Address Translation
in Texas

Pointer swizzling at page fault time usually provides
good performance for most applications with good lo-
cality of reference. However, applications that exhibit
poor locality of reference, especially those with large
sparsely-accessed index data structures, may not pro-
duce best results with such coarse-grained translation
mechanisms. Applications that access big multi-way
index trees are a good example; usually, such applica-
tions sparsely access the index tree, that is, only a few
paths are followed down from the root. If the tree nodes
are large and have a high fanout, the first access to a
node will cause all those pointers to be swizzled, and
possibly reserve several pages of virtual address space.
However, most of this swizzling is probably unnecessary
since only a few pointers will be dereferenced.

The solution is to provide a fine-grained address trans-
lation mechanism which translates pointers individually,
instead of doing it a page at a time. Unlike the coarse-
grained mechanism where the swizzling was triggered
by an access-protection violation, the actual translation

of a pointer may be triggered by one of two events—
either when it is “found”13 or when it is dereferenced.

There are many ways of implementing a fine-grained
(pointer-wise) address translation mechanism as we de-
scribed above. We have selected an implementation
strategy that remains consistent with our goals of porta-
bility and compatibility with existing off-the-shelf com-
pilers, by using the C++smart pointerabstraction [17,
7, 12]. Below, we first briefly explain this abstraction
and then describe how we use it for implementing fine-
grained translation in Texas. We also discuss how both
fine-grained and coarse-grained schemes can coexist to
create a mixed-granularity environment.

5.1 Smart Pointers

A smart pointer is a special C++ parameterized class
such that instances of this class behave like regular
pointers. Smart pointers support all standard pointer op-
erations such as dereference, cast, indexing etc. How-
ever, since they are implemented using a C++ class
with overloaded operators supporting these pointer op-
erations, it is possible to execute arbitrary code as part
of any such operation. While smart pointers were origi-
nally used in garbage collectors to implement write bar-
riers [22, 21], they are also suitable for implementing
address translation; the overloaded pointer dereference
operations (via the “* ” and “-> ” operators) can imple-
ment the necessary translation from persistent pointers
into transient pointers.

A smart pointer class declaration is typically of the fol-
lowing form:

template <class T> class Ptr
{

public:
Ptr (T *p = NULL); // constructor
˜Ptr (); // destructor
T& operator * (); // dereference
T *operator -> (); // dereference
operator T * (); // cast to ‘T *’
...

};

Given the above declaration of a smart pointer class, we
can then use it as follows:

13A pointer is “found” when its location becomes known. This
is similar to the notion of “swizzling upon discovery” as described
in [20].



class Node; // assume defined
Node *node_p; // regular pointer
Ptr<Node> node_sp; // smart pointer
...
node_p->some_method();
node_sp->some_method();

Note that we have only shown some of the operators in
the declaration. Also, we avoid describing the private
data members of the smart pointer because the inter-
face is much more important than the internal represen-
tation; it does not matterhow the class is structured as
long as the interface is implemented correctly. In fact,
as will be clear from our discussion about variations in
fine-grained address translation mechanisms, the smart
pointer will need to be implemented differently for dif-
ferent situations and implementation choices.

Smart pointers were designed with the goal of trans-
parently replacing regular pointers (except for declara-
tions), and providing additional flexibility because arbi-
trary code can be executed for every pointer operation.
In essence, it is an attempt to introduce limited (compile-
time) reflection [10] into C++ for builtin data types (i.e.,
pointers).14 However, as described in [7], it is impossi-
ble to truly replace the functionality of regular pointers
in a completely transparent fashion. Part of the problem
stems from some of the inconsistencies in the language
definition and unspecified implementation dependence.
Thus, we do not advocate smart pointers for arbitrary
usage across the board, but they are useful in situations
where further control is required over pointer operations.

5.2 Fine-grained Address Translation

In order to implement fine-grained address translation in
Texas, we must swizzle individual pointers, instead of
entire pages at a time, thereby reducing the consump-
tion of virtual address space for sparsely-accessed data
structures with high fanout. By using smart pointers for
this purpose, we allow the programmer to easily choose
data structures that are swizzled on a per-pointer basis,
without requiring any inherent changes in the implemen-
tation of the basic swizzling mechanism.

Note that although the pointers are swizzled individu-
ally, the granularity of data fetching is still a page, not
individual objects, to avoid excessive I/O costs. Below

14C++ already provides limited reflective capabilities in the form of
operator overloading for user-defined types and classes. However, this
fails to support completely transparent redefinition of pointer opera-
tions in arbitrary situations.

we describe at least two possible ways to handle fine-
grained address translation, and discuss why we choose
one over the other.

5.2.1 Fine-grained Swizzling

A straightforward way of implementing fine-grained ad-
dress translation is to cache the translated address value
in the pointer field itself; we call thisfine-grained swiz-
zling, because the pointer value is cached after being
translated.15 We chose not to follow this approach be-
cause of a few problems with the basic technique.

First, fine-grained swizzling incurs checking overhead
for every pointer dereference; the first dereference will
check and swizzle the pointer, while future dereferences
will check (and find) that the swizzled virtual address
is already available and can be used directly. A more
significant problem is presented by equality checks (a
la the C++== operator)—when two smart pointers are
compared, the comparison can only be made after en-
suring that both pointers are in the same representation,
that is, either both are persistent addresses or both are
virtual addresses. In the worst-case scenario, the point-
ers will be in different representations, and one of them
will have to be swizzled before the check can complete.
Thus, a simple equality check, on average, can become
more expensive than desired.

One solution is to make the pointer field large enough
to store both persistent and virtual address values, as in
E [14, 15]. In the current context, the smart pointer in-
ternal representation could be extended such that it can
hold both the pointer fields. This technique avoids the
overhead on equality checks, which can be implemented
by simply comparing persistent addresses without regard
to swizzling, at the expense of additional storage.

Unfortunately, a more serious problem with fine-grained
swizzling is presented by its peculiar interaction with
checkpointing. When a persistent pointer is swizzled,
the virtual address has to be cached in the pointer field
(either E-style or otherwise), that is, we mustmodify
the pointer. Since virtual memory protections are used
to detect updates initiated by the application for check-
pointing purposes, updating a smart pointer to cache the
swizzled address will generate “false positives” for up-
dates, causing unnecessary checkpointing. We could
work around this problem by first resetting the permis-
sions on the page, swizzling (and caching) the pointer,

15The term “swizzling” implies that the translated address is cached,
as opposed to discarded after use.



and then restoring the permissions on the page. How-
ever, this is very slow on average because it requires ker-
nel intervention to change page protections.

5.2.2 Translations at Each Use

We have seen that a simple fine-grained swizzling mech-
anism is not as desirable because of its unusual interac-
tions with the operating system and the virtual memory
system. However, we can slightly modify the basic tech-
nique and overcome most of the disadvantages without
losing any of the benefits.

The solution is to implement smart pointers that are
translated onevery use and avoid any caching of the
translated value. In other words, these smart pointers
hold only the persistent addresses, and must be trans-
lated every time they are dereferenced because the vir-
tual addresses are not cached. Equality checks do not
incur any overhead because the pointer fields are always
in the same representation and can be compared directly.

Pointer dereferences also do not incur any additional
checking overhead. The cost of translating at each use
does not add much overhead to the overall cost, and is
usually amortized over other “work” done by the appli-
cation; that is, the application may dereference a smart
pointer and then do some computation with the resulting
target object before dereferencing another smart pointer.

The advantage of this approach is that the pointer fields
do not need to be modified because the translated ad-
dress values are never cached, and all unwanted inter-
actions with checkpointing and the virtual memory sys-
tem are avoided. Of course, this approach is still unsuit-
able as a general swizzling mechanism compared to the
pointer swizzling at page fault time for reasons described
in Section 4.

5.3 Combining Coarse-grained and Fine-
grained Address Translation

It is possible to implement a mixed-granularity address
translation scheme that consists of both coarse-grained
pointer swizzling and fine-grained address translation.
The interaction of swizzling with data structures such
as B-trees can be handled through the use of the smart
pointer abstraction. The details of a fine-grained address
translation scheme are hidden, making the approach par-
tially reflective.

We have implemented mixed-granularity address trans-
lation in Texas by combining a fine-grained approach us-
ing smart pointers that are translated at every use, along
with the standard coarse-grained approach. This allows
better programmer control over the choice of data struc-
tures for which fine-grained address translation is used,
while maintaining the overall performance of pointer
swizzling at page fault time.

6 Performance Measurements

We present our experimental results for different ad-
dress translation granularities using the standard OO1
database benchmark [4, 5] with some minor variations
as the workload for our experimental measurements. We
first briefly explain the rationale for choosing the OO1
benchmark for our performance measurements, then de-
scribe the experimental design followed by the actual re-
sults, and finally end with a summary.

6.1 Benchmark Choice

Most performance measurements and analysis of persis-
tent object systems (and object-oriented database sys-
tems) have been done usingsynthetic benchmarksin-
stead of using real applications. There are two reasons
for this: first, there are few large, realistic applications
that exercise all persistence mechanisms of the underly-
ing system and of those that exist, few are available for
general use; and second, it is typically extremely hard
to adapt a large piece of code to any given persistence
mechanism without having a detailed understanding of
the application.

The OO1 and OO7 [3] benchmarks have become quite
popular among various benchmarks, and have been used
widely for measuring the performance of persistent sys-
tems. However, we posit that these benchmarks are
not representativeof typical real-world applications, be-
cause they have not been validated against applications
in the domain they represent; other researchers [18] have
also reached similar conclusions. As such, the experi-
mental results from these benchmarks should be inter-
preted with caution. The apparently “empirical” nature
of these “experimental” results is likely to lull people
into relying on the results more than appropriate. It is
important to always remember that while the results are
obtained empirically, they are ultimately derived from a
synthetic benchmark and are only as good as the map-



ping of benchmark behavior onto real applications.

Although OO1 is a crude benchmark and does not
strongly correspond to a real application, we use it for
several reasons. First, OO1 is simple for measuring raw
performance of pointer traversals (which is what we are
interested in) and is fairly amenable to modifications for
different address translation granularities. Use of a syn-
thetic benchmark is also appropriate in this situation be-
cause our performance is very good in some cases (i.e.,
zero overhead when there is no faulting) and dependent
on the rate of faulting (usually minimal overhead com-
pared to I/O costs) for other cases. As such, crude bench-
marking is the most practical way to measure perfor-
mance of different components of our system because
it is easy to separate our costs from those of the underly-
ing benchmark; this is usually more difficult with a real
application. Further discussion on sythetic benchmarks
and their applicability is available in [8].

6.2 Experimental Design

The benchmark database is made up of a set ofpart ob-
jectsinterconnected to each other. The benchmark spec-
ifies two database sizes based on the number of parts
stored in the database—asmall databasecontaining
20,000 parts and alarge databasecontaining 200,000
parts—to allow performance measurements of a sys-
tem when the entire database is small enough to fit into
main memory and compare it with situations where the
database is larger than the available memory.

The parts are indexed by uniquepart numbersassoci-
ated with each part.16 Each part is “connected” via a
direct link to exactly three other parts, chosen partially
randomly to produce some locality of reference. In par-
ticular, 90% of the connections are to “nearby” 1% of
parts where “nearness” is defined in terms of part num-
bers, that is, a given part is considered to be “near” other
parts if those parts have part numbers that are numeri-
cally close to the number of this part. The remaining
10% of the connections are to (uniformly) randomly-
chosen parts.

We use the OO1 benchmark traversal operation (perform
a depth-first traversal of all connected parts starting from
a randomly-chosen part and traversing up to seven levels
deep for a total of 3280 parts including possible dupli-
cates, and invoke an empty procedure on each visited
part) for our performance measurements. Eachtraver-

16The benchmark specification does not define a data structure that
must be used for the index; we used a B+ tree for all our experiments.

sal setcontains a total of 45 traversals split as follows:
the first traversal is thecold traversal (whenno datais
cached in memory), the next 34 arewarm traversals (as
more and more datais cached in memory) and finally
the last 10 arehot traversals (whenall data is cached in
memory).17 We use a random number generator to en-
sure that each warm traversal selects a new “root” part as
the initial starting point, thus visiting a mostly-different
set of parts in each traversal.

6.3 Experimental Results

We present results for the OO1 traversal operations cor-
responding to different address translation granularities
for the data structures used during the traversals. In
particular, we are interested in three different address
translation granularities, namelycoarse-grained, mixed-
granularity andfine-grainedstrategies. The following
table describes the types of pointers used for each gran-
ularity and the corresponding key in the results.

Granularity Type(s) of pointers Key

coarse all language-supportedall-raw
mixed smart for index smart-index
fine all smart all-smart

We use CPU time18 instead of absolute real time be-
cause the difference in performance is primarily due to
differences in faulting and swizzling, and allocating ad-
dress space for reserved pages. Unfortunately, CPU-
time timers on most operating systems have a coarse
granularity (typically in several milliseconds), and it
would be impossible to measure any reasonable differ-
ences in the performance due to a change in the address
translation granularity because our overheads are very
small. Thus, we use an older SPARCstation ELC, which
is slow enough to offset the coarse granularity of the
timers, while providing reasonable results.

Figure 3 presents the CPU time for all traversals in an
entire traversal set run on a large database. As expected,
the cost for “all-raw” case (coarse-grained address trans-
lation) is the highest for the first 15 or so traversals.
This is not unusual because the coarse-grained address
translation scheme swizzles all pointers in the faulted-
on pages and reserves many pages that may never be

17This is different from the standard benchmark specification con-
taining only 20 traversals (split as 1 cold, 9 warm, and 10 hot traver-
sals); we run more warm traversals because we believe that 9 traversals
are not sufficient to provide meaningful results, especially for the large
database case.

18We refer to the sum ofuserandsystemtime as theCPU time.
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Figure 3: CPU time for traversal on large database

used by the application. This is exacerbated by the
poor locality of reference in the benchmark traversals
as many pages of the database are accessed during the
initial traversals, causing a large number of pages to be
reserved. The number of new pages swizzled decreases
as the cache warms up, and we see the corresponding
reduction in the CPU time.

Note that the cost for the “all-smart” case (fine-grained
address translation) is the lowest for the first 15 traver-
sals. Again, this is expected because the address trans-
lation scheme does not swizzle any pointers in a page
when it is faulted in because they are all smart pointers
that must be translated at every use. Finally, the CPU
time for the “smart-index” case (mixed-granularity ad-
dress translation) falls between the other two cases for
the first 15 traversals. This is also reasonable because
only the index structure contains smart pointers, and
each traversal uses this index only once (to select the root
part for the traversal). This cost is only slightly less than
the “all-raw” case because our B+ tree implementation
generated a tree that was only three levels deep, reducing
the number of smart pointers that had to be translated for
each traversal.

Now consider the hot traversals (36 through 45). The
first thing to note is that the CPU time for the “all-smart”
case is higher than that for the other two cases. This is
because smart pointers impose a continual overhead for
each pointer dereference, and this cost is incurred even
if the target object is resident. In contrast, the “all-raw”
case has zero overhead for hot traversals.19

19The “smart-index” results should be identical to the “all-raw” re-

Figure 4 shows the corresponding results for the small
database, where only the first 3 or 4 traversals contain
faulting and swizzling.20 Once again, a phenomenon
similar to the one in large database results can be seen in
the current results, but only for the initial traversals. In
particular, the CPU time is highest for the “all-raw” case
and lowest for the “all-smart” case. Also as before, the
two granularities swap their positions for the hot traver-
sals; the “all-smart” case is more expensive because of
the continual translation overhead at every use. Finally,
as expected, the “all-raw” and “smart-index” results are
identical for hot traversals because no index pointers are
dereferenced.

6.4 Summary

The results presented above support our assertion that
fine-grained address translation can be effectively used
for data structures with high fanout that are less con-
ducive for a coarse-grained scheme. At the same time,
a pure fine-grained approach is not the best performing
as the primary address translation mechanism in Texas
because of various overheads associated with it.

One problem with using the OO1 benchmark is that the
operations do not perform any real computation (unlike

sults for hot traversals because there is no index lookup, and no smart
pointers need to be translated. We attribute the difference between the
hot results in these two cases to caching effects.

20Most of the database is memory-resident within the first few
traversals because of the extremely poor locality characteristics in the
connections.
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Figure 4: CPU time for traversal on small database

in actual applications) with objects that are traversed.
As such, the cost of fine-grained translation is high-
lighted as a larger component of the total cost than it
typically would be in an actual application that performs
real “work” on data objects as they are traversed.

7 Conclusions

We presented a discussion on address translation strate-
gies, both in the context of the Texas persistent store
and for general persistence implementations. We also
proposed a new classification for persistence in terms of
granularity choices for fundamental design issues rather
than using taxonomies based only on address translation
semantics, and discussed each choice that we made in
Texas.

We also discussed issues related to fine-grained address
translation, including their inherent costs that make them
unsuitable as the primary address translation mechanism
in a persistence implementation. Instead, we discussed
how a mixed-granularity approach can be used to selec-
tively incorporate fine-grained address translation in the
application.

We presented our implementation of mixed-granularity
address translation in Texas which combines the C++
smart pointer idiom for the fine-grained translation com-
ponent with the normal pointer swizzling at page fault
time mechanism for the coarse-grained translation com-

ponent, while maintaining portability and compatibility
of the system.

Our basic performance results using the OO1 benchmark
have shown that the mixed-granularity approach works
well for applications with data structures that do not pro-
vide the best performance with a pure coarse-grained
approach. However, further performance measurements
are necessary, especially using real applications instead
of synthetic benchmarks which do not always model re-
ality very well.
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