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Abstract

Existing profilers for Java applications typically rely on
custom instrumentation in the Java virtual machine, and
measure only limited types of resource consumption.
Garbage collection and multi-threading pose additional
challenges to profiler design and implementation.

In this paper we discuss a general-purpose, portable, and
extensible approach for obtaining comprehensive pro-
filing information from the Java virtual machine. Pro-
filers based on this framework can uncover CPU us-
age hot spots, heavy memory allocation sites, unnec-
essary object retention, contended monitors, and thread
deadlocks. In addition, we discuss a novel algorithm
for thread-aware statistical CPU time profiling, a heap
profiling technique independent of the garbage collec-
tion implementation, and support for interactive profil-
ing with minimum overhead.

1 Introduction

Profiling [14] is an important step in software develop-
ment. We use the term profiling to mean, in a broad
sense, the ability to monitor and trace events that oc-
cur during run time, the ability to track the cost of these
events, as well as the ability to attribute the cost of the
events to specific parts of the program. For example, a
profiler may provide information about what portion of
the program consumes the most amount of CPU time,
or about what portion of the program allocates the most
amount of memory.

This paper is mainly concerned with profilers that pro-
vide information to programmers, as opposed to profil-
ers that feedback to the compiler or run-time system.
Although the fundamental principles of profiling are the
same, there are different requirements in designing these
two kinds of profilers. For example, a profiler that sends
feedback to the run-time system must incur as littleover-

head as possible so that it does not slow down program
execution. A profiler that constructs the complete call
graph, on the other hand, may be permitted to slow down
the program execution significantly.

This paper discusses techniques for profiling support in
the Java virtual machine [17]. Java applications are writ-
ten in the Java programming language [10], and com-
piled into machine-independent binary class files, which
can then be executed on any compatible implementation
of the Java virtual machine. The Java virtual machine is
a multi-threaded and garbage-collected execution envi-
ronment that generates various events of interest for the
profiler. For example:

� The profiler may measure the amount of CPU time
consumed by a given method in a given class. In
order to pinpoint the exact cause of inefficiency, the
profiler may need to isolate the total CPU time of a
methodA.f called from another methodB.g , and
ignore all other calls toA.f . Similarly, the profiler
may only want to measure the cost of executing a
method in a particular thread.

� The profiler may inform the programmer why there
is excessive creation of object instances that be-
long to a given class. The programmer may want
to know, for example, that many instances of class
D are allocated in methodC.h . More specifically,
it is also useful to know that majority of these allo-
cations occur whenB.g callsC.h , andonly when
A.f callsB.g .

� The profiler may show why a certain object is not
being garbage collected. The programmer may
want to know, for example, that an instance of class
C is not garbage collected because it is referred to
by an instance of classD, which is then referred
to by a local variable in an active stack frame of
methodB.g .

� The profiler may identify the monitors that are con-



tended by multiple threads. It is useful to know, for
example, that two threads,T1 andT2, repeatedly
contend to enter the monitor associated with an in-
stance of classC.

� The profiler may inform the programmer what
causes a given class to be loaded. Class loading
not only takes time, but also consumes memory re-
sources in the Java virtual machine. Knowing the
exact reason that a class is loaded, the programmer
can optimize the code to reduce memory usage.

The first contribution of this paper is to present a
general-purpose, extensible, and portable Java virtual
machine profiling architecture. Existing profilers typ-
ically rely on custom instrumentation in the Java vir-
tual machine and measure limited types of resource con-
sumption. In contrast, our framework relies on an in-
terface that provides comprehensive support for profilers
that can be built independent of the Java virtual machine.
A profiler can obtain information about CPU usage hot
spots, heavy memory allocation sites, unnecessary ob-
ject retention, monitor contention, and thread deadlocks.
Both code instrumentation and statistical sampling are
supported. Adding new features typically requires intro-
ducing new event types, and does not require changes
to the profiling interface itself. The profiling interface is
portable. It is not dependent on the internal implementa-
tion of the Java virtual machine. For example, the heap
profiling support is independent of the garbage collec-
tion implementation, and can present useful information
for a wide range of garbage collection algorithms. The
benefit of this approach is obvious. Tools vendors can
ship profilers that work with any virtual machine that
implements the interface. Equivalently, users of a Java
virtual machine can easily take advantage of the profilers
available from different tools vendors.

The second contribution of this paper is to introduce
an algorithm that obtains accurate CPU-time profiles in
a multi-threaded execution environment with minimum
overhead. It is a standard technique to perform statisti-
cal CPU time profiling by periodically sampling the run-
ning program. What is less known, however, is how to
obtain accurate per-thread CPU time usage on the ma-
jority of operating systems that do not provide access
to the thread scheduler or a high-resolution per-thread
CPU timer clock. In these cases, it is difficult to at-
tribute elapsed time to threads that are actually running,
as opposed to threads that are blocked, for example, in
an I/O operation. Our solution is to determine whether
a thread has run in a sampling interval by comparing the
check sum of its register sets. To our knowledge, this is
the most portable technique for obtaining thread-aware

CPU-time profiles on modern operating systems.

The third contribution is to demonstrate how our ap-
proach supports interactive profiling with minimum
overhead. Users can selectively enable or disable dif-
ferent types of profiling while the application is running.
This is achieved with very low space and time overhead.
Neither the virtual machine, nor the profiler need to ac-
cumulate large amounts of trace data. The Java virtual
machine incurs only a test and branch overhead for a dis-
abled profiling event. Most events occur in code paths
that can tolerate the overhead of an added check. As
a result, the Java virtual machine can be deployed with
profiling support in place.

We have implemented all the techniques discussed in
this paper in the Java Development Kit (JDK) 1.2
[15]. Numerous tool vendors have already built profil-
ing front-ends that rely on the comprehensive profiling
support built into the JDK 1.2 virtual machine.

We will begin by introducing the general-purpose profil-
ing architecture, before we discuss the underlying tech-
niques in detail. We assume the reader is familiar with
the basic concepts in the Java programming language
[10] and the Java virtual machine [17].

2 Profiling Architecture

The key component of our profiling architecture is a
general-purpose profiling interface between the Java vir-
tual machine and the front-end responsible for present-
ing the profiling information. A profiling interface, as
opposed to direct profiling support in the virtual machine
implementation, offers two main advantages:

First, profilers can present profiling information in dif-
ferent forms. For example, one profiler may simply
record events that occur in the virtual machine in a trace
file. Alternatively, another profiler may receive input
from the user and display the requested information in-
teractively.

Second, the same profiler can work with different virtual
machine implementations, as long as they all support the
same profiling interface. This allows tool vendors and
virtual machine vendors to leverage each other’s prod-
ucts effectively.

A profiling interface, while providing flexibility, also has
potential shortcomings. On one hand, profiler front-ends
may be interested in a diverse set of events that occur in
the virtual machine. On the other hand, virtual machine



implementations from different vendors may be differ-
ent enough that it is impossible to expose all the inter-
esting events through a general-purpose interface.

The contribution of our work is to reconcile these differ-
ences. We have designed a general-purpose Java Virtual
Machine Profiler Interface (JVMPI) that is efficient and
powerful enough to suit the needs of a wide variety of
virtual machine implementations and profiler front-ends.

Figure 1 illustrates the overall architecture. The JVMPI
is a binary function-call interface between the Java vir-
tual machine and aprofiler agentthat runs in the same
process. The profiler agent is responsible for the com-
munication between the Java virtual machine and the
profiler front-end. Note that although the profiler agent
runs in the same process as the virtual machine, the pro-
filer front-end typically resides in a different process, or
even on a different machine. The reason for the sepa-
ration of the profiler front-end is to prevent the profiler
front-end from interfering with the application. Process-
level separation ensures that resources consumed by the
profiler front-end does not get attributed to the profiled
application. Our experience shows that it is possible
to write profiler agents that delegate resource-intensive
tasks to the profiler front-end, so that running the pro-
filer agent in the same process as the virtual machine
does not overly distort the profiling information.

We will introduce some of the features of the Java vir-
tual machine profiling interface in the remainder of this
section, and discuss how such features are supported by
the Java virtual machine in later sections.

2.1 Java Virtual Machine Profiler Interface

Figure 1 illustrates the role of the JVMPI in the overall
profiler architecture. The JVMPI is a two-way function
call interface between the Java virtual machine and the
profiler agent.

The profiler agent is typically implemented as a
dynamically-loaded library. The virtual machine makes
function calls to inform the profiler agent about various
events that occur during the execution of the Java appli-
cation. The agent in turn receives profiling events, and
calls back into the Java virtual machine to accomplish
one the the following tasks:

� The agent may disable and enable certain type of
events sent through the JVMPI, based on the needs
of the profiler front-end.

� The agent may request more information in re-
sponse to particular events. For example, after the
agent receives a JVMPI event, it can make a JVMPI
function call to find out the stack trace for the cur-
rent thread, so that the profiler front-end can inform
the user about the program execution context that
led to this JVMPI event.

Using function calls is a good approach to an efficient
binary interface between the profiler agent and differ-
ent virtual machine implementations. Sending profiling
events through function calls is somewhat slower than
directly instrumenting the virtual machine to gather spe-
cific profiling information. As we will see, however, ma-
jority of the profiling events are sent in situations where
we can tolerate the additional cost of a function call.

JVMPI events are data structures consisting of an inte-
ger indicating the type of the event, the identifier of the
thread in which the event occurred, followed by infor-
mation specific to the event. To illustrate, we list the
definition of theJVMPI Event structure and one of its
variantsgc info below. Thegc info variant records
information about an invocation of the garbage collec-
tor. The event-specific information indicates the number
of live objects, total space used by live objects, and the
total heap size.

typedef struct {
jint event_type;
JNIEnv *thread_id;
...
union {

...
struct {

jlong used_objects;
jlong used_object_space;
jlong total_object_space;

} gc_info;
...

} u;
} JVMPI_Event;

Additional details of the JVMPI can be found in the doc-
umentation that is shipped with the JDK 1.2 release [15].

2.2 The HPROF Agent

To illustrate the power of the JVMPI and show how it
may be utilized, we describe some of the features in the
HPROF agent, a simple profiler agent shipped with JDK
1.2. The HPROF agent is a dynamically-linked library
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Figure 1: Profiler Architecture

shipped with JDK 1.2. It interacts with the JVMPI and
presents profiling information either to the user directly
or through profiler front-ends.

We can invoke the HPROF agent by passing a special
option to the Java virtual machine:

java -Xrunhprof ProgName

ProgName is the name of a Java application. Note that
we pass the-Xrunhprof option to java , the opti-
mized version of the Java virtual machine. We need not
rely on a specially instrumented version of the virtual
machine to support profiling.

Depending on the type of profiling requested, HPROF
instructs the virtual machine to send it the relevant pro-
filing events. It gathers the event data into profiling in-
formation and outputs the result by default to a file. For
example, the following command obtains the heap allo-
cation profile for running a program:

java -Xrunhprof:heap=sites ProgName

Figure 2 contains the heap allocation profile generated
by running the Java compiler (javac ) on a set of input
files. We only show parts of the profiler output here due
to the lack of space. A crucial piece of information in
heap profile is the amount of allocation that occurs in
various parts of the program. TheSITES record above
tells us that 9.18% of live objects are character arrays.
Note that the amount of live data is only a fraction of the
total allocation that has occurred at a given site; the rest
has been garbage collected.

A good way to relate allocation sites to the source code
is to record the dynamic stack traces that led to the heap

allocation. Figure 3 shows another part of the profiler
output that illustrates the stack traces referred to by the
four allocation sites presented in Figure 2.

Each frame in the stack trace contains class name,
method name, source file name, and the line number.
The user can set the maximum number of frames col-
lected by the HPROF agent. The default limit is 4. Stack
traces reveal not only which methods performed heap
allocation, but also which methods were ultimately re-
sponsible for making calls that resulted in memory allo-
cation. For example, in the heap profile above, instances
of the samejava/util/Hashtable$Entry class
are allocated in traces1091 and 1264,each originated
from different methods.

The HPROF agent has built-in support for profiling CPU
usage. For example, Figure 4 is part of the generated
output after the HPROF agent performs sampling-based
CPU time profiling on thejavac compiler.

The HPROF agent periodically samples the stack of
all running threads to record the most frequently ac-
tive stack traces. Thecount field above indicates how
many times a particular stack trace was found to be ac-
tive. These stack traces correspond to the CPU usage hot
spots in the application.

The HPROF agent can also report complete heap dumps
and monitor contention information. Due to the lack of
space, we will not list more examples of how the HPROF
agent presents the information obtained through the pro-
filing interface. However, we are ready to explain the de-
tails of how various profiling interface features are sup-
ported in the virtual machine.



SITES BEGIN (ordered by live bytes) Wed Oct 7 11:38:10 1998
percent live alloc’ed stack class

rank self accum bytes objs bytes objs trace name
1 9.18% 9.18% 149224 5916 1984600 129884 1073 char []
2 7.28% 16.45% 118320 5916 118320 5916 1090 sun/tools/java/Identifier
3 7.28% 23.73% 118320 5916 118320 5916 1091 java/util/Hashtable$Entry
...
7 3.39% 41.42% 55180 2759 55180 2759 1264 java/util/Hashtable$Entry
...

SITES END

Figure 2: HPROF Heap Allocation Profile

THREAD START (obj=1d6b20, id = 1, name="main", group="main")
...
TRACE 1073: (thread=1)

java/lang/String.<init>(String.java:244)
sun/tools/java/Scanner.bufferString(Scanner.java:143)
sun/tools/java/Scanner.scanIdentifier(Scanner.java:942)
sun/tools/java/Scanner.xscan(Scanner.java:1281)

TRACE 1090: (thread=1)
sun/tools/java/Identifier.lookup(Identifier.java:106)
sun/tools/java/Scanner.scanIdentifier(Scanner.java:942)
sun/tools/java/Scanner.xscan(Scanner.java:1281)
sun/tools/java/Scanner.scan(Scanner.java:971)

TRACE 1091: (thread=1)
java/util/Hashtable.put(Hashtable.java:405)
sun/tools/java/Identifier.lookup(Identifier.java:106)
sun/tools/java/Scanner.scanIdentifier(Scanner.java:942)
sun/tools/java/Scanner.xscan(Scanner.java:1281)

TRACE 1264: (thread=1)
java/util/Hashtable.put(Hashtable.java:405)
sun/tools/java/Type.<init>(Type.java:90)
sun/tools/java/MethodType.<init>(MethodType.java:42)
sun/tools/java/Type.tMethod(Type.java:274)

Figure 3: HPROF Stack Traces

CPU SAMPLES BEGIN (total = 252378) Wed Oct 07 13:30:10 1998
rank self accum count trace method

1 4.96% 4.96% 12514 303 sun/io/ByteToCharSingleByte.convert
2 3.18% 8.14% 8022 306 java/lang/String.charAt
3 1.91% 10.05% 4828 301 sun/tools/java/ScannerInputReader.<init>
4 1.80% 11.85% 4545 305 sun/io/ByteToCharSingleByte.getUnicode
5 1.50% 13.35% 3783 304 sun/io/ByteToCharSingleByte.getUnicode
6 1.30% 14.65% 3280 336 sun/tools/java/ScannerInputReader.read
7 1.13% 15.78% 2864 404 sun/io/ByteToCharSingleByte.convert
8 1.11% 16.89% 2800 307 java/lang/String.length
9 1.00% 17.89% 2516 4028 java/lang/Integer.toString

10 0.95% 18.84% 2403 162 java/lang/System.arraycopy
...
CPU SAMPLES END

Figure 4: HPROF Profile of CPU Usage Hot Spots



3 CPU Time Profiling

A CPU time profiler collects data about how much CPU
time is spent in different parts of the program. Equipped
with this information, programmers can find ways to re-
duce the total execution time.

3.1 Design Choices

We considered the following design choices when build-
ing the support for CPU time profilers: the granularity of
profiling information and whether to use statistical sam-
pling or code instrumentation.

3.1.1 Granularity

Shall we present information at the method call level, or
at a finer granularity such as basic blocks or different ex-
ecution paths inside a method? Based on our experience
with tuning Java applications, we believe that there is
little reason to attribute cost to a finer granularity than
methods. Programmers typically have a good under-
standing of cost distribution inside a method; methods
in Java applications tend to be smaller than, for exam-
ple, C/C++ functions.

It is not enough to report a flat profile consisting only
of the portion of time in individual methods. If, for
example, the profiler reports that a program spends a
significant portion of time in theString.getBytes
method, how do we know which part of our program in-
directly contributed to invoking this method, if the pro-
gram does not call this method directly?

A good way to attribute profiling information to Java
applications is to report the dynamic stack traces that
lead to the resource consumption. Dynamic stack traces
become less informative in some languages where it is
hard to associate stack frames with source language con-
structs, such as when anonymous functions are involved.
Fortunately, anonymous inner classes in the Java pro-
gramming language are represented by classes with in-
formative names at run time.

3.1.2 Statistical Sampling vs. Code Instrumentation

There are two ways to obtain profiling information: ei-
ther statistical sampling or code instrumentation. Sta-
tistical sampling is less disruptive to program execu-
tion, but cannot provide completelyaccurate informa-
tion. Code instrumentation, on the other hand, may be
more disruptive, but allows the profiler to record all the

events it is interested in. Specifically in CPU time profil-
ing, statistical sampling may reveal, for example, the rel-
ative percentage of time spent in frequently-called meth-
ods, whereas code instrumentation can report the exact
number of time each method is invoked.

Our framework supports both statistical sampling and
code instrumentation. Through the JVMPI, the pro-
filer agent can periodically sample the stack of all run-
ning threads, thus discovering the most frequently active
stack traces. Alternatively, the profiler agent may ask the
virtual machine to send events on entering and exiting
methods. Naturally the latter approach introduces addi-
tional C function call overhead to each profiled method.

A less disruptive way to implement code instrumenta-
tion is to inject profiling code directly into the profiled
program. This type of code instrumentation is easier
on the Java platform than on traditional CPUs, because
there is a standard class file format. The JVMPI allows
the profiler agent to instrument every class file before
it is loaded by the virtual machine. The profiler agent
may, for example, insert custom byte code sequence that
records method invocations, control flow among the ba-
sic blocks, or other operations (such as object creation or
monitor operations) performed inside the method body.
When the profiler agent changes the content of a class
file, it must ensure that the resulting class file is still valid
according to the Java virtual machine specification.

3.2 Thread-Aware CPU Time Sampling

The Java virtual machine is a multi-threaded execution
environment. One difficulty in building CPU time pro-
filers for such systems is how to properly attribute CPU
time to each thread, so that the time spent in a method
is accounted only when the method actually runs on the
CPU, not when it is unscheduled and waiting to run. The
basic CPU time sampling algorithm is as follows:

while (true) {
- sleep for a short interval;
- suspend all threads;
- record the stack traces of all threads

that have run in the last interval;
- attribute a cost unit to these stack

traces;
- resume all threads;

}

The profiler needs to suspend the thread while collecting
its stack trace, otherwise a running thread may change
the stack frames as the stack trace is being collected.



The main difficulty in the above scheme is how to deter-
mine whether a thread has run in the last sampling inter-
val. We should not attribute cost units to threads that are
waiting for an I/O operation, or waiting to be scheduled
in the last sampling interval. Ideally, this problem would
be solved if the scheduler could inform the profiler the
exact time interval in which a thread is running, or if the
profiler could find out the amount of CPU time a thread
has consumed at each sampling point.

Unfortunately, modern operating systems such as Win-
dows NT and Solaris neither expose the kernel sched-
uler nor provide ways to obtain accurate per-thread CPU
time. For example, theGetThreadTimes call on
Windows NT returns per-thread CPU time in 10 mil-
lisecond increments, too inaccurate for profiling needs.

Our solution is to determine whether a thread has run in
a sampling interval by checking whether its register set
has changed. If a thread has run in the last sampling in-
terval, it is almost certain that the contents of the register
set have changed.

The information gathered for the purpose of profiling
need not be 100% reliable. It is extremely unlikely,
however, that a running thread maintains an unchanged
register set, which includes such registers as the stack
pointer, the program counter, and all general-purpose
registers. One pathological example of a running pro-
gram with a constant register set is the following C code
segment, where the program enters into an infinite loop
that consists of one instruction:

loop: goto loop;

In practice, we find that it suffices to compute and record
a checksum of a subset of the registers, thus further re-
ducing the overhead of the profiler.

The cost of suspending all threads and collecting their
stack traces is roughly proportional of the number of
threads running in the virtual machine. A minor en-
hancement to the sampling algorithm discussed earlier
is that we need not suspend and collect stack traces for
threads that are blocked on monitors managed by the vir-
tual machine. This significantly reduces the profiling
overhead for many multi-threaded programs in which
most threads are blocked most of the time. Our expe-
rience shows that, for typical programs, the total over-
head of our sampling-based CPU time profiler with a
sampling interval of 1 millisecond is less than 20%.

4 Heap Profiling

Heap profiling serves a number of purposes: pinpointing
the part of program that performs excessive heap allo-
cation, revealing the performance characteristics of the
underlying garbage collection algorithm, and detecting
the causes of unnecessary object retention.

4.1 Excessive Heap Allocation

Excessive heap allocation leads to performance degra-
dation for two reasons: the cost of the allocation opera-
tions themselves, and because the heap is filled up more
quickly, the cost of more frequent garbage collections.
With the JVMPI, the profiler follows the following steps
to pinpoint the part of the program that performs exces-
sive heap allocation:

� Enable the event notification for object allocation,
so that the virtual machine issues a function call to
the profiler agent when the current thread performs
heap allocation.

� Obtain the current stack trace from the virtual ma-
chine when object allocation event arrives. The
stack trace serves as a good identification of the
heap allocation site. The programmer should con-
centrate on optimizing busy heap allocation sites.

� Enable the event notification for object reclamation,
so that the profiler can keep track of how many ob-
jects allocated from a given site are being kept live.

4.2 Algorithm-Independent Allocation and
Garbage Collection Events

Many memory allocation and garbage collection algo-
rithms are suitable for different Java virtual machine
implementations. Mark-and-sweep, copying, genera-
tional, and reference counting are some examples. This
presents a challenge to designing a comprehensive pro-
filing interface: Is there a set of events that can uniformly
handle a wide variety of garbage collection algorithms?

We have designed a set of profiling events that covers
all garbage collection algorithms we are currently con-
cerned with. We introduce the abstract notion of an
arena, in which objects are allocated. The virtual ma-
chine issues the following set of events:

� NEWARENA(arena ID)



� DELETEARENA(arena ID)

� NEWOBJECT(arena ID, object ID, class ID)

� DELETEOBJECT(object ID)

� MOVEOBJECT(old arena ID, old object ID, new
arena ID, new object ID)

Our notation encodes the event-specific information in
a pair of parentheses, immediately following the event
type. Let us go through some examples to see how these
events may be used with different garbage collection al-
gorithms:

� A mark-and-sweep collector issuesNEWOBJECT
events when allocating objects, and issues
DELETEOBJECTevents when adding objects to
the free list. Only one arena ID is needed.

� A mark-sweep-compact collector additionally is-
sues MOVEOBJECT events. Again, only one
arena is needed, the old and new arena IDs in the
MOVEOBJECTevents are the same.

� A standard two-space copying collector creates two
arenas. It issuesMOVEOBJECTevents during
garbage collection, and aDELETEARENAevent
followed by aNEWARENAevent with the same
arena ID to free up all remaining objects in the
semi-space.

� A generational collector issues aNEWARENA
event for each generation. When an object
is scavenged from one generation to anther, a
MOVEOBJECTevent is issued. All objects in an
arena are implicitly freed whenDELETEARENA
event arrives.

� A reference-counting collector issues
NEWOBJECT events when new objects are
created, and issuesDELETEOBJECTevents when
the reference count of an object reaches zero.

In summary, the simple set of heap allocation events sup-
port a wide variety of garbage collection algorithms.

4.3 Unnecessary Object Retention

Unnecessary object retention occurs when an object is
no longer useful, but being kept alive by another object
that is in use. For example, a programmer may insert
objects into a global hash table. These objects cannot be

garbage collected, as long as any entry in the hash table
is useful and the hash table is kept alive.

An effective way to find the causes of unnecessary ob-
ject retention is to analyze the heap dump. The heap
dump contains information about all the garbage collec-
tion roots, all live objects, and how objects refer to each
other.

Our profiling interface allows the profiler agent to re-
quest the entire heap dump, which can in turn be sent to
the profiler front-end for further processing and analysis.

An alternative way to track unnecessary object retention
is to provide the direct support in the profiling interface
for finding all objects that refer to a given object. The
advantage of this incremental approach is that it requires
less temporary storage than complete heap dumps. The
disadvantage is that unlike heap dumps, the incremental
approach cannot present a consistent view of all heap ob-
jects that are constantly being modified during program
execution.

In practice, we do not find the size of heap dumps to be
a problem. Typically the majority of the heap space is
occupied by primitive arrays. Because there are no in-
ternal pointers in primitive arrays, elements of primitive
arrays need not be part of the heap dump.

5 Monitor Profiling

Monitors are the fundamental synchronization mecha-
nism in the Java programming language. Programmers
are generally concerned with two issues related to mon-
itors: the performance impact ofmonitor contentionand
the cause ofdeadlocks. With the recent advances in
monitor implementation [4] [21], non-contended moni-
tor operations are no longer a performance issue. A non-
contended monitor enter operation, for example, takes
only 4 machine instructions on the x86 CPUs [21]. In
properly tuned programs, vast majority of monitor oper-
ations are non-contended. For example, Table 1 shows
the ratio of contended monitor operations in a num-
ber of programs. The first 8 applications are from the
SPECjvm98 benchmark. The last two applications are
GUI-rich programs. The monitor contention rate is ex-
tremely low in all programs. In fact, all but one program
(mtrt) in the SPECjvm98 benchmark suite are single-
threaded.



program # non-contended # contended percent contended
compress 14627 0 0.00%
jess 4826524 0 0.00%
raytrace 377921 0 0.00%
db 53417611 0 0.00%
javac 17337221 0 0.00%
mpeg 14546 0 0.00%
mtrt 715233 11 0.002%
jack 11929729 0 0.00%
HotJava 2277113 564 0.02%
SwingSet 1587585 1332 0.08%

Table 1: Monitor Contention Rate of Benchmark Programs

5.1 Monitor Contention

Monitor contention is the primary cause of lack of scal-
ability in multi-processor systems. Monitor contention
is typically caused by multiple threads holding global
locks too frequently or too long. To detect these scenar-
ios, the profiler may enable the following three types of
event notifications:

� A thread waiting to enter a monitor that
is already owned by another thread issues a
MONITORCONTENDEDENTERevent. This event
indicates possible performance bottlenecks caused
by frequently-contended monitors.

� After a thread finishes waiting to enter a mon-
itor and acquires the monitor, it issues a
MONITORCONTENDEDENTEREDevent. This
event indicates the amount of elapsed time the cur-
rent thread has been blocked before it enters the
monitor.

� When a thread exits a monitor, and discov-
ers that another thread is waiting to enter
the same monitor, the current thread issues a
MONITORCONTENDEDEXIT event. This event
indicates possible performance problems caused by
the current thread holding the monitor for too long.

In all these three cases, overhead of issuing the event
is negligible compared to the performance impact of the
blocked monitor operation. The profiler agent can obtain
the stack trace of the current thread and thus attribute the
monitor contention events to the parts of the program
responsible for issuing the monitor operations.

5.2 Deadlocks

If every thread is waiting to enter monitors that are
owned by another thread, the system runs into a dead-
lock situation. A thread/monitor dump is what program-
mers need to find the cause of this kind of deadlocks.1

A thread/monitor dump includes the following informa-
tion:

� The stack trace of all threads.

� The owner of each monitor and the list of threads
that are waiting to enter the monitor.

To obtain a consistent view of all threads and all
monitors, we suspend all threads when collecting
thread/monitor dumps. The JDK has historically pro-
vided support for thread/monitor dumps triggered by
special key sequences (such as Ctrl-Break on Win32).
The JVMPI now allows the profiler agent to obtain the
same information programmatically.

6 Support for Interactive Low-Overhead
Profiling

The profiling support we built into the Java virtual ma-
chine achieves the following two desirable goals:

� We must be able to supportinteractive profiler
front-ends. An approach that only supports collect-
ing profiling events into trace files does not meet
the needs of programmers and tools vendors. The

1Deadlocks may also be caused by implicit locking and ordering in
libraries and system calls, such as I/O operations.



user must to enable and disable profiling events dur-
ing program execution in order to pinpoint perfor-
mance problems in different stages of running an
application.

� The profiling support must incurlow overheadso
that programmers can run the application at full
speed when profiling events are disabled, and only
pay for the overhead of generating the type of
events specifically requested by the profiler front-
end. An approach that requires the use of a less
optimized virtual machine implementation for pro-
filing leads to additional discrepancies between the
profiled environment and real-world scenarios.

Because of the low overhead of our approach, we are
able to provide full profiling support in the standard de-
ployed version of the Java virtual machine implemen-
tation. It is possible to start an application normally,
and enable the necessary profiling events later without
restarting the application.

6.1 Overhead of Disabled Profiling Events

The need for dynamically enabling and disabling profil-
ing events requires added checks in the code paths that
lead to the generation of these events.

Majority of profiling events are issued relatively infre-
quently. Examples of these types of events are class
loading and unloading, thread start and end, garbage col-
lection, and JNI global reference creation and deletion.
We can easily support interactive low-overhead profiling
by placing checks in the corresponding code paths with-
out having a performance impact in normal program ex-
ecution.

Heap profiling events, in particularNEWOBJECT,
DELETEOBJECT, and MOVEOBJECTintroduced in
Section 4.2, could be quite frequent. An added check
in every object allocation may have a noticeable per-
formance impact in program execution, especially if the
check is inserted in the allocation fast path that typically
is inlined into the code generated by the Just-In-Time
(JIT) compilers. Fortunately, garbage-collected memory
systems by definition need to check for possible heap
exhaustion conditions in every object allocation, even in
the fast path. We can thus enable heap allocation events
by forcing every object allocation into the slow path with
a false heap exhaustion condition, and check whether
heap profiling events have been enabled and whether the
heap is really exhausted in the slow path. Because no

change to the allocation fast path is needed, object allo-
cation runs in full speed when heap profiling is disabled.

Method enter and exit events are another kind of events
that may be generated frequently. They can be easily
supported by the JIT compilers that can dynamically
patch the generated code and the virtual method dispatch
tables.

6.2 The Partial Profiling Problem

A problem that arises when profiler events can be en-
abled and disabled is that the profiler agent receives
incomplete, or partial, profiling information. This has
been characterized as thepartial profiling problem[16].
For example, if the profiler agent enables the thread start
and end events after a thread has been started, it will
receive anunknown thread ID that has not been de-
fined in any thread start event. Similarly, if the pro-
filer agent enables the class load event after a number
of classes have been loaded and a number of instances
of these classes have been created, the agent may en-
counterNEWOBJECTevents that contain an unknown
class ID.

A straightforward solution is to require the virtual ma-
chine to record all profiling events in a trace file, whether
or not these events are enabled by the profiler agent. The
virtual machine is then able to send the appropriate in-
formation for any entities unknown to the profiler agent.
This approach is undesirable because of the potentially
unlimited size of the trace file and the overhead when
profiling events are disabled.

We solve the partial profiling problem based on one ob-
servation: The Java virtual machine keeps track of infor-
mation internally about the valid entities (such as class
IDs) that can be sent with profiling events. The virtual
machine need not keep track of outdated entities (such as
a class that has been loaded and unloaded) because they
will not not appear in profiling events. When the profiler
agent receives anunknown entity (such as an unknown
class ID), the entity is still valid, and thus the agent can
immediately obtain all the relevant information from the
virtual machine. We introduce a JVMPI function that
allows the profiling agent to request information about
unknown entities received as part of a profiling event.
For example, when the profiler agent encounters an un-
known class ID, it may request the virtual machine to
send the same information that is contained in a class
load event for this class.

Certain entities need to be treated specially by the pro-



filing agent in order to deal with partial profiling infor-
mation. For example, if the profiling agent disables the
MOVEOBJECTevent, it must immediately invalidate all
object IDs it knows about, because they may be changed
by future garbage collections. With theMOVEOBJECT
event disabled, the agent can request the virtual ma-
chine to send the class information about unknown ob-
ject IDs. However, such requests must be made only
when garbage collection is disabled (by, for example,
calling one of the JVMPI functions). Otherwise garbage
collection may generate aMOVEOBJECTevent asyn-
chronously and invalidate the object ID before the virtual
machine obtains the class information for this object ID.

7 Related Work

Extensive work has been done in CPU time profiling.
The gprof tool [11], for example, is an sample-based
profiler that records call graphs, instead of flat profiles.
Recent research [7] [18] [19] has improved the perfor-
mance and accuracy of time profilers based on code in-
strumentation. Analysis techniques have been devel-
oped such that instrumentation code may be inserted
with as little run-time overhead as possible [5] [1]. Our
sampling-based CPU time profiling uses stack traces to
report CPU usage hot-spots, and is the most similar to
the technique of call graph profiling [12]. Sansom et al
[20] investigated how to properly attribute costs in pro-
filing higher-order lazy functional programs. Appel et
al [2] studied how to efficiently instrument code in the
presence of code inlining and garbage collection. None
of the above work addresses the issues in profiling multi-
threaded programs, however.

Issues similar to profiling multi-threaded programs arise
in parallel programs [3] [13], where the profiler typically
executes concurrently with the program, and can selec-
tively profile parts of the program.

Heap profiling similar to that reported in this paper has
been developed for C, Lisp [22], and Modula-3 [9]. To
our knowledge, our work is the first that constructs a
heap profiling interface that is independent of the under-
lying garbage collection algorithm.

We have a general-purpose profiling architecture, but
sometimes it is also useful to build custom profilers [8]
that target specific compiler optimizations.

There have been numerous earlier experiments (for ex-
ample, [6]) on building interactive profiling tools for
Java applications. These approaches are typically based
on placing custom instrumentation in the Java virtual

machine implementation.

8 Conclusions

We have presented a profiling architecture that pro-
vides comprehensive profiling support in the Java vir-
tual machine. The scope of profiling information in-
cludes multi-threaded CPU usage hot spots, heap allo-
cation, garbage collection, and monitor contention. Our
framework supports interactive profiling, and carries ex-
tremely low run-time overhead.

We believe that our work lays a foundation for building
advanced profiling tools.
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