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Abstract

The CO2P3S parallel programming system uses design
patterns and object–oriented programming to reduce the
complexities of parallel programming. The system gen-
erates correct frameworks from pattern template spec-
ifications and provides a layered programming model
to address both the problems of correctness and open-
ness. This paper describes the highest level of abstrac-
tion in CO2P3S, using two example programs to demon-
strate the programming model and the supported pat-
terns. Further, we introducephased parallel design pat-
terns, a new class of patterns that allow temporal phase
relationships in a parallel program to be specified, and
provide two patterns in this class. Our results show that
the frameworks can be used to quickly implement par-
allel programs, reusing sequential code where possible.
The resulting parallel programs provide substantial per-
formance gains over their sequential counterparts.

1 Introduction

Parallel programming offers potentially substantial per-
formance benefits to computationally intensive applica-
tions. Using additional processors can increase the com-
putational power that can be applied to large problems.
Unfortunately, it is difficult to use this increased compu-
tational power effectively as parallel programming intro-
duces new complexities to normal sequential program-
ming. The programmer must create and coordinate con-
currency. Synchronization may be necessary to ensure
data is used consistently and to produce correct results.
Programs may be nondeterministic, hampering debug-
ging by making it difficult to reproduce error conditions.

We need development tools and programming tech-
niques to reduce this added programming complexity.
One such tool is a parallel programming system (PPS).

A PPS can deal with complexity in several ways. It
can provide a programming model that removes some
of the added complexity. It can also provide a com-
plete tool set for developing, debugging, and tuning pro-
grams. However, it is likely that there will still be some
additional complexity the user must contend with when
writing parallel programs, even with aPPS. We can ease
this complexity by using new programming techniques,
such as design patterns and object–oriented program-
ming. Design patterns can help by documenting work-
ing design solutions that can be applied in a variety of
contexts. Object–oriented programming has proven suc-
cessful at reducing the software effort in sequential pro-
gramming through the use of techniques such as encap-
sulation and code reuse. We want to apply these benefits
to the more complex domain of parallel programming.

The CO2P3S1 parallel programming system supports
pattern–based parallel program development through
framework generation and multiple layers of abstraction
[8]. The system can be used to parallelize existing se-
quential code or write new, explicitly parallel programs.
This system automates the use of a selected set of pat-
terns throughpattern templates, an intermediary form
between a pattern and a framework. These pattern tem-
plates represent a pattern where some of the design al-
ternatives are fixed and others are left as user–specified
parameters. Once the template has been fully specified,
CO2P3S generates a framework that implements the pat-
tern in the context of the fixed and user–supplied design
parameters. Within this framework, we introduce se-
quentialhook methodsthat the user can implement to
insert application–specific functionality. In the CO2P3S
programming model, the higher levels of abstraction em-
phasize correctness and reduce the probability of pro-
grammer errors by providing the parallel structure and
synchronization in the framework such that they cannot
be modified by the user. The lower layers emphasize
openness[14], gradually exposing low–level implemen-
tation details and introducing more opportunities for per-

1Correct Object–Oriented Pattern–based Parallel Programming
System, pronounced “cops”.



formance tuning. The user can work at an appropriate
level of abstraction based on what is being tuned.

The key to reducing programmer errors is the decompo-
sition of the generated framework into parallel and se-
quential portions. The framework implements both the
parallel structure of the program and the synchronization
for the execution of the hook methods. Neither of these
attributes of the program can be modified at the high-
est level of abstraction. This decomposition allows the
hook methods to be implemented as sequential methods,
so users can concentrate on implementing applications
rather than worrying about the details of the parallelism.

We introducephased parallel design patternsin this pa-
per. Phased patterns are unique in that they express
a temporal relationship between different phases of a
parallel program. Although all patterns have temporal
aspects (such as specific sequences of method invoca-
tions), the intent of phased patterns is to deal with chang-
ing concurrency requirements for different phases of a
parallel program. We introduce two such patterns, the
Method Sequence and the Distributor, both of which are
new. The Method Sequence can be used to implement
phased algorithms, explicitly differentiating between the
different phases of a parallel algorithm. This pattern rec-
ognizes that efficiently parallelizing a large program will
likely require the application of several parallel design
patterns. The Distributor pattern allows the user to se-
lectively parallelize a subset of methods on an object,
acknowledging that not all operations may have suffi-
cient granularity for parallel execution.

We also introduce a structural pattern, the Two–Dimen-
sional Mesh. The Mesh was written in an object–
oriented fashion to fit within the CO2P3S system.

To demonstrate the use of the CO2P3S system, we
present the development of two example programs. Our
first example, reaction–diffusion texture generation [17],
uses the Mesh pattern to simulate the reaction and diffu-
sion of two chemicals over a two–dimensional surface.
The second program implements the parallel sorting by
regular sampling algorithm [13] using the Method Se-
quence and Distributor patterns. Both programs are im-
plemented using the facilities provided at the highest
level of abstraction in CO2P3S to demonstrate the util-
ity of our patterns and the utility of the frameworks we
generate to support our pattern templates.

The research contributions of this paper are:

� A layered parallel programming model that
presents several different programming abstrac-

tions to the user. Each layer emphasizes different
concerns, starting with program correctness at the
highest level of abstraction, and providing openness
and performance tuning at lower levels.

� The generation of a correct parallel framework
from a pattern template specification, coupled with
correctness guarantees by preventing the user from
modifying the structure of the framework at the
highest level of abstraction.

� An easy–to–use programming model that allows
users to implement a parallel program by writing
a small amount of sequential code to reuse their ex-
isting application code.

� An object–oriented pattern–based tool for parallel
programming. We also introduce a new type of
parallel design pattern, called phased patterns, to
express time–related aspects of a parallel program.

� A demonstration of the benefits of the CO2P3S sys-
tem using two example programs. These examples
illustrate the use of the highest level of abstraction
in the CO2P3S model and demonstrate the benefits
of using a high–level tool for parallel programming.

2 Overview of the CO2P3S System

This section presents a brief overview of the CO2P3S
system. A more detailed description can be found in [8].

The CO2P3S parallel programming system provides
three levels of abstraction that can be used in the de-
velopment of parallel programs. These abstractions pro-
vide a programming model that allows the programs to
be tuned incrementally, allowing the user to develop par-
allel programs where performance is more directly com-
mensurate with effort. These abstractions, from highest
to lowest, are:

Patterns Layer The user selects a parallel design pat-
tern template from a palette of supported templates.
These templates represent a partially specified de-
sign pattern, where some of the design tradeoffs
have been fixed. Each pattern template has sev-
eral parameters that must be supplied before the
template can be instantiated, allowing the user to
specialize the framework implementing the pattern
for its intended use. Instantiating the pattern tem-
plate generates code that forms a framework for
the template. The code consists of one or more



abstract classes that implement the parallel struc-
ture of the pattern template together with concrete
subclasses, as well as any required collaborator
classes. The framework code is customized in two
ways: application–specific pattern template param-
eters and user–supplied implementations of specific
sequential hook methods in the concrete subclasses
(using the Template Method design pattern [4]).
Since the user cannot modify the parallel structure
at this layer, parallel correctness is ensured. A com-
plete program consists of either a single framework
or several frameworks composed together.

Intermediate Code Layer This layer provides a high–
level, object–oriented, explicitly–parallel program-
ming language, a superset of an existing OO lan-
guage. The user manipulates both parallel struc-
tural code and application–specific code using this
intermediate language.

Native Code layer The intermediate language is trans-
formed into code for a native object–oriented lan-
guage (such as Java or C++). This code provides all
libraries used to implement the intermediate code
from the previous layer. The user is free to use the
provided libraries and language facilities to modify
the program in any way.

Users can move down through the different abstractions,
selecting a suitable layer based on the desired perfor-
mance of their applications or on how comfortable they
are with a given abstraction.

Several critical aspects of the framework are demon-
strated by the use of hook methods for introducing
application–specific functionality. First, the parallel
structural code cannot be modified in the Patterns Layer,
which allows us to make correctness guarantees about
the parallel structure of the program. Second, it al-
lows users to concentrate on implementing their appli-
cations without worrying about the structure of the par-
allelism. Also, by ensuring that the structural code pro-
vides proper synchronization around hook method invo-
cations, the user can write sequential code without hav-
ing to take into account the parallelism provided by the
framework. Lastly, we provide suitable default imple-
mentations of the hook methods in the abstract classes of
the framework. These default methods permit the frame-
work to be compiled and executed immediately after it is
generated, without implementing any of the hook meth-
ods. The program will execute with a simple default be-
haviour. This provides users with a correct implemen-
tation of the structure of the pattern before they begin
adding the hook methods and tuning the program.

The CO2P3S system currently supports several parallel
design patterns through its templates, which also use a
group of sequential design patterns. These patterns are
written specifically for solving design problems in the
parallel programming domain. The patterns used in this
paper are:

Method SequenceThis new pattern supports the cre-
ation of phased algorithms by invoking an ordered
sequence of methods on a Facade [4] object.

Distributor This new pattern supports data–parallel
style computations by forwarding a method from
a parent object to a fixed number of child objects,
all executing in parallel.

Two–Dimensional Mesh This pattern supports
iterative computations for a rectangular two–
dimensional mesh, where a surface is decomposed
into a set of regular, rectangular partitions.

A more detailed description of these patterns, along with
the other patterns supported by CO2P3S, can be found in
our pattern catalogue [7].

The context of our patterns is the architecture and pro-
gramming model of CO2P3S. Therefore, we have made
several changes to the structure of the basic design
pattern documentation [4]. Since our patterns are for
the parallel programming domain, the pattern descrip-
tion includes concurrency–related specifications, such as
synchronization and the creation of concurrent activity.
From the pattern, we produce a CO2P3S pattern template
and an example framework, which we also describe in
the pattern document. While these two sections are not
strictly pattern specifications, they illustrate the use of
the pattern while documenting the CO2P3S templates
and frameworks. So while we have added CO2P3S–
specific sections to our pattern descriptions, we have
preserved the instructional nature of design patterns.

We note that our patterns still represent abstract design
solutions. From the abstract pattern, we fix some of the
design tradeoffs and allow the user to specify the remain-
ing tradeoffs using parameters. This intermediate form,
which is less abstract than a pattern but less concrete
than a framework, is called a pattern template. We use
a fully specified pattern template to generate parametri-
cally related families of frameworks, with each frame-
work in the family implementing the same basic pat-
tern structure but specialized with the user–supplied pa-
rameters. However, the pattern templates are a design
construct used to specify a framework; the templates do
not contain nor provide code themselves. The generated



frameworks provide reusable and extendible code imple-
menting a specific version of the pattern. These frame-
works take into account our decomposition of a program
into its sequential and parallel aspects. The ability of the
user to modify a framework is dictated by the level of
abstraction that the user is using.

In creating the pattern templates, we try to fix as few of
the design tradeoffs as possible. However, in fixing any
part of the design, we will create situations in which it
will be necessary to modify certain elements of a pro-
gram to fit within the limitations we impose. For the
example programs that follow, we discuss the design in
terms of the patterns, and discuss the implementation in
terms of the pattern templates and the frameworks. The
implementation of the programs may need to be modi-
fied from the initialdesign toaccount for the fixed design
tradeoffs in the pattern templates and frameworks.

3 Example Applications

In this section, we detail the design and implementa-
tion of two example programs. These examples demon-
strate the applicability of our patterns to application de-
sign, and show how the pattern templates and generated
frameworks can be used to implement the programs. The
first example uses a reaction–diffusion texture genera-
tion program to show how we have reworked the Mesh
pattern in an object–oriented fashion. The second ex-
ample, parallel sorting by regular sampling, uses the
Method Sequence and Distributor patterns. We also use
this example to highlight the temporal nature of these
two patterns and to show the composition of CO2P3S
frameworks. The implementation of these two examples
demonstrates that the Patterns Layer of CO2P3S can be
used to write parallel programs with good performance.
It also shows the benefits of a high–level object–oriented
tool for parallel programming.

3.1 Reaction–Diffusion Texture Generation

Reaction–diffusion texture generation [17] can be de-
scribed as two interacting LaPlace equations that sim-
ulate the reaction and diffusion of two chemicals (called
morphogens) over a two–dimensional surface. This sim-
ulation, started with random concentrations ofeach mor-
phogen on the surface, can produce texture maps that
approximate zebra stripes. The problem uses Gauss–
Jacobian iterations (each iteration uses the results from

the previous iteration to compute the new values, with-
out any successive overrelaxation) and is solved using
straightforward convolution. The simulation typically
executes until the total change in morphogen concentra-
tion over the surface falls below some threshold. We use
a fully toroidal mesh, allowing the morphogens to wrap
around the edges of the surface. The toroidalboundary
conditions ensure that the resulting texture can be tiled
on a display without any noticeable edges betweentiles.

3.1.1 Parallel Implementation

An obvious approach to this problem is to decompose
the two–dimensional surface into regular rectangular re-
gions and to work on these regions in parallel. Our so-
lution must be more complex because we cannot evalu-
ate each region in isolation. Each point on the surface
needs the concentration values from its neighbours to
calculate its new value, so points on the edge of a region
need data from adjoining regions. Thus, we require an
exchange of region boundaries between iterations. Fur-
ther, Gauss–Jacobian iterations introduces dependencies
between iterations that need to be addressed by our par-
allel implementation of this problem.

3.1.2 Implementation in CO2P3S

Design and Pattern Specification The first step in im-
plementing a CO2P3S program is to analyze the prob-
lem and select the appropriate design pattern. This pro-
cess still represents the bottleneck in the design of any
program. Given the requirements of our problem, the
Mesh pattern is a good choice for several reasons. The
problem is an iterative algorithm executed over a two–
dimensional surface. Further, our approach is to decom-
pose the surface into regular rectangular regions, a de-
composition that is automatically handled by the frame-
work for the Mesh pattern template.

The Mesh pattern consists of two types of objects, a col-
lector object and a group of mesh objects. The structure
of the Mesh is given in Figure 1. The collector object
is responsible for creating the mesh objects, distributing
the input state over the mesh objects, controlling the ex-
ecution of the mesh objects, and collecting the results of
the computation. The mesh objects implement an iter-
ative mesh computation, a loop that exchanges bound-
aries with neighbouring mesh elements and computes
the new values for its local mesh elements. The iter-
ations continue until all the mesh objects have finished
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Figure 1: An object diagram for the structure of the Mesh pattern. The arcs indicate object references. The
Collector object has references to all of the instances ofMeshObject , but the arcs are omitted for clarity.

RDSimulation

RDSimulation RDSimulationRDSimulation

RDSimulation

RDCollector

1. setNeighbours()
2. meshMethod()

9. getState()

9. getState()

9. getState()

9. getState()

13. reduce()

6. setTerminationFlag()
7. checkTerminationFlags()
12. setResult()

3. outerPrefix()
4. notDoneCondition()
5. notDone()
8. innerPrefix()
10. operate()
11. outerSuffix()

Figure 2: The method invocations in the Mesh implementation of the reaction–diffusion problem. The methods are
executed in the order in which they are numbered. Calls 4 through 10 are the main loop of the mesh computation and
are repeated until the computation has completed.

computing, when all of the morphogen concentrations in
all of the mesh objects have stabilized in our example.

This pattern requires synchronization because of depen-
dencies between iterations. Specifically, we need to en-
sure that the boundary elements foreach mesh element
have all been computed before exchanging them, to pre-
vent a neighbour from using incorrect data in its next
iteration. We also require synchronization for determin-
ing the termination condition, since all of the mesh ob-
jects must cooperate to decide if they have finished. This
synchronization is necessarily pessimistic to handle the
general case. Individual programs using this pattern may
remove any unnecessary synchronization.

The Mesh pattern is not specific to the reaction–diffusion
example. It can be used to implement other finite ele-
ment calculations and image processing applications.

Once the pattern has been selected, the user se-

lects the corresponding pattern template and fills in
its parameters. For all pattern templates, the names
of both the abstract and concrete classes for each
class in the resulting framework are required. In
CO2P3S, the user only specifies the concrete class
names; the corresponding abstract class names are
prepended with “Abstract”. For our Mesh example,
we specifyRDCollector for the collector class and
RDSimulation for the mesh class, which also cre-
ates the abstract classesAbstractRDCollector
and AbstractRDSimulation . We further spec-
ify the type of the two–dimensional array that will
be distributed over the mesh objects, which is
MorphogenPair for the reaction–diffusion example.
Finally, we specify the boundary conditions of the mesh,
which is set to fully toroidal (where each mesh ob-
ject has all four neighbours by wrapping around the
edges of the mesh, as shown in Figure 1). We can
select other boundary conditions (horizontal–toroidal,
vertical–toroidal, and non–toroidal); we will see the ef-



fects of different conditions later in this section. The
dimensions of the mesh are specified via constructor ar-
guments to the framework. The input data is automati-
cally block–distributed over the mesh objects, based on
the dimensions of the input data and the dimensions of
the mesh.

Using the Framework From the pattern template
specification, the CO2P3S system generates a frame-
work implementing the specific instance of the Mesh
pattern given the pattern template and its parameters.
The framework consists of the four classes given above
with some additional collaborator classes. The sequence
of method calls for the framework is given in Figure 2.

Once the framework is generated, the user can imple-
ment hook methods to insert application–specific func-
tionality at key points in the structure of the framework.
The selection of hook methods is important since we en-
force program correctness at the Patterns Layer by not
allowing the user to modify the structural code of the
framework. The user implements the hook methods in
the concrete class by overriding the default method pro-
vided in the abstract superclass in the framework. If the
hook method is not needed in the application, the default
implementation can be inherited.

To demonstrate the use of the hook methods, we show
the main execution loop of the Mesh framework, as gen-
erated by CO2P3S, in Figure 3. The hook methods are
indicated in bold italics. There are hook methods for
both the collector and mesh objects in the Mesh frame-
work. For the collector, the only hook method is:

reduce() This method, invoked after the mesh com-
putation has finished, allows the user to perform a
reduction on the results. By default, this method re-
turns the input array updated with the results of the
mesh computation.

The hook methods for the mesh objects are:

outerPrefix() This method is invoked before the
mesh computation is started. It can be used for ini-
tializing the mesh object. By default, this method
does nothing.

notDone() This method is used to determine if
the mesh object has finished its local computa-
tion. Note that the computation finishes only
when all mesh objects have finished. By de-
fault, this method returnsfalse , indicating that
the mesh object has finished its computation.
This method is not directly invoked from the

meshMethod() method. It is invoked indi-
rectly from thenotDoneCondition() method,
which uses the result of this hook method in the
setTerminationFlag() method to set the
termination status of the current mesh object and
then usescheckTerminationFlags() to cal-
culate the global termination condition.

innerPrefix() This method is invoked first in the
mesh computation loop, before the boundary ex-
change. It can be used for any precomputations re-
quired in the loop. By default, this method does
nothing.

The operation methodsThese methods implement the
mesh computation. There are nine methods that
may be used depending on the boundary condi-
tions. These are described below. By default, these
methods do nothing. They are invoked indirectly
from theoperate() method. These methods re-
place theinnerSuffix() method.

outerSuffix() This method is invoked after the
mesh computation has finished but before results
are passed back to the collector object. It can be
used for any post–processing or cleanup required
by the mesh object. By default, this method does
nothing.

The implementation of theoperate() method called
in the code from Figure 3 invokes a subset of the nine
operation methods given in Figure 4. The boundary
conditions and the position of the mesh object deter-
mine which of the operation methods are used. For in-
stance, consider the two meshes in Figure 5. For the
fully toroidal mesh in Figure 5(a), there are no boundary
conditions. Thus, only theinteriorNode() hook
method is invoked. For the horizontal–toroidal mesh in
Figure 5(b), there are three different cases, one for each
row. The mesh objects in the different rows, from top to
bottom, invoke thetopEdge() , interiorNode() ,
andbottomEdge() hook methods for the mesh oper-
ation. The implementation of theoperate() method
uses a Strategy pattern [4], where the strategy corre-
sponds to the selected boundary conditions. This strat-
egy is a collaborator class generated with the rest of the
framework. It is also responsible for setting the neigh-
bours of the mesh elements after they are created, us-
ing thesetNeighbours() method (from Figure 2).
At the Patterns Layer, the user does not modify this
class. Each mesh object automatically executes the cor-
rect methods, depending on its location in the mesh.

Now we implement the reaction–diffusion texture gen-
eration program using the generated Mesh framework.



public void meshMethod()
f

this.outerPrefix() ;
while(this.notDoneCondition()) f

this.innerPrefix() ;
MorphogenPair[][] leftState = left.getState() ;
MorphogenPair[][] rightState = right.getState() ;
MorphogenPair[][] upState = up.getState() ;
MorphogenPair[][] downState = down.getState() ;
this.operate(leftState, rightState, upState, downState) ;

g /* while */
this.outerSuffix() ;
this.getCollector().setResult(this.getState()) ;

g /* meshMethod */

Figure 3: The main execution loop of a mesh. Hook methods are shown in bold italics.

void topLeftCorner(MorphogenPair[][] right, MorphogenPair[][] down) ;
void topEdge(MorphogenPair[][] right, MorphogenPair[][] left,

MorphogenPair[][] down) ;
void topRightCorner(MorphogenPair[][] left, MorphogenPair[][] down) ;
void leftEdge(MorphogenPair[][] right, MorphogenPair[][] up,

MorphogenPair[][] down) ;
void interiorNode(MorphogenPair[][] left, MorphogenPair[][] right,

MorphogenPair[][] up, MorphogenPair[][] down) ;
void rightEdge(MorphogenPair[][] left, MorphogenPair[][] up,

MorphogenPair[][] down) ;
void bottomLeftCorner(MorphogenPair[][] right, MorphogenPair[][] up) ;
void bottomEdge(MorphogenPair[][] left, MorphogenPair[][] right,

MorphogenPair[][] up) ;
void bottomRightCorner(MorphogenPair[][] left, MorphogenPair[][] up) ;

Figure 4: The hook methods for the mesh operations.

(a) A fully
toroidal mesh.

(b) A horizontal–
toroidal mesh.

Figure 5: Example mesh structures.

First, we note that we do not need a reduction method,
as the result of the computation is the surface com-
puted by each region. Also, we do not require the
outerPrefix() or theouterSuffix() methods.
The innerPrefix() method is required because we
have chosen to keep two copies of each morphogen ar-
ray, a read copy for getting previous data and a write
copy for update during an iteration. This scheme uses
additional memory, but obviates the need to copy the

array in each iteration. Each iteration must alternate
between using the read and write copies, which is ac-
complished by reversing the references to the arrays in
theinnerPrefix() method. Given our fully toroidal
mesh, we only need to implement the mesh operation in
theinteriorNode() hook method.

The notDone() method checks the local mesh state
for convergence. Each mesh object returns a Boolean
flag indicating if it has finished its local computation,
and these flags are used to determine if all of the mesh
objects have finished. The pattern template fixes the
flags as Booleans, which does not allow the global ter-
mination conditions given in Section 3.1 to be imple-
mented. Instead, our simulation ends when the change
in morphogen concentration ineach cell falls below a
threshold. Although this restriction forced us to modify
this program, it simplifies the pattern template specifica-
tion and reduces the number of hook methods. This ter-
mination behaviour can be modified at the Intermediate
Code Layer if a global condition must be implemented.



After completing the specification and implementation
of the Mesh framework, the user must implement the
code to instantiate the objects and use the framework.
The Java code is given in Figure 6, where we use con-
stants for the width and height of the data and the mesh,
but these values could be obtained dynamically at run–
time from a file or from the user.

3.1.3 Evaluation

In this section, we evaluate the Patterns Layer of
CO2P3S using the reaction–diffusion texture generator.
Our basis for evaluation is the amount of code written
by the user to implement the parallel program and the
run–time performance. These results are based on a Java
implementation of the problem.

In the following discussion, we do not include any com-
ments in counts of lines of code. All method invocations
and assignments are considered one line, and we count
all method signatures (although the method signatures
for the hook methods are generated for the user).

The sequential version of the reaction–diffusion pro-
gram was 568 lines of Java code. The complete parallel
version, including the generated framework and collab-
orating classes, came to 1143 lines. Of that 1143 lines,
the user wrote (coincidentally) 568 lines, just under half.
However, 516 lines of this code was taken directly from
the sequential version. This reused code consisted of the
classes implementing the morphogens. This morphogen
code had to be modified to use data obtained from the
boundary exchange, whereas the sequential version only
used local data. This modification required one method
to be removed from the sequential version and several
methods added, adding a total of 52 lines of code to
the application. The only code that could not be reused
from the sequential version was the mainline program.
In addition, the user was required to implement the hook
methods in the Mesh framework. These methods were
delegated to the morphogen classes and required only a
single line of code each.

We note that this case is almost optimal; the structure of
the simulation was parallelized without modifying the
computation. Also, the structure of the parallel program
is close to the sequential algorithm, which is not always
the case. These characteristics allowed almost all of the
sequential code to be reused in the parallel version.

This program was executed using a native–threaded Java
implementation from SGI (Java Development Environ-

ment 3.1.1, using Java 1.1.6). The programs were com-
piled with optimizations on and executed on an SGI
Origin 2000 with 42 195MHz R10000 processors and
10GB of RAM. The Java virtual machine was started
with 512MB of heap space. Results were collected for
programs executed with the just–in–time (JIT) compiler
enabled and then again with the JIT compiler disabled.
Disabling the JIT compiler effectively allows us to ob-
serve how the frameworks behave on problems with in-
creased granularity. Speedups are based on wall–clock
time and are compared against a sequential implementa-
tion of the same problem executed using a green threads
virtual machine. Note that the timings are only for the
mesh computation; neither initialization of the surface
nor output is included. The results are given in Table 1.

With the JIT enabled, the speedups for the program tail
off quickly. As we add more processors, the granularity
of the mesh computation loop falls and the synchroniza-
tion hampers performance. The non–JIT version shows
good speedups, scaling to 16 processors, showing the ef-
fects of increased granularity.

From this example, we can see that our framework pro-
motes the reuse of sequential code; almost all of the mor-
phogen code from the sequential program was reused in
the parallel version. This reuse allowed the parallel ver-
sion of the problem to be implemented with only a few
new lines of code (52 lines). The performance of the
resulting parallel application is acceptable with the JIT
enabled, although the granularity quickly falls.

3.2 Parallel Sorting by Regular Sampling

Parallel sorting by regular sampling (PSRS) is a paral-
lel sorting algorithm that provides a good speedup over
a broad range of parallel architectures [13]. This algo-
rithm is explicitly parallel and has no direct sequential
counterpart. Its strength lies in its load balancing strat-
egy, which samples the data to generate pivot elements
that evenly distribute the data to processors.

The algorithm consists of four phases, illustrated in Fig-
ure 7. Each phase must finish before the next phase
starts. The phases, executed onp processors, are:

1. In parallel, divide the input array intop contiguous
lists and sort each list. Selectp � 1 evenly spaced
sample elements from each sorted list.

2. Select a designated processor to sort the entire set
of sample elements. Then, choosep � 1 evenly
spaced pivot values from the sample set.



public static void main(String[] argv)
f

MorphogenPair[][] data = Main.initializeData(Main.dataWidth,
Main.dataHeight) ;

RDCollector collector = new RDCollector(Main.meshWidth,
Main.meshHeight, data, Main.dataWidth, Main.dataHeight) ;

/* Start the execution of the simulation. */
collector.Execute() ;
/* Wait for and get the results. */
data = (MorphogenPair[][]) collector.getResults() ;

g /* main */

Figure 6: The code that starts the reaction–diffusion simulation using the Mesh framework.

Problem JIT disabled JIT enabled
Size 2 proc. 4 proc. 8 proc. 16 proc. 2 proc. 4 proc. 8 proc. 16 proc.

1024� 1024 1.96 3.72 6.93 12.39 1.61 2.88 4.49 4.58
11150 sec 5886 sec 3162 sec 1767 sec 2519 sec 1413 sec 906 sec 887 sec

Table 1: Speedups for the reaction–diffusion example. Wall clock times, rounded to the second, are also provided.

3. In parallel, partitioneach sorted list intop sublists
using the pivot values.

4. In parallel, merge the partitions and store the results
back into the array.

3.2.1 Parallel Implementation

The parallelism in this problem is clearly specified in
the algorithm from the previous section. We require a
series of phases to be executed, where some of those
phases use a set of processors computing in parallel. For
the parallel phases, a fixed number of processors execute
similar code on different portions of the input data.

3.2.2 Phased Parallel Design Patterns

An interesting aspect of the PSRS algorithm is that the
parallelism changes in different phases. The first and
third phases are similar. The second phase is sequential.
Finally, the last phase consists of two subphases (iden-
tified below), where each subphase has its own concur-
rency requirements. We need to ensure that this tempo-
ral relationship between the patterns can be expressed.
In contrast, other parallel programming systems require
the user to build a graph that is the union of all the possi-
ble execution paths that are used and leave it to the user
to ensure they are used correctly. Alternately, the user
must use a pipeline solution, where each pipe stage im-
plements a phase (as in Enterprise [10]). However, the

real strength of a pipeline lies in algorithms where multi-
ple requests can be concurrently executing different op-
erations in different pipe stages. Further, a pipeline sug-
gests that a stream of data (or objects in an OO pipeline)
is being transformed by a sequence of operations. A
phased algorithm may transform its inputs or generate
other results, depending on the algorithm.

A further temporal aspect of this algorithm is when to
use parallelism. Sometimes we would like to use the
same group of objects for both parallel and sequential
methods. For instance, some methods may not have
enough granularity for parallel execution. Sometimes,
as in the second phase of PSRS, we may need to execute
a sequential operation on data contained in a parallel
framework. This kind of control can be accommodated
by adding sequential methods in the generated frame-
work. These methods would use the object structure
without the concurrency. In implementing these meth-
ods, the user must ensure that they will not interfere with
the execution of any concurrent method invocations.

3.2.3 Implementation in CO2P3S

Design and Pattern Specification

Method Sequence In the PSRS algorithm, the phases
stand out as the first concern. The algorithm suggests
four phases. We note, though, that the last phase con-
tains a data dependency. We must ensure that the merg-
ing is complete before we can begin writing results back
to the original array. Otherwise, the merging phase can
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Figure 7: An example of parallel sorting by regular sampling.

read incorrect data. From this observation, we rewrite
the fourth phase of PSRS as two subphases:

4.1 Merge the partitions in a temporary buffer.

4.2 Store the results in the original array by copying the
temporary buffer.

To implement a series of phases in a program, we can
use the Method Sequence pattern. In our example, we
have identified two different sets of phases so we apply
this pattern twice. The first application of the Method
Sequence pattern implements the four phases from the
previous section. We apply the pattern again in the im-
plementation of the last phase, to execute the phases
identified above. Alternately, we could rewrite the orig-
inal algorithm as five phases and apply the pattern once.
However, our solution is consistent with the original al-
gorithm and also helps us demonstrate the composability
of our frameworks in the next subsection.

The Method Sequence pattern is a specialization of the
Facade pattern [4] that adds ordering to the methods of

the Facade. It consists of two objects, a sequence ob-
ject and an instance of the Facade pattern [4]. The se-
quence object holds an ordered list of method names to
be invoked on the Facade object. These methods have
no arguments or return values. The Facade object sup-
plies a single entry point to the objects that collaborate
to execute the different phases. The Facade typically
delegates its methods to the correct collaborating object,
where these methods implement the different phases for
the sequence object. Each phase is executed only af-
ter the previous phase has finished. The Facade object
is also responsible for keeping any partial results gener-
ated by one phase and used in another (such as the pivots
generated in the second phase of PSRS and used in the
third phase). We include the Facade object for the gen-
eral case of the Method Sequence pattern, where there
may be different collaborating objects implementing dif-
ferent phases of the computation. Without the Facade
object, the sequence object would need to manage both
the method list and the objects to which the methods are
delegated, making the object more complicated.



The Method Sequence pattern has other uses beyond this
example. For example, it is applicable to programs that
can be written as a series of phases, such as LU factor-
ization (a reduction phase and a back substitutionphase).

After designing this part of the program, the user selects
the Method Sequence pattern template and fills in the pa-
rameters to instantiate the template. For this pattern tem-
plate, the user specifies the names of the concrete classes
for the sequence and Facade classes, and an ordered list
of methods to be invoked on the Facade object. Again,
the abstract superclasses for both classes have “Abstract”
prepended to the concrete class names.

Distributor Now we address the parallelism in the
first, third, and last phases. Each of these phases re-
quire a fixed amount of concurrency (p processors). If
we attempt to vary the number of processors for differ-
ent phases, we will generate different data distributions
that will cause problems for the operations. Further, the
processors operate on the same region of data in the first
and third phases. If we can distribute the data once to a
fixed set of processors, we can avoid redistribution costs
and preserve locality. The last phase requires a redistri-
bution of data, but again it must use the same number of
processors as used in the previous parallel phases. Sim-
ilarly, the two subphases for the last phase share a com-
mon region, the temporary buffer. It is also necessary for
the concurrency to be finished at the end of each phase
because of the dependencies between the phases.

Given these requirements, we apply the Distributor pat-
tern. This pattern provides a parent object that internally
uses a fixed number of child objects over which data
may be distributed. In the PSRS example, the number
of children corresponds to the number of processorsp.
All method invocations are targeted on the parent object,
which controls the parallelism. In this pattern, the user
specifies a set of methods that can be invoked on all of
the children in parallel. The parent creates the concur-
rency for these methods and controls it, waiting for the
threads to finish and returning the results (an array of
results, one element per child).

The Distributor pattern can also be used in other pro-
grams. It was used three times in the PSRS algorithm,
and can be applied to any data–parallel problem.

After the design stage, the user selects the Distributor
pattern template and instantiates the template. For the
Distributor pattern template, the user specifies the names
of the concrete classes for the parent and child classes
(again, the abstract classes are automatically named) and
a list with the following fields:

1. The name of the method that should be invoked
concurrently on the child objects.

2. The return type for the child implementation of the
method. The parent returns an array of this type,
unless the type isvoid .

3. The arguments to the parent implementation of the
method. For one–dimensional array parameters,
the distribution of the parameter over the child ob-
jects must also be specified. Currently supported
distributions are pass through, one element per
child, striped distribution, block distribution, and
neighbour distribution (childi gets a two element
array of elementsi andi + 1 from the original ar-
ray). All other arguments are passed to the children
directly (pass through distribution).

Note the third field of the tuples allows for one–
dimensional array arguments to be automatically and
correctly distributed to the child objects. For instance,
we use the neighbour distribution in the first part of the
fourth phase to distribute the partitioned elements to the
children of theMerger Container class. We also
distribute an array of indices, one per child, in the sec-
ond part of the fourth phase so each child knows where it
should merge its sorted partition. The code to distribute
these arguments is part of the framework for the pattern
and is not written by the user. The last parameter to the
Distributor template, the number of children, is specified
as a constructor argument in the generated framework.

Using the Framework Based on the specification of
the pattern templates for this program, the structure of
the framework for the PSRS program is given in Fig-
ure 8. The two uses of the Method Sequence framework
are theSorter Sequence and Sorter Facade
class pair, and theMerger Sequence andMerger
Facade pair. The two uses of the Distributor frame-
work are theData Container and Data Child
pair, and theMerger Container and Merger
Child pair. When generated, the framework does not
contain the necessary references for composing the dif-
ferent frameworks; creating these references is covered
in Section 3.2.5. However, any references needed in a
particular framework are supplied in the generated code.
For instance, the abstract sequence class has a reference
to the Facade object in the Method Sequence framework.
The actual object is supplied by the user to the construc-
tor for the sequence class.

Both the Method Sequence and the Distributor frame-
works have different hook methods that can be imple-
mented. The sequence of method calls is shown in Fig-
ure 8. For the sequence object in the Method Sequence
framework, these hook methods are:
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Figure 8: The structure of the PSRS program. The methods are executed in the order in which they are numbered.

prefix() This method is invoked before the methods
in the sequence are executed. It can be used for
any initialization required by either the sequence
or Facade objects. For instance, in theSorter
Sequence class this method can be used to gen-
erate the data to be sorted.

suffix() This method is invoked after the methods
in the sequence are executed. It can be used for
any cleanup or postprocessing required by the pro-
gram. For instance, in theSorter Sequence
class this method may verify the sort.

The hook methods for the Facade object are the se-
quence methods, the parameterless methods in the list
of method names. These methods implement the differ-
ent phases of the application. A phase has finished when
its associated method returns, so all concurrent activity
generating results used in another phase must be com-
plete. Any partial results are stored in the Facade object.

For the Distributor framework, the hook methods are
the child implementations of the methods specified in
the last pattern template parameter. Each child operates
independently, without reference to other child objects.
These methods can operate on any state that has been
distributed across the child objects or can be used to in-
voke methods on any distributed arguments in parallel.
The parent object provides the structural code for this
pattern, and has no hook methods. To assist the user, the
signatures for the child methods are automatically gen-
erated and included in the concrete child class.

3.2.4 Evaluation

Since PSRS is a parallel algorithm, there is no sequen-
tial version. Therefore, we chose a sequential quicksort
algorithm as a baseline for comparison. The sequential
sorting program was 102 lines of Java code, used to ini-
tialize the data and verify the sort. The sorting algo-
rithm was the quicksort method from the JGL library [9],
which is 255 lines of Java code. The PSRS program, in-
cluding the framework and collaborator classes, totaled
1252 lines of code (not including the JGL sorting code),
700 of which are user code. 414 lines of the user code are
in the three classesData Child , Merger Child ,
and Data Container . These classes contain most
of the code for the application (theData Container
object is the single processor used for the second phase).
Of the remaining classes, the two Facade classes and
mainline are the largest. However, the methods in these
classes consist mainly of accessors and, particularly in
the two Facade objects, one line methods for delegating
a method. The mainline also interprets command line
arguments, and creates theSorter Sequence object
and the container for the data to be sorted.

In contrast to the reaction–diffusion example, the PSRS
algorithm cannot make much use of the code from the
sequential version. The problem is that the best parallel
algorithm is not necessarily a parallel version of the best
sequential algorithm. For instance, the performance of
parallel quicksort peaks at a speedup of 5 to 6 regardless
of the number of processes [13]. In these cases, writ-
ing the parallel algorithm requires more effort, as we see



with this problem. Nevertheless, the framework supplies
about half of the code automatically, including the error–
prone concurrency and synchronization code.

The performance results for PSRS, collected using the
same environment given in Section 3.1.3, are shown in
Table 2. These timings are only for sorting the data.
Data initialization and sort verification are not included.

Unlike the reaction–diffusion example, both JIT and
non–JIT versions of the PSRS program show good
speedups, scaling to 16 processors. The principle rea-
son for this improvement is that there are fewer synchro-
nization points in PSRS; five for the entire program ver-
sus two per iteration of the mesh loop. In addition, the
PSRS algorithm does more work between synchroniza-
tion points, even with the smaller data set, reducing the
overall cost of synchronization further.

From this example, we can see that CO2P3S also sup-
ports the development of explicitly parallel algorithms.
The principle difficulty in implementing this kind of par-
allel algorithm is that little sequential code can be used
in the parallel program, forcing the user to write more
code (as we can see by the amount of user code needed
for PSRS). Support for explicitly parallel algorithm de-
velopment is crucial because agood parallel algorithm
is not always derived from the best sequential algorithm.

3.2.5 Composition of Frameworks

Unlike the reaction–diffusion program, the PSRS exam-
ple used multiple design pattern templates in its imple-
mentation, and required the resulting frameworks to be
composed into a larger program. We explain briefly
how this composition isaccomplished, which also pro-
vides insights on how the user can augment the gener-
ated framework at the Patterns Layer.

In CO2P3S frameworks, composition is treated as it is in
normal object–oriented programs, by delegating meth-
ods to collaborating objects. Note that the framework
implementing a design pattern is still a group of ob-
jects providing an interface to achieve some task. For
instance, in the code in Figure 6, the collector object
provides an interface for the user to start the mesh com-
putation and get the results, but the creation and control
of the parallelism is hidden in the collector. If another
framework has a reference to a collector object, it can
use the Mesh framework as it would any other collab-
orating object, providing framework composition in a
way compatible with object–oriented programming.

To compose frameworks in this fashion, the frameworks
must be able to obtain references to other collaborating
frameworks. This can be done in three ways: passing the
references as arguments to a method (normal or hook)
and caching the reference, instantiating the collaborat-
ing framework in the framework that requires it (in a
method or constructor), or augmenting constructors with
new arguments. The first two ways are fairly straight-
forward. The second method of obtaining a reference
is used in the third phase of PSRS since theMerger
Container object cannot be created until the pivots
have been obtained from the second phase.

The third method of obtaining a reference, augmenting
the constructor for a framework, requires more discus-
sion as it is not always possible. We should first note
that this option is open to users because the CO2P3S
system requires the user to create some or all of the ob-
jects that make up a given framework (as shown in Fig-
ure 6). In general, users can augment the constructors of
any objects they are responsible for creating. For the
Mesh framework, the user can augment the construc-
tor for the collector object. However, the added state
can only be used to influence the parallel execution of a
framework at the Patterns Layer if the class with the aug-
mented constructor also has hook methods the user can
implement. Otherwise, the user has no entry point to the
structural code and the additional state cannot be used in
the parallel portion of that framework. For instance, the
user can augment the constructor for the parent object
in a Distributor framework, but since the parent has no
hook methods this state cannot influence the parallel be-
haviour of that object. However, new state can always be
used in any additional sequential methods implemented
in the framework.

4 Related Work

We examine work related to the pattern, pattern tem-
plate, and framework aspects of the CO2P3S system.

Patterns There are too many concurrent design pat-
terns to list them all. Two notable sources of these pat-
terns are the ACE framework [11] and the concurrent de-
sign pattern book by Lea [6]. This work provides more
patterns and attempts to provide a development system
for pattern–based parallel programming. Specifically,
our pattern templates and generated frameworks auto-
mate the use of a set of supported patterns.

Pattern Templates There are many graphical parallel
programming systems, such as Enterprise [10, 14], DP-



Number of JIT disabled JIT enabled
Elements 2 proc. 4 proc. 8 proc. 16 proc. 2 proc. 4 proc. 8 proc. 16 proc.

12,500,000 1.76 3.43 6.74 12.02 1.73 3.65 7.09 12.65
1519 sec 777 sec 395 sec 222 sec 567 sec 269 sec 138 sec 78 sec

Table 2: Speedups for the PSRS example. Wall clock times, rounded to the second, are also provided.

nDP [15, 14], Mentat [5], and HeNCE [2]. Enterprise
provides a fixed set of templates (calledassets) for the
user, but requires the user to write code to correctly im-
plement the chosen template, without checking for com-
pliance. Further, applications are written in C, not an
object–oriented language. Mentat and HeNCE do not
use pattern templates, but rather depict programs visu-
ally as directed graphs, compromising correctness. DP-
nDP is similar to Mentat except that nodes in the graph
may contain instances of design patterns communicating
using explicit message passing. In addition, the system
provides a method for adding new templates to the tool.

P3L [1] provides a language solution to pattern–based
programming, providing a set of design patterns that can
be composed to create larger programs. Communication
is explicit and type–checked at compile–time. However,
new languages impose a steep learning curve on new
users. Also, the language is not object–oriented.

Frameworks Sefikaet al. [12] have proposed a model
for verifying that a program adheres to a specified design
pattern based on a combination of static and dynamic
program information. They also suggest the use of run–
time assertions to ensure compliance. In contrast, we
ensure adherence by generating the code for a pattern.
We do not include assertions because we allow users to
modify the generated frameworks at lower levels of ab-
straction. These modifications can be made to increase
performance or to introduce a variation of a pattern tem-
plate that is not available at the Patterns Layer.

In addition to verifying programs, Sefikaet al. also sug-
gest generating code for a pattern. Budinskyet al. [3]
have implemented a Web–based system for generating
code implementing the patterns from Gammaet al. [4].
The user downloads the code and modifies it for its in-
tended application. Our system generates code that al-
lows the user the opportunity to introduce application–
specific functionality without allowing the structure of
the framework to be modified until the performance–
tuning stage of development. This allows us to enforce
the parallel constraints of the selected pattern template.

Each of the PPSs mentioned above differ with respect
to openness. Enterprise, Mentat, HeNCE, and P3L fail
to provide low–level performance tuning. However, En-

terprise provides a complete set of development and de-
bugging tools in its environment. DPnDP provides per-
formance tuning capabilities by allowing the program-
mer to use the low–level libraries used in its implemen-
tation. Instead, we provide multiple abstractions for per-
formance tuning, providing the low–level libraries only
at the lowest level of abstraction.

5 Conclusions and Future Work

This paper presented some of the parallel design patterns
and associated frameworks supported by the CO2P3S
parallel programming system. We demonstrated the util-
ity of these patterns and frameworks at the first layer
of the CO2P3S programming model by showing how
two applications, reaction–diffusion texture generation
and parallel sorting by regular sampling, can be imple-
mented. Further, we have shown that our frameworks
can provide performance benefits.

We also introduced the concept of phased design pat-
terns to express temporal relationships in parallel pro-
grams. These relationships may determine when to use
parallelism and how that parallelism, if used, should be
implemented. These phased patterns recognize that not
every operation on an object has sufficient granularity to
be run in parallel, and that a single parallel design pattern
is often insufficient to efficiently parallelize an entire ap-
plication. Instead, the parallel requirements of an appli-
cation change as the application progresses. Phased pat-
terns provide a mechanism for expressing this change.

Currently, we are prototyping the CO2P3S system in
Java. We are also looking for other parallel design pat-
terns that can be included in the system, such as divide–
and–conquer and tree searching patterns. Once the pro-
gramming system is complete, we will investigate allow-
ing users to add support for their own parallel design
patterns by including new pattern templates and frame-
works in CO2P3S (as can be done in DPnDP [15]), cre-
ating a tool set to assist with debugging and tuning pro-
grams (such as the Enterprise environment [10]), and
conducting usability studies [14, 16].
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