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Abstract Texas using the C+smart pointetidiom, allowing pro-

grammers to choose the kind of pointer used for any

data member in a particular class definition. This ap-
Texas is a highly portable, high-performance persistenproach maintains the important features of the system:
object store that can be used with conventional compilpersistence that is orthogonal to type, high performance
ers and operating systems, without the need for a preprawith standard compilers and operating systems, suitabil-
cessor or special operating system privileges. Texas uséty for huge shared address spaces across heterogeneous
pointer swizzling at page fault times its primary ad- platforms, and the ability to optimize away pointer swiz-
dress translation mechanism, translating addresses fropling costs when the persistent store is smaller than the
a persistent format into conventional virtual addressesiardware-supported virtual address size.
for an entire page at a time as it is loaded into memory.

Existing classifications of persistent systems typically

focus only on address translation taxonomies based ot |ntroduction

semantics that we consider to be confusing and ambigu-

ous. Instead, we contend that tgenularity choices

for design issues are much more important because theyphe Texas Persistent Store provides portable, high-

facilitate classification of different systems in an unam-performance persistence for C++ [16, 8], using pointer

biguous manner unlike the taxonomies based only on adswizzling at page fault time [23, 8] to translate addresses

dress translation. We have identified five primary desigrfrom persistent format into virtual memory addresses.

issues that we believe are relevant in this context. WeTexas is designed to implement and promatéogonal

describe these design issues in detail and present a ngversistenc§l, 2]. Orthogonal persistent systems require

general classification for persistence based on the gramhat any arbitrary object can be made persistent without

ularity choices for these issues. regard to its type; that is, persistence is viewed as the
storage classof an object rather than as a property of its

Although the coarse granularity of pointer swizzling at type. In other words, persistence is a property of individ-

page fault time is efficient in most case, it is sometimesual objects, not of their classes or types, and any object

desirable to use finer-grained techniques. We examinean be made persistent regardless of its type. In contrast,

different issues related to fine-grained address translazlass-basegbersistent systems require that any type or

tion mechanisms, and discuss why these are not suitabldass that may be instantiated to create persistent objects

as general-purpose address translation techniques. Imustinherit from a top-level abstract “persistence” class,

stead, we argue for a mixed-granularity approach wherevhich defines thénterfacefor saving and restoring data

a coarse-grained mechanism is used as the primary afom a persistent object store.

dress translation scheme, and a fine-grained approach is

used for specialized data structures that are less suitableexas usegointer swizzling at page fault timas the

for the coarse-grained approach. primary address translation technique. When a page is
brought into memory, all pointers in the page are iden-

We have incorporated fine-grained address translation itified and translated (or swizzled) into raw virtual ad-

*The work reported in this paper was performed as part of the au- 1A storage class describes how an object is stored. For example,
thor's doctoral research at The University of Texas at Austin. the storage class of an automatic variable in C or C++ corresponds to

T This research was supported by grants from the IBM Corporationthe stack because the object is typically allocated on the data stack,
and the National Science Foundation. and its lifetime is bounded by the scope in which it was allocated.



dresses. If the corresponding referents are not alread® Address Translation Taxonomies

in memory, virtual address spacereservedfor them

(using normal virtual memory protections), allowing for

the address translation to be completed successfully. Apersistence has been an active research area for over
the application dereferences pointers into non-residerd decade and several taxonomies for pointer swizzling
pages, these are intercepted (using virtual memory agechniques have been proposed [13, 9, 11, 19]. In this
cess protection violations) and the data is loaded fronsection, we describe important details about each of
the persistent store, causing further pointer swizzlingthese taxonomies and highlight various similarities and
and (potential) address space reservation for referencefifferences among them. We also use this as a basis to
to other non-resident data. Since running programs onlyyrovide motivation for a general classification of persis-

see pointers in their normal hardware-supported formatient systems based on granularity issues, which we de-
conventionally-compiled code can execute at full speecribe in Section 3.

without any special pointer format checks.

This page-wise address translation scheme has severgl]  Eager vs. Lazy Swizzling
advantages. One is that it exploits spatial locality of ref-
erence, allowing a single virtual memory protection vio-

!ation to triggerthetrgnslation of all persistent a_ddresseqi/IOSS [13] describes one of the first studies of different
Ina page. An.of[her IS that off-the-shelf cpmpllers CaNaddress translation approaches, and the associated termi-
be US?d' exploiting V|rtual memory protections and trapnology developed for classifying these techniques. The
handling features avallal_)le to normal user processes urb'rimary classification is in terms of “eager” and “lazy”
der most modern operating systems. swizzling based omwhenthe address translation is per-

i i _ formed. Typically, eager swizzling schemes swizzle an
However, as with any other scheme that exploits Iocalltyentire collection of objects together, where the size of

of reference, it is possible for some programs to exhibitthe collection is somehow bounded. That is, the need

access patterns that are unfavorable to a coarse-graingdl neck pointer formats, and the associated overhead, is
scheme; for example, sparse access to large indexing,igeq by performing aggressive swizzling. In contrast,
structures may unnecessarily reserve address space Wiy, i 7ling schemes follow an incremental approach
page-wise address translation than with more converg, ing dynamic checks for unswizzled objects. There
tional pointer-at-a-time strategies. It is desirable to gefg'q predetermined or bounded collection of objects that
the best of both worlds by combining coarse-grained andy st e swizzled together. Instead, the execution dy-
fine-grained address translation in a single system.  amically locates and swizzles new objects depending

) _ on the access patterns of applications.
In Texas, we currently support a fine-grained address

translation strategy by usmmart pointerg17, 7, 12] Other researchers [9, 11] have also used classifications
that can replace normal pointers where necessary. Sucﬁlong similar lines in their own studies. However, we

pcr)]lnters are |gn_or<|ed t(;ly éh? usual swizzling me%han'snbonsider this classification to be ambiguous and confus-
when a page is loaded into memory; instead, each, ¢, general use. It does not clearly identify the funda-
pointer is individually translated as it is dereferenced us

. laded ol , he mi d'mental issue—thgranularity of address translation—
Ing overloaded operator implementations. The mixedyy, i important in this context. For example, consider

granularity approach Work_s well, as shown by experi- ointer swizzling at page fault time using this classifi-
mental results gathered using the OO1 benchmark [4, Sk4tion. By definition, we swizzle all pointers in a vir-

h ind ¢ thi ) q oll tual memory page as it is loaded into memory and an
The remainder of this paper is structured as follows.,jication is never allowed to “see” any untranslated

In Sectl_on 2, we degcrlbe existing well-known adOIreSSpointers. There is no need to explicitly check the format
translation taxonomies put forth by other researchersof a pointer before using it, making pointer swizzling

and motivate the need for a general classification of pery; page fault time an eager swizzling scheme. On the

sistence presented in Section 3. In Section 4, we dlscusosther hand, the basic approach is incremental in nature:

issues about fine-grained address translation teChniqueﬁNizzling is performed one page at a time and only on
and why we believe that a pure fine-grained approach i%lemand, making it a lazy swizzling scheme as per the

no_t sunablg for general use. We describe th_e '”_‘plemen()riginal definition.
tation of mixed-granularity address translation in Texas
in Section 5 and the corresponding performance resultﬁ1 general, a scheme that is *

) . ) _ : lazy” at one granularity is
in Section 6, before wrapping up in Section 7.

likely to be “eager” at another granularity. For example,



a page-wise swizzling mechanism s lazy at the granulareompiled code must still check for the presence of proxy
ity of pages because it only swizzles one page at a timegbjects oreverypointer dereference because of the pos-
but eager at the granularity of objects because it swizzlesibility that any pointermay reference a proxy object.
multiple objects—an entire page’s worth—at one time.This adds continual checking overhead, even when all
As such, we contend that the granularity at which ad-pointers directly reference data objects without interven-
dress translation is performed is the fundamental issue.ing proxy objects.

Pointer swizzling at page fault time is essentially a node-
2.2 Node-Marking vs. Edge-Marking Schemes marking scheme, because swizzled poingngyscor-

respond to valid virtual memory addresses, while the

referents are distinguished on the basis of residency.

Moss also describes another classification based on tHdOWeVer. it differs in an important way from the nor-
strategy used for distinguishing between resident andnal approgc_h—unhke jche classic |mplgmentfit|on: there
non-resident data in the incremental approach. The per@re, nqexphcnproxy objepts for non-resident in pointer
sistent heap and various data structures are viewed (%lezllng at page fault time. Instead, acc_ess-protected
a directed graph, where data objects represetes  Virtual address space pagast as proxy objects. As

and pointers between objects represesigesthat con- the application progresses and more data is loaded into

nect the nodes. The address translation mechanisms afeMory the pages that were prewogsly protected are
then classified as eitheode-markingr edge-marking MW unprotected because they contain valid data. The
schemes major advantage of this approach is that there is no need

to reclaim proxy objects (because none exist); conse-

Figure 1 shows the basic structure for node-marking andluently, there are no further indirections that must be
edge-marking schemes. As the name suggestge- dealt with by compiled COQe, avoiding continual format
marking schemes mark the graph edges—the pointer§hecks that would otherwise be necessary.

between objects—to indicate whether they have been

translated into local format and reference resident ob- . .

jects. In contrasnode-markingchemes guarantee that 2-3  General Classification for Persistence

all references in resident objects are always translated,

and the graph nodes themselves are marked to indicate

whether they are non-resident. In other words, edgegve have seen that existing classifications focus only on
are guaranteed to be valid local references but the actugddress translation techniques. While address transla-
referents may be non-resident. Note that the marking aption is an important issue, it constitutes only one of sev-
plies only to non-resident entities, that is, either to node£ral design issues that must be considered when imple-

that are non-resident or to (untranslated) edges that refnenting persistence. We have identified a set of design
erence non-resident nodes. issues that we believe are fundamental to efficient im-

plementation of any persistence mechanism. We believe

Figure 2 shows a classic implementation of a nodeihat a specific combination of these issues can be used
marking scheme; non-resident nodes are “marked” a0 characterize any particular implementation. In effect,
such by usingroxy objects, that is, pseudo-objects that We are proposing a general classification scheme based
stand in for non-resident persistent objects and contaifn granularities of fundamental design aspects
their corresponding persistent identifiers. When an ob-
jectis loaded from the database, all references containef) classification based on “eager” and “lazy” swizzling is
in that object must be swizzled as per the definition ofambiguous, because it does not attack the problem at the
node-marking—pointers to resident objects are swizzledightlevel of abstraction. The realissue in the distinction
normally while pointers to non-resident objects are swiz-Petween lazy and eager swizzling is the size of the unit
zled into references to proxy objects. When the appli-Of storage for which address translation is performed.
cation follows a reference to a proxy object, the system' his can range from as small as a single reference (as
loads the referenf{ in the figure) from the database and IN Moss’s “pure lazy swizzling” approach) to a virtual
updates the proxy object to reference the newly-residerf?€mory page (as in pointer swizzling at page fault time),
object (Figure 2b). Alternatively, the proxy object may OF €ven as large as an entire database (as in Moss's “pure
be bypassed by overwriting the (old) reference to it with€ager swizzling” approach).
a pointer to the newly-resident object; if there are no 2 ,

. ; n fact, unmapped virtual address space pages can also serve the
other references to it, the proxy object may (eventually)same purpose.
be reclaimed by the system. Note, however, that the 3while crude, this is actually not uncommon. Traditionally, Lisp
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Figure 2: Node-marking scheme using proxy objects

We believe that it is preferable to consider address trans3 ~ Granularity Choices for Persistence
lation (and other design issues) from the perspective of
a granularity choicerather than arad hoc classifica-

tion based on confusing translation semantics. In factW

o . . e ‘e have identified a set of five design issues (including
the ambiguity arises primarily because the classifica- . ;
. . . X . address translation) that are relevant to the implementa-
tions either do not clearly identify the granularity, or,

. . tion of a persistence mechanism. Each of these issues
because they unnecessarily adhere to a single predeter- ; . ; .

i . . : . : can be resolved by making a specific granularity choice
mined granularity. Discussing all design issues in term

of granularity choices provides a uniform framework for%hat is independent of the choice for any otherissue. The

identifying the consequence of each design issue on th%omblnatlon of granularity choices for the different is-

L . . sues can then be used to characterize persistent systems.
performance and flexibility of the resulting persistence e L N
. L . - The specific design issues that we describe in this sec-
mechanism. This is preferable to ambiguous classifi-, o .
tion are the granularities @ddress translatioraddress

cations such as eager and lazy swizzling because man . . . ;
schemes are both “eager” and “lazy” at different scalesr>4a|0plng data fetching data cachingand checkpoint

. : ing. In the remainder of this section, we define and dis-
along several dimensions. . . . :
cuss each issue in detadnd also present the rationale
behind the granularity choices for these issues in our im-
plementation of orthogonal persistence in Texas.

4Note that while we describe each issue individually, these granu-
larity choices are strongly related. It is possible (and quite likely) that
and Smalltalk systems have supported the saving and restoring of era system may make the same granularity choice on multiple issues for
tire heap images in a “big inhale” relocation. various reasons.




To a first approximation, the basic unit for all granular- into any arbitrary page of the virtual address space of
ity choices in Texas is a virtual memory page, becausea process. A major benefit of page-wise mapping is
pointer swizzling at page fault time relies heavily on vir- the savings in table sizes; we only need to maintain ta-
tual memory facilities, especially to trigger data transferbles that contain mappings from persistent to virtual ad-
and address translation. The choice of a virtual memsdresses and vice versa on a page-wise basis, rather than
ory page as the basic granularity unit allows us to exploi{much larger) tables for recording the locations of in-
conventional virtual memories, and avoid expensive rundividual objects. This reduces both the space and time
time software checks in compiled code, taking advan-costs of maintaining the address translation information.
tage of user-level memory protection facilities of most
modern operating systems. Sometimes, however, it iflowever, the granularity of address mapping is bigger
necessary to change the granularity choice for a particthan a page in the case of large (multi-page) objects.
ular issue to accommodate the special needs of unusuhen a pointer to (or into) a large object is swizzled,
situations. It is possible to address these issues at a difdirtual address space must be reserved for all pages that
ferent granularity in a way that integrates gracefully intothe large object overlaps. This reservation of multiple
the general framework of Texas. pages is necessary to ensure that normal indexing and
pointer arithmetic works as expected within objects that
cross page boundaries. The granularity of address map-
3.1 Address Translation ping is then equivalent to the number of pages occupied
by the large object.

The granularity ofaddress translations the smallest

unit of storage within which all pointers are translated 3.3 Data Fetching
from persistent (long) format to virtual memory (short)

format. In general, the spectrum of possible values can

range from a single pointer to an entire page or more. As the name suggests, the granularitylafa fetchings

. o : . the smallest unit of storage that is loaded from the per-
The granularity of address translation in Texas is typi- . . . )
sistent store into virtual memory. As with the two gran-

cally a virtual memory page, for coarse-grained trans- _ . .
2 ; X - ularities presented above, we use a virtual memory page
lation implemented via pointer swizzling at page fault

. . for this purpose in the current implementation of Texas.
time. The use of virtual memory pages has several ad- . I . . . ;

. - he primary motivation for making this choice was sim-
vantages in terms of overall efficiency because we use

virtual memory hardware to check residency of the refer—pIiCity and ease of implementation, and the fact that this

o Lo ._correlated well with the default granularity choices for
ents. In addition, we also rely on the application’s spatial L . . i
. . . other design issues in our implementation.
locality of reference to amortize the costs of protection

faults and swizzling entire pages. It is possible to change the granularity of fetching with-

As described in Section 5, it is possible to implement aOUt affecting any other granularity choices. In essence,

i i ; : iAye can implement our own prefetching to preload data
fine-grained address translation mechanism for speci : . :
rom the persistent store. This may actually be desir-

situations where the coarse-grained approaches are un: o g
) . . able for some applications when using raw unbuffered
suitable, because of poor locality of reference in the ap-, -~ ) :
L : ) : . I/O instead of normal file 1/0O [8]. Depending on the
plication. Since Texas allows fine-grained translation on L L
L . . .~ access characteristics of the application and the dataset
individual pointers, the granularity of address translation_. :
: ; . size, the overall I/0O costs can be reduced by prefetching
in those cases would be a single pointer. . . )
several (consecutive) pages instead of a single faulted-
on page. In general, the granularity of data fetching is
3.2 Address Mapping intimately tied to the 1/O strategy that is selected in the

implementation.

A related choice is the granularity afidress mapping
which is defined as the smallest unit of addressed datd.4 Data Caching
(from the persistent store) that can be mapped indepen-
dently to an area of the virtual address space.

The granularity oflata cachings defined as the small-
To a first approximation, this is a virtual memory page in est unit of storage that is cached in virtual memory. For
Texas because any page of persistent data can be mappeekas, the granularity of caching is a single virtual mem-



ory page, because Texas relies exclusively on the virtughind modified (dirty) versions of a page can then be com-

memory system for caching persistent data. pared to detect the exact sub-page areas that are actu-
ally updated by the application and only those “diffs”

A persistent page is usually cached imigual memory  are logged to stable storage. This technique can be used

page as far as Texas is concerned. The virtual memto reduce the amount of I/0O at checkpoint time, subject

ory system determines whether the page actually resides the application’s locality characteristics. The granu-

in RAM (i.e., physical memory) or on disk (i.e., swap larity of checkpointing in this case is equivalent to the

space) without any intervention from Texas. This issize of the “diffs” which are saved to stable stordge.

quite different from some other persistent storage sys-

tems which directly manage physical memory and con-Another enhancement to the checkpointing mechanism

trol the mapping of persistent data into main memory.is to maintain the log in a compressed format. As the

In general, Texas moves data between a persistent stooheckpoint-related data is streamed to disk, we can inter-

and the virtual memorwithout regard to the distinction vene to perform some inline compression using special-

between virtual pages in RAM and on digkat is, vir-  ized algorithms tuned to heap data. Further research has

tual memory caching is left up to the underlying virtual been initiated in this area [24] and initial results indicate

memory system, which does its job in the normal way. thatthe I/O cost can be reduced by about a factor of two,
and that data can be compressed fast enough to double

Itis, of course, possible to change this behavior such thathe effective disk bandwidth on current machines. As

Texas directly manages physical memory. However, weCPU speeds continue to increase fast than disk speeds,

believe that this is unnecessary, and may even be undéhe cost of compression shrinks exponentially relative to

sirable, for most applications. The fact that Texas be-cost of disk I/0. Further reduction in costs is also possi-

haves like any normal application with respect to virtual ble with improved compression algorithms and adaptive

memory replacement may be advantageous for most putechniques.

poses because it prevents any particular application from

monopolizing system resources (RAM in this case). As

such, applications using Texas are just normal programs,

requiring no special privileges or resources; they “play ) ) )

well with others” rather than locking up large amounts4 ~ Fine-grained Address Translation

of RAM as many database and persistent systems do.

There are several factors that motivated us to develop a
3.5 Checkpointing coarse-grained mechanism over a fine-grained approach
when implementing pointer swizzling at page fault time
in Texas. The primary motivation is the fact that we
Finally, we consider the granularity aheckpointing  wanted to exploit existing hardware to avoid expensive
which is defined as the smallest unit of storage that igesidency checks in software. However, we believe that
written to non-volatile media for the purpose of sav- there are also other factors against using a fine-grained
ing recovery information to protect against failures andapproach as the primary address translation mechanism.
crashes. In this section, we discuss fine-grained address trans-
lation techniques and why we believe that they are not
Texas uses virtual memory protections to detect pagepractical for high-performance implementationsin terms
that are modified by the application between check-of efficiency and complexity.
points. Therefore, the default unit of checkpointing in
the usual case is a virtual memory page. Texas emOverall, fine-grained address translation techniques are
ploys a simple write-ahead logging scheme to supportikely to incur various hidden costs that have not been
checkpointing and recovery—at checkpoint time, mod-measured and quantified in previous research. In gen-
ified pages are written to a log on stable storage beforeral, we have found most current fine-grained schemes
the actual database is updated [16]. appear to be slower than pointer swizzling at page fault
time in terms of the basic address translation perfor-
The granularity of checkpointing can be refined by themance.
use of sub-page logging. The approach relies on a page
diffing” t[e(.:hmq.ue that we originally .proposed in [16]. 5The basic “diffing” technique has been implemented in the con-
The basic idea is to save clean versions of pages befokg; o Quickstore [19]; preliminary results are encouraging, although
they are modified by the application; the original (clean)more investigation is required.




4.1 Basic Costs pointer format checking cost that is also dependent
on the rate of execution and pointer use.

Fine-grained address translation techniques usually in- ® Finally, it is possible to incur other costs that ex-

cur some inherent costs due to their basic implemen- 1St mainly because of unusually constrained ob-
tation strategy. These costs can be divided into the J&Ctand/or pointer representations used by the sys-
usual time and space components, as well as less tan- €M For example, accessing an object through
gible components related to implementation complexity. ~ @n indirection via a proxy object is likely to re-
We believe that these costs are likely to be on the or-  guire additional mstruc_tlon%.A_nother example is
der of tens of percent, even in well-engineered systems € increased complexity required for handling lan-
with custom compilers and fine-tuned run-time systems. ~ 9u@ges features such as interior pointers.

Some of the typical costs incurred in a fine-grained ap-

proach are as follows: Note that all cost factors described above do not nec-
essarily contribute to the overall performance penalty in
« A major component of the total cost can be at-€Very fine-gra_lined address translation me_chanism. Hovy—
tributed topointer validity checks. These checks €Ver: the basic costs are usually present in some form in
can include bothswizzlingchecks andesidency ~Most systems.
checks. A swizzling check is used to verify whether
a reference is translated into valid local format
or nof while a residency check verifies whether
the referent is resident and accessible. These two
checks, while conceptually independent of each
other, are typically combined in implementations
of fine-grained schemes.

4.2 Object Replacement

Fine-grained address translation schemes typically re-
quire that the persistence mechanism directly manage
physical memory because persistent data are usually
e Another important component of the overall cost loaded into memory on a per-object ba$isTherefore,
is related to the implementation of a custom ob-it is usually necessary to implement a custom object re-
ject replacement policy, which is typically required placement policy as part of the persistence mechanism.
because physical memory is directly managed byThis affects not only the overall cost but also the imple-
the persistence mechanism. This cost is usually dimentation complexity.
rectly proportional to the rate of execution because
it requires a read barriériWe discuss this furtherin A read barrier is typically implemented for every object
the next subsection. that resides in memory. The usual action for a read bar-
. . . rier is to set one bit per object for maintaining recency
* As r§S|dent Ob,JeCts are ?V'Cted frprr_1 MEMOrY, a Pro%htormation about object references to aid the object re-
portional cost s u_sually m_curred In_ln_valldatmg ref- placement policy. The read barrier may be implemented
erences to the ewct_ed _objec_t s. This IS r_leC$ssary foh software by preceding each object read with a call to
mgmtam_mgref?rent_lal mteg_rltyt_)y avoiding dz;n- the routine that sets the special bit for that object. Com-
gling pointers. .T.h'S cost Is d!rectly propqrtpnal piled code then contains extra instructions—usually in-
to the ra.te o.f eviction and locality characteristics of serted by the compiler—to implement the read barrier.
the application. The read barrier is typically expensive on stock hardware
e By definition, fine-grained translation techniques because, in the usual casd, read requests must be in-
permit references to be in different formats during tercepted and recorded. It is known that one in about ten
application execution. This requires that pointersinstructions is gointer storg(i.e., a write into a pointer)
be checked to ensure that they are in the right forin Lisp systems that support compilation. Since read ac-
mat before they can be used, even for simple equaltions are more common than write actions, we estimate
ity checks. It may also be necessary to check tran-  sgome systems use crude replacement and/or checkpointing poli-
sient pointers, depending on the underlying imple-cies to simplify integration with persistence and garbage collection

mentation strategy. As such, there is a continuamechanisms. These may incur additional costs due to the choice of
suboptimal policies.

8For example, all swizzled pointers in Texasistcontain valid %Interior pointersare those that point inside the bodies of objects
virtual memory address values. rather than at their heads.
"The termread barrier, borrowed from garbage collection re- 10The data are usually read from the persistent store into a buffer

search [21], is used to denote a trigger that is activated on every reafgranularity of data fetching) in terms of pages for minimizing 1/0
operation. A corresponding termvrite barrier, is used to denote trig- overhead. However, only the objects required are copied from the
gers that are activated for every write operation. buffer into memory (granularity of data caching).



that between 5 and 20 percent of total instructions in arthe fastest fine-grained scheme that is comparable to a
application usually correspond to a read from a pointercoarse-grained address translation scheme; however, it
The exact number obviously varies by application, andstill falls short in terms of performance. Based on the
more importantly, by the source language; for exampleresults presented in [19], E is about 48% slower than
it is likely to be higher in heap-oriented languages suchtransient C/C++ for hot traversals of the OO1 database
as Java. It may be possible to use data flow analysisenchmark [4, 5}! This is a fairly significant consider-
during compilation such that the read barrier can be oping that the overhead of our systenzexofor hot traver-
timized away for some object references; such analysisals and much smaller (less than 5%) otherwise [8].
is, however, hard to implement.

We believe that there are several reasons why it is likely
The object replacement policy also interferes with gento be quite difficult to drastically reduce the overheads
eral swizzling, especially if an edge-marking techniqueof fine-grained techniques. Some of these are:
is being used. In such cases, the object cannot be evicted
from memory without first invalidating all edges that ref-
erence it. This obviously requires knowledge about ref-
erences to the object being evicted. Kemper and Koss-
man [9] solve this by using a per-object data structure
known as aReverse Reference List (RRb)maintain a
set of back-pointers to all objects that reference a given
object. McAuliffe and Solomon [11] use a differentdata ¢ There is a general performance penalty (maintain-
structure, called thewizzle tablea fixed-size hash table ing and searching large hash tables, etc.) that s typ-

that maintains a list of all swizzled pointers in the sys- ically independent of the checking cost itself. As
tem. Both these approaches are generally unfavorable mapping tables get larger, it will be more expen-

because they increase the storage requirements (essen- sjve to probe and update them, especially because
tially doubling the number of pointers at the minimum) locality effects enter the overall pictut@.

and the implementation complexity.

e Several of the basic costs cannot be changed or re-
duced easily. For example, the pointer validity and
format checks, which are an integral part of fine-
grained address translation, cannot be optimized
away.

e Complex data-flow analysis and code generation
techniques are required to optimize some of the
costs associated with the read barrier used in the
implementation. Furthermore, such extra optimiza-
tions may cause unwanted code bloat.

4.3 Discussion

One of the problems in evaluating different fine-grained e Although the residency property can be treated as a
translation mechanisms is the lack of good measure- type so that Self-style optimizations [6] can be ap-
ments of system costs and other related costs in these plied to eliminate residency checking, it is not easy
implementations. The few measurements that do ex-  to do so; unlike types, residency may change across
ist correspond to interpreted systems (except the E sys-  procedure calls depending on the dynamic run-time
tem [14, 15]) and usually underestimate the costs fora  state of the application. As such, residency check
high-performance language implementation. For exam-  elimination is fundamentally a non-local problem
ple, a 30% overhead in a slow (interpreted) implementa-  that depends on complex analysis of control flow
tion may be acceptable for that system, but will certainly and data flow.

be unacceptable as a 300% overhead when the execution

speed is improved up by a factor of ten using a state-of- . . .
the-art compiler. Based on these arguments, we believe that fine-grained

translation techniques are comparatively not as attrac-
éive for high-performance implementations of persis-

Another cost factor for fine-grained techniques that ha .
tence mechanisms.

generally been overlooked is the cost of maintaining

mapping tables for translating between the persistent an

transient pointer formats. Since fine-grained schemei1aklng the other side of the argument, however, it can

typically translate one pointer at a time, the mapping ta_certalnly be said that fine-grained mechanisms have their

bles must contain one entry per pointer. This is likely 1The hot traversals are ideal for this purpose because they repre-

to significantly increase the size of the mapping table sent operations on data that have already been faulted into memory,

making it harder to manipulate efficiently. itrr:gers:t);ez:r\:(s)ld‘;?g performance impacts related to differences in load-

) ) 12Hash tables are known to have extremely poor locality because,
We believe that the E system [14, 15] is probably by their very nature, they “scatter” related data in different buckets.




advantages. A primary one is the potential savings in I/Oof a pointer may be triggered by one of two events—
because fine-grained schemes can fetch data only as negither when it is “found®? or when it is dereferenced.
essary. There are at least two other benefits over coarse-
grained approaches: There are many ways of implementing a fine-grained
(pointer-wise) address translation mechanism as we de-
) ) ) scribed above. We have selected an implementation
» fine-grained schemes can support reclustering ot ateqy that remains consistent with our goals of porta-
objects within pages, and bility and compatibility with existing off-the-shelf com-
ghilers, by using the C+smart pointerabstraction [17,
lation may also be able to support other fine- 7> 12]. Below, we first briefly e_pra|_n this abst_ractl_on
grained features (such as locking, transactions, etc 3" then describe how we use it for implementing fine-
at little extra cost. grained translation in Texas. We also discuss how both
fine-grained and coarse-grained schemes can coexist to
create a mixed-granularity environment.
In principle, fine-grained schemes can recluster data
over short intervals of time compared to coarse-grained
schemes. However, clustering algorithms are themselves.1  Smart Pointers
an interesting topic for research, and further studies are
necessary for conclusive proof. We also make another
observation that fine-grained techniques are attractivé smart pointer is a special C++ parameterized class
for unusually-sophisticated systems, e.g., those supporsuch that instances of this class behave like regular
ing fine-grained concurrent transactions. Inevitably, thispointers. Smart pointers support all standard pointer op-
will incur an appreciable run-time cost, even if that costerations such as dereference, cast, indexing etc. How-
is “billed” to multiple desirable features. Such costs mayever, since they are implemented using a C++ class
be reduced in the future if fine-grained checking is sup-with overloaded operators supporting these pointer op-
ported in hardware. erations, it is possible to execute arbitrary code as part
of any such operation. While smart pointers were origi-
nally used in garbage collectors to implement write bar-
riers [22, 21], they are also suitable for implementing
5 Mixed-granularity Address Translation address translation; the overloaded pointer dereference
in Texas operations (via the*” and “-> " operators) can imple-
ment the necessary translation from persistent pointers
into transient pointers.

e the checks required for fine-grained address tran

Pointer swizzling at page fault time usually provides , o )

good performance for most applications with good l0-A smart pointer class declaration is typically of the fol-
cality of reference. However, applications that exhibit'OWing form:

poor locality of reference, especially those with large

sparsely-accessed index data structures, may not pr?émplate <class T> class Ptr

duce best results with such coarse-grained translatio

mechanisms. Applications that access big multi-way public:

index trees are a good example; usually, such applica-" py, (T *p = NULL); // constructor

tions sparsely access the index tree, that is, only a few Ptr ();
paths are followed down from the root. If the tree nodes
are large and have a high fanout, the first access to a *operator -> (); // dereference
node will cause all those pointers to be swizzled, and operator T * (): // cast to ‘T *
possibly reserve several pages of virtual address space.

However, most of this swizzling is probably unnecessary,.

since only a few pointers will be dereferenced. '

/I destructor
T& operator * (); // dereference

The solution is to provide a fine-grained address transGiven the above declaration of a smart pointer class, we
lation mechanism which translates pointers individually,can then use it as follows:
instead of doing it a page at a time. Unlike the coarse- 13A pointer is “found” when its location becomes known. This

grained mechanism yvher(_e the. swizzling was triggere% similar to the notion of “swizzling upon discovery” as described
by an access-protection violation, the actual translatiorn [20].




class Node; /I assume defined we describe at least two possible ways to handle fine-
Node *node_p; /I regular pointer grained address translation, and discuss why we choose
Ptr<Node> node_sp; // smart pointer one over the other.

node_p->some_method();
node_sp->some_method(); 5.2.1 Fine-grained Swizzling

Note that we have only shown_some OT t_he OpefatF’fS T straightforward way of implementing fine-grained ad-
the declaration. Also, we avoid describing the privateyess transiation is to cache the translated address value
data members of the smart pointer because the intef \he pointer field itself; we call thiine-grained swiz-
face is much more important than the internal represensjing hecause the pointer value is cached after being
tation; it does not matteflowthe class is structured as .onsjated® We chose not to follow this approach be-

long as the interface is implemented correctly. In fact, ., ,se of a few problems with the basic technique.
as will be clear from our discussion about variations in
fine-grained address translation mechanisms, the Smagiq; fine-grained swizzling incurs checking overhead
pointer will need to be implemented differently for dif- o e\ ery pointer dereference; the first dereference will
ferent situations and implementation choices. check and swizzle the pointer, while future dereferences
. ) . will check (and find) that the swizzled virtual address
Smart pointers were designed with the goal of transsg already available and can be used directly. A more
parently replacing regular pointers (except for deCIara’significant problem is presented by equality checks (
tions), and providing additional flexibility because arbi- |5 the C4++== operator)—when two smart pointers are
trary code can be executed for every pointer Operationcompared, the comparison can only be made after en-
In essence, itis an attempt to introduce limited (Comp“e'suring that both pointers are in the same representation,
tim_e) reflection [10] into C++ fqr buil_tin dat_a_types (i'ej' that is, either both are persistent addresses or both are
pointers):* However, as described in [7], itis impossi- iy al addresses. In the worst-case scenario, the point-
ble to truly replace the functionality of regular pointers ¢ il pe in different representations, and one of them
in a completely transparent fashion. Part of the probleny iy haye to be swizzled before the check can complete.

stems from some of the inconsistencies in the Ianguagq;hus’ a simple equality check, on average, can become
definition and unspecified implementation dependence,, e expensive than desired.

Thus, we do not advocate smart pointers for arbitrary

usage across the board, but they are useful in situatior@ne solution is to make the pointer field large enough
where further control is required over pointer operations.(0 store both persistent and virtual address values, as in
E [14, 15]. In the current context, the smart pointer in-
ternal representation could be extended such that it can
hold both the pointer fields. This technique avoids the
overhead on equality checks, which can be implemented

In order to imol i ined add ¢ lation by simply comparing persistent addresses without regard
h ordertoimplementiineé-grained adaress transiation In, swizzling, at the expense of additional storage.
Texas, we must swizzle individual pointers, instead of

entire pages at a time, thereby reducing the COnsumH'Jnfortunately, a more serious problem with fine-grained
tion of wrtua] address space for sparsely-accgssed da izzling is presented by its peculiar interaction with
structures with high fanout. By using smart pointers forcheckpointing. When a persistent pointer is swizzled,

She virtual address has to be cached in the pointer field
?either E-style or otherwise), that is, we mumsbdify

‘the pointer. Since virtual memory protections are used
to detect updates initiated by the application for check-
pointing purposes, updating a smart pointer to cache the
swizzled address will generate “false positives” for up-
dates, causing unnecessary checkpointing. We could
work around this problem by first resetting the permis-

14C++ already provides limited reflective capabilities in the form of Sions on the page, swizzling (and caching) the pointer,
operator overloading for user-defined types and classes. However, this
fails to support completely transparent redefinition of pointer opera- 1°The term “swizzling” implies that the translated address is cached,
tions in arbitrary situations. as opposed to discarded after use.

5.2 Fine-grained Address Translation

data structures that are swizzled on a per-pointer basi
without requiring any inherent changes in the implemen
tation of the basic swizzling mechanism.

Note that although the pointers are swizzled individu-
ally, the granularity of data fetching is still a page, not
individual objects, to avoid excessive 1/O costs. Below




and then restoring the permissions on the page. HowWe have implemented mixed-granularity address trans-
ever, this is very slow on average because it requires kettation in Texas by combining a fine-grained approach us-
nel intervention to change page protections. ing smart pointers that are translated at every use, along
with the standard coarse-grained approach. This allows
better programmer control over the choice of data struc-
tures for which fine-grained address translation is used,
while maintaining the overall performance of pointer
swizzling at page fault time.

We have seen that a simple fine-grained swizzling mech-

anism is not as desirable because of its unusual interac-

tions with the operating system and the virtual memory

system. However, we can slightly modify the basictech-6  Performance Measurements

nigue and overcome most of the disadvantages without

losing any of the benefits.

5.2.2 Translations at Each Use

We present our experimental results for different ad-
The solution is to implement smart pointers that aredress translation granularities using the standard OO1
translated oreveryuse and avoid any caching of the database benchmark [4, 5] with some minor variations
translated value. In other words, these smart pointergs the workload for our experimental measurements. We
hold only the persistent addresses, and must be transirst briefly explain the rationale for choosing the 001
lated every time they are dereferenced because the Vigenchmark for our performance measurements, then de-

tual addresses are not cached. Equality checks do n@kribe the experimental design followed by the actual re-
incur any overhead because the pointer fields are alwaysuits, and finally end with a summary.

in the same representation and can be compared directly.

Pointer dereferences also do not incur any additionag.1 Benchmark Choice
checking overhead. The cost of translating at each use
does not add much overhead to the overall cost, and is

usually amortized over other “work” done by the appli- \ost performance measurements and analysis of persis-
cation; that is, the application may dereference a smafgnt ohject systems (and object-oriented database sys-
pointer and then do some computation with the resultingems) have been done usisgnthetic benchmarkis-
target object before dereferencing another smart pointegiead of using real applications. There are two reasons
for this: first, there are few large, realistic applications
The advantage of this approach is that the pointer fieldgnat exercise all persistence mechanisms of the underly-
do not need to be modified because the translated aghg system and of those that exist, few are available for
dress values are never cached, and all unwanted intefeneral use; and second, it is typically extremely hard
actions with checkpointing and the virtual memory sys-t, adapt a large piece of code to any given persistence

tem are avoided. Of course, this approach is still unsuity,echanism without having a detailed understanding of
able as a general swizzling mechanism compared to thge application.

pointer swizzling at page fault time for reasons described

in Section 4. The 001 and 007 [3] benchmarks have become quite
popular among various benchmarks, and have been used
widely for measuring the performance of persistent sys-
5.3 Combining Coarse-grained and Fine- tems. However, we posit that these benchmarks are
grained Address Translation not representativef typical real-world applications, be-
cause they have not been validated against applications
in the domain they represent; other researchers [18] have
It is possible to implement a mixed-granularity addressalso reached similar conclusions. As such, the experi-
translation scheme that consists of both coarse-grainemental results from these benchmarks should be inter-
pointer swizzling and fine-grained address translationpreted with caution. The apparently “empirical” nature
The interaction of swizzling with data structures suchof these “experimental” results is likely to lull people
as B-trees can be handled through the use of the smairito relying on the results more than appropriate. It is
pointer abstraction. The details of a fine-grained addressnportant to always remember that while the results are
translation scheme are hidden, making the approach paobtained empirically, they are ultimately derived from a
tially reflective. synthetic benchmark and are only as good as the map-



ping of benchmark behavior onto real applications. sal setcontains a total of 45 traversals split as follows:
the first traversal is theold traversal (whemo datais

Although OOl is a crude benchmark and does notached in memory), the next 34 asarmtraversals (as

strongly correspond to a real application, we use it formore and more datés cached in memory) and finally

several reasons. First, OO1 is simple for measuring ravthe last 10 ardottraversals (wheall datais cached in

performance of pointer traversals (which is what we arememory)!’ We use a random number generator to en-

interested in) and is fairly amenable to modifications forsure that each warm traversal selects a new “root” part as

different address translation granularities. Use of a synthe initial starting point, thus visiting a mostly-different

thetic benchmark is also appropriate in this situation beset of parts in each traversal.

cause our performance is very good in some cases (i.e.,

zero overhead when there is no faulting) and dependent

on the rate of faulting (usually minimal overhead com-6.3 Experimental Results

pared to I/O costs) for other cases. As such, crude bench-

marking is the most practical way to measure perfor-

mance of different components of our system becaus¥Ve present results for the OO1 traversal opera’[ions cor-

it is easy to separate our costs from those of the underlycesponding to different address translation granularities

ing benchmark; this is usually more difficult with a real for the data structures used during the traversals. In

application. Further discussion on sythetic benchmarkg®articular, we are interested in three different address

and their applicability is available in [8]. translation granularities, nametparse-grainegdmixed-
granularity andfine-grainedstrategies. The following

table describes the types of pointers used for each gran-
6.2 Experimental Design ularity and the corresponding key in the results.

| Granularity | Type(s) of pointers | Key |

The benchmark database is made up of a spadfob- coarse all language-supportef all-raw
jectsinterconnected to each other. The benchmark speg- mixed smart for index smart-index
ifies two database sizes based on the number of parisfine all smart all-smart
stored in the database—sanall databasecontaining
20,000 parts and krge databasecontaining 200,000
parts—to allow performance measurements of a sysWe use CPU tim¥ instead of absolute real time be-
tem when the entire database is small enough to fit int¢ause the difference in performance is primarily due to
main memory and compare it with situations where thedifferences in faulting and swizzling, and allocating ad-
database is larger than the available memory. dress space for reserved pages. Unfortunately, CPU-
time timers on most operating systems have a coarse
The parts are indexed by unigpart numbersassoci-  granularity (typically in several milliseconds), and it
ated with each paff Each part is “connected” via a would be impossible to measure any reasonable differ-
direct link to exactly three other parts, chosen partiallyences in the performance due to a change in the address
randomly to produce some locality of reference. In par-translation granularity because our overheads are very
ticular, 90% of the connections are to “nearby” 1% of small. Thus, we use an older SPARCstation ELC, which
parts where “nearness” is defined in terms of part numis slow enough to offset the coarse granularity of the
bers, that is, a given part is considered to be “near” othetimers, while providing reasonable results.
parts if those parts have part numbers that are numeri-
cally close to the number of this part. The remainingFigure 3 presents the CPU time for all traversals in an
10% of the connections are to (uniformly) randomly- entire traversal set run on a large database. As expected,
chosen parts. the cost for “all-raw” case (coarse-grained address trans-
lation) is the highest for the first 15 or so traversals.
We use the OO1 benchmark traversal operation (perfornthis is not unusual because the coarse-grained address
a depth-first traversal of all connected parts starting froniranslation scheme swizzles all pointers in the faulted-
arandomly-chosen part and traversing up to seven levelgn pages and reserves many pages that may never be

deep for a total of 3280 parts mCIUdmg pOSSIble dUp“_ 1This is different from the standard benchmark specification con-

cates, and invoke an empty procedure on each visitegining only 20 traversals (split as 1 cold, 9 warm, and 10 hot traver-

part) for our performance measurements. Ewatier- sals); we run more warm traversals because we believe that 9 traversals

are not sufficient to provide meaningful results, especially for the large
16The benchmark specification does not define a data structure thatatabase case.

must be used for the index; we used a B+ tree for all our experiments. 18We refer to the sum afiserandsystentime as theCPU time
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Figure 3: CPU time for traversal on large database

used by the application. This is exacerbated by thd-igure 4 shows the corresponding results for the small

poor locality of reference in the benchmark traversalsdatabase, where only the first 3 or 4 traversals contain

as many pages of the database are accessed during tlaglting and swizzling® Once again, a phenomenon

initial traversals, causing a large number of pages to bsimilar to the one in large database results can be seenin

reserved. The number of new pages swizzled decreaséise current results, but only for the initial traversals. In

as the cache warms up, and we see the correspondimgrticular, the CPU time is highest for the “all-raw” case

reduction in the CPU time. and lowest for the “all-smart” case. Also as before, the
two granularities swap their positions for the hot traver-

Note that the cost for the “all-smart” case (fine-grainedsals; the “all-smart” case is more expensive because of

address translation) is the lowest for the first 15 traverthe continual translation overhead at every use. Finally,

sals. Again, this is expected because the address tranas expected, the “all-raw” and “smart-index” results are

lation scheme does not swizzle any pointers in a pagéentical for hot traversals because no index pointers are

when it is faulted in because they are all smart pointerglereferenced.

that must be translated at every use. Finally, the CPU

time for the “smart-index” case (mixed-granularity ad-

dress translation) falls between the other two cases fo6.4 Summary

the first 15 traversals. This is also reasonable because

only the index structure contains smart pointers, and

each traversal uses this index only once (to select the rodthe results presented above support our assertion that

part for the traversal). This cost is only slightly less thanfine-grained address translation can be effectively used

the “all-raw” case because our B+ tree implementatiorfor data structures with high fanout that are less con-

generated a tree that was only three levels deep, reducirducive for a coarse-grained scheme. At the same time,

the number of smart pointers that had to be translated foa pure fine-grained approach is not the best performing

each traversal. as the primary address translation mechanism in Texas
because of various overheads associated with it.

Now consider the hot traversals (36 through 45). The

first thing to note is that the CPU time for the “all-smart” One problem with using the OO1 benchmark is that the

case is higher than that for the other two cases. This isperations do not perform any real computation (unlike

because smart pointers impose a continual overhead fer

each pointer dereference. and this cost is incurred eVesults for hot traversals because there is no index lookup, and no smart
p ! &)inters need to be translated. We attribute the difference between the

if the target object is resident. In contrast, the “all-raw” hot results in these two cases to caching effects.

case has zero overhead for hot traver$als. 20Most of the database is memory-resident within the first few
traversals because of the extremely poor locality characteristics in the

19The “smart-index” results should be identical to the “all-raw” re- connections.
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in actual applications) with objects that are traversedponent, while maintaining portability and compatibility

As such, the cost of fine-grained translation is high-of the system.

lighted as a larger component of the total cost than it

typically would be in an actual application that performs Our basic performance results using the OO1 benchmark

real “work” on data objects as they are traversed. have shown that the mixed-granularity approach works
well for applications with data structures that do not pro-
vide the best performance with a pure coarse-grained
approach. However, further performance measurements

7 Conclusions are necessary, especially using real applications instead
of synthetic benchmarks which do not always model re-
ality very well.
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