
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3–7, 1999

The Application of Object-Oriented Design Techniques to the
Evolution of the Architecture of a Large Legacy Software

System

Jeff Mason and Emil S. Ochotta
Xilinx Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

ABSTRACT
Object Oriented Analysis and Design (OOAD) is
increasingly popular as a set of techniques that can
be used to initially analyze and design software.
Unfortunately, OOAD is a relatively new concept
and many large legacy systems predate it. This paper
presents the approach one company followed in
applying OOAD techniques to an existing 2.5 million
line code base. We present an iterative process that
provides an avenue for the software to evolve while
balancing the needs of business and software engi-
neering. Our case study reveals the many pitfalls
that can derail a software re-engineering effort, but
also shows promising initial results from continued
perseverance in this effort.

1. Introduction

Object Oriented Analysis and Design (OOAD)
techniques promise many benefits to software
developers and software companies - software reuse and
resilience to change through component libraries and
patterns[1][2], lucid code structure that more clearly
reflects the problem domain[3], and reduced risk by
introducing a formal design process where often none
existed previously[4] - to name only a few. To reap
these rewards, most OOAD techniques assume software
developers apply the techniques at the beginning of the
software lifecycle, i.e., the beginning of the design
process, and continue to use them as the software
matures. Unfortunately, OOAD is a relatively new
concept and many large legacy systems predate it.
Moreover, because the pressures of commercial
competition focus directly on adding features, fixing
bugs, and releasing the product on-time, software
developers often (misguidedly) skimp on the things that
should be done for long term benefit in favor of the
things that absolutely must be done to complete the
product. Since not all developers are educated as to the
benefits of OOAD it is often one of the things
overlooked in the headlong rush to a software release.
The long-term price of this behavior is a large body of
difficult to maintain software, proving the well-known
adage that the overriding cost of software is not its
initial development but rather its maintenance. In this
environment of legacy software and corporate pressure,
reaping the benefits of OOAD seems a very elusive
goal.

This paper describes the process one company
undertook to re-architect their large legacy software
system and begin reaping the benefits of OOAD
techniques despite the constraints of continuing feature
improvements and a strict release schedule. This six-
step process is as follows:

1. Analysis: evaluating the current state of the legacy
software;

2. Goal Selection: determining a set of goals to guide
changes to the software and allow evaluation of the
results;

3. Key Concept Selection: refining the goals into a set
of key concepts based on business requirements,
software engineering principles and object oriented
analysis and design principles;

4. Planning: determining how best to apply the key
concepts to the legacy software to allow it to evolve
towards a system that satisfies those concepts;

5. Implementation: making it happen; and

6. Measurement: evaluating the effectiveness of the
changes against the original goals.

There is a substantial body of research that focuses on
the technical aspects of software evolution[5][6] and
reengineering[7][8], and many of the technical ideas
discussed in this paper have been described elsewhere in
one form or another. The contribution of this paper is
the description of the process we undertook and how we
selected and satisfied key concepts that balanced the
demands of business, the requirements of software
engineering, and the OOAD principles we wanted to
pursue. In the end, these key concepts included:

• Autonomy: encapsulating and insulating function-
ally related software into subsystems to minimize
interactions, to reduce compile times, and to support
testing, allowing these subsystems to evolve inde-
pendently and asynchronously;

• Sharing: solving problems in as few places and as
few times as possible to maximize code reuse, mini-
mize code size, and promote standardization;

• Comprehensibility: promoting design, documenta-
tion and coding standards that - for the general client
- make shared code and interfaces easier to under-
stand, more convenient to use, and easier to main-
tain;

The Application of Object-Oriented Design Techniques to the
Evolution of the Architecture of a Large Legacy Software System

Jeff Mason (jeff.mason@xilinx.com) and Emil S. Ochotta (emil.ochotta@xilinx.com)
Xilinx Inc.

2100 Logic Drive
San Jose, CA 95124

• Modularity: allowing functional product compo-
nents to be released to end users independently and
asynchronously;

• Co-development: promoting the ability to explore,
evaluate, and develop new features without affecting
other on-going development;

• Innovation: promoting runtime, memory, and qual-
ity of results performance through optimization and
innovation;

• Testing: enabling efficient automated testing by cre-
ating a levelizable system[9] (i.e., a system where
the testing and compile-time dependencies between
software modules form a directed acyclic graph);

• Release: supporting a release model with fixed
release dates planned long in advance.

To implement these concepts, we developed a system
architecture vision that outlined the changes to the
software architecture that were designed to put these
key concepts into practice. We then put forward an
evolutionary plan to implement the vision. What quickly
became apparent is that the inertia of the software was
too large to allow all our changes to be implemented at
once, while still releasing working software on an
aggressive fixed schedule. Consequently, we realized
that the six-step process described above must be
applied iteratively, over an extended period of years.

Since the full implementation of this vision is an
ongoing task whose costs and benefits may not be fully
evaluated for many years, this paper describes the initial
iteration through that six-step process. In this first
iteration the implementation had to be scaled back to fit
within a single release cycle of less than a year and
focussed primarily on the key concepts of autonomy,
sharing, testing, and comprehensibility. In these areas,
we have seen some dramatic improvements, particularly
where quantitative measurement is straightforward,
such as compile-time coupling.

The remainder of this paper is organized as follows. In
the next section we detail the first step in the six-step
process we followed, outlining the state of the software
system and the corporate situation that forms the
backdrop for our work. In Section 3 and Section 4, we
describe the next two steps in the process, the
conceptual steps of setting the correct goals we are
working toward and selecting key concepts that reflect
those goals. In Section 5, we present the evolutionary
plan we created to work towards realizing those key
concepts in our software. In Section 6, we discuss the
implementation of this evolutionary plan, and in
Section 7, we evaluate this implementation against the
key concepts and our initial goals. Finally, in Section 8,
we present our conclusions.

2. Background and Analysis
In this section, we describe the first of the six steps in
the process we followed to re-architect our legacy

software system. We first present the environment in
which our work was performed, including a brief
description of Xilinx, the company where the work was
performed, and the purpose of the software. We then
discuss the state of disrepair we found when we first
began to look at the software system itself and the costs
associated with that disrepair. These costs were the
initial motivation that drove our re-architecture.

2.1 Xilinx Inc.
This work was performed at Xilinx[10]. Xilinx was
created as a hardware company, producing FPGAs,
which are members of the family of integrated circuits
(ICs) called programmable logic.

Understanding how an FPGA is used provides some
useful insight into the complexity of the FPGA design
software we discuss in this paper. An example FPGA
application is emulating another IC or computer chip. In
this application, the design to be emulated is loaded into
the FPGA and the FPGA inserted into the system of
which the chip being emulated is a part. This technique
allows the design of the new chip and the system of
which it is part to be tested and debugged before the
new chip is actually built. Similar to a compiler, FPGA
design software automatically translates the high-level
description of the chip to be emulated into millions of
programming bits that configure the FPGA to perform
the emulation. Part of this translation task involves
selecting a location from among the thousands available
on the FPGA for each logical element. These locations
must be selected to optimize chip performance or other
user-specified constraints, creating an NP-complete[11]
combinatorial optimization problem[12]. Moreover, in
response to competition and customer demand, FPGAs
are continually increasing in size and new hardware
features are added to each new FPGA[13]. To keep pace
with these newer, bigger FPGAs and still provide new
software features, the FPGA design software is
increasing in size and complexity at an even faster rate.
Finally, because software provides the abstract model
with which most FPGA customers interact, Xilinx has
put increasing emphasis on software development in
order to turn our software into a competitive advantage.
The difficulty of the FPGA optimization problem,
continually evolving FPGA hardware, and increasing
customer reliance on fast reliable software conspire to
make writing FPGA design software a challenging
proposition.

2.2 The State of Xilinx Software
As one step toward improving its software, in early
1995 Xilinx acquired a small software start-up company
based in Colorado. At that time, Xilinx’ FPGA design
software consisted of nearly 1.5 million lines of C code
developed and maintained by approximately 70 staff
members. Xilinx had released 30 software revisions to
over 10,000 software customers. In contrast, the 30
engineers of the close-knit start-up had written just over
700,000 lines of highly interconnected C++ and had

released 6 software revisions to about 200 customers.
The start-up’s code was poorly documented, but a
knowledgeable person was always at hand to deal with
any issue or problem. Thus, change requests were
informal conversations and system-wide changes could
be implemented and compiled within a few hours.

After the purchase, the corporate goal was to merge the
two software systems, keeping the strengths of both.
This was easier said than done. The C++ code from the
start-up was selected as the software base for the future
merged product, and features that had been added to the
original Xilinx product based on customer requests were
to be added as needed. Software developers in Colorado
were now faced with a much larger development
environment and had to work with developers in
California who understood the features to be added but
did not understand the software base. Software
developers in California were now faced with giving up
their old software, learning a new and undocumented
software base and working with developers in Colorado
who did not understand the new features to be added.
Neither group was used to working across multiple
development sites, so “lack of communication” was one
of the most common complaints by both groups about
their peers on the other side of the mountains. Software
was not getting built on time and fingers were being
pointed in all directions. It was a difficult time for all
involved.

Work toward the first merged release took substantially
longer than anyone had dared to predict, and we missed
several target release dates. Upper management began
to apply greater pressure to the software team, justifying
decisions to take “short-cuts” on the basis of short-term
necessity. As is frequently the case, it is arguable
whether these “short-cuts” reduced the time to first
customer shipment, but they unquestionably came back
to haunt us by adding to our maintenance burden over
the next few releases.

After the frenzied days and nights of making our first
few merged releases a reality, we took stock of our new
software. The start-up’s 700,000 lines of C++ had
ballooned to approximately 2.5 million lines of C++
code in roughly 2200 source and header files. Our
software shipped as 45 executables, 130 shared libraries
(loaded at program start up), and 110 dynamically
loaded libraries that customized the software for the
different FPGAs in the Xilinx product line. Our single
source software supported the Solaris, Windows, HP
and RS6000 platforms. The source code was organized
into approximately 400 subdirectories called packages,
where each package produced either a library or an
executable. After a brief inspection, we identified
several major problem areas that we later categorized
according to the key concepts to which they relate:

• Comprehensibility. Just as it was in the start-up, the
code was mostly undocumented, but now it was
much more complex and growing so rapidly that it

was no longer possible to find any one person who
understood most of it.

• Autonomy (Encapsulation). The interfaces
between packages had evolved as necessary to meet
tactical, local needs, without regard for strategic,
system-level concerns. Consequently interfaces were
extremely broad and ill defined. There was no clear
division between the interface and the implementa-
tion of most classes. Much of the code was really just
old C code transformed into C++ objects. One of the
major indicators of a lack of encapsulation was direct
access of class data by another class. Many of our
classes had been designed with public get/set func-
tions for each of the class data members. Conse-
quently, changes that should have been internal to a
package had repercussions throughout the system.

• Autonomy (Insulation). The compile-time depen-
dencies (due to included files) had never been
designed or analyzed. Often the vast majority of the
compilation time for a module consisted of reading
and processing included files. When first designing
C++ classes, the tendency is to make the header file
as convenient as possible for the implementation of
that header. For example, the lowest level header file
in the Xilinx software system directly or indirectly
included almost 60 system header files, establishing
a platform independent interface to the operating
system. However, in such a large system, most of
this functionality was not used by most of the clients
that included it. This overhead is an unneeded bur-
den to clients, who often compile complete defini-
tions of many unused classes or classes that require
only a forward reference. Engineers, recognizing this
system-wide problem but unable to change it, were
starting to make extremely large source files because
the compilation times were faster than the aggregate
compilation time of many smaller files.

• Autonomy (Insulation). Another problem was the
rampant use of 'inline' functions. Inline functions are
expanded at compile time rather than run time. This
implies that a class that defines an inline function can
not change the implementation of that inline function
without forcing all of its clients to recompile.

• Autonomy. The turn around time to build and verify
our software had become one to two weeks. Most of
that time was spent in tracking down integration
problems and then rebuilding everything. Because of
the interdependence of the software, a compilation
problem in one package may actually be caused by
interface problems in any one of a large number of
packages. Tracking down and solving these integra-
tion problems was made even more difficult because
finding someone who understood the disparate parts
of the system was no longer possible. Because of the
difficulty of compiling several million lines of code
on a single workstation, developers typically devel-
oped and tested against builds that were several

weeks out of date, exacerbating the integration prob-
lems for the next build.

• Sharing and Autonomy. There was no person or
group whose responsibility it was to review or co-
ordinate code changes. Each engineer or group was
free to implement or use what they needed to get
their specific job completed. Sometimes system-
wide integration builds failed because large changes
were made to shared code to support a new feature,
but the changes were not tested for all clients. Other
times, when small changes to a large package were
required, engineers would copy the entire package
into their package to avoid having to work with the
other package's owner.

Problems like these were creating a software and
corporate environment where developers no longer had
the freedom or time to innovate. They had no freedom
because every non-critical project was deemed high
risk, since the complex package interdependencies
could cause minor errors to have major repercussions
throughout the system. They had no time because fixing
each small problem required an inordinate amount of
time to implement and verify.

After this analysis, it was clear that something needed to
change. Fortunately for Xilinx, senior management
understood the issues and that the long-term viability of
the software product was at stake. With their support,
several members of the company were chartered with
re-architecting the software to fix these problems.

3. Goal Selection and The System Architec-
ture Committee
The software management team recognized that Xilinx'
software needed significant re-design at the architectural
level, requiring co-operation from the entire software
organization. They created the System Architecture
Committee, a seven member team of engineers and
managers that represented both development sites. The
VP of software was a member of the committee, giving
it the needed management clout. The authors were
selected as members of this committee.

Initially, it was thought that members of the committee
would spend roughly 10% of their time looking at
system architecture issues, but as the weeks passed and
the extent of the problem became more clear, the work-
load quickly grew beyond 10% of each member's time.
To give the architectural work the attention it required,
the authors became full time architects, and most
members were required to put aside their other duties
for short periods of time to complete work for the
committee.

In the first few weeks of meetings, little was
accomplished and frustrations grew. Several members
proposed changes that they felt would improve the
existing software architecture, but the group could not
reach consensus. Eventually, it became clear that the
goals of the various members of the committee were

inconsistent, which led to disagreement over the
changes that were required, which in turn led to
stalemate and inaction. Consequently, the committee
had to agree on its goals before it could take any steps to
improve the software architecture. Choosing the goals
was the seed for the six-step process that we eventually
followed to bring our architectural changes to fruition.

The committee agreed upon six goals, several of which
conflicted, making them impossible to satisfy all the
goals simultaneously. Initially the group was
disheartened that we could not select a set of goals that
could be satisfied completely, but over time it became
clear that this tension between the goals reflected the
reality of business and of the software design process. In
both environments, there are no right answers and
compromise is essential to success. Moreover, the
ability to strike the correct balance between competing
goals is what distinguishes successful businesses and
software organizations, and this made the design
process challenging and exciting.

After much discussion and negotiation, the committee
agreed upon the following six goals:

• Provide superior end user productivity. Make inter-
nal architectural improvements that eventually result
in customer visible improvements in our software.
Xilinx customers are the first priority.

• Distribute productivity effectively across develop-
ment groups. Address “geography problems,” where
developers in different groups do not communicate.
The developers who were originally in the start-up
felt they could not get their work done due to contin-
ually having to educate the other developers. The
other developers felt they could not get their work
done because they were not trusted to modify the
existing core of the software. In practice, geography
problems can happen even when the groups are
physically adjacent, and the software architecture
can have a significant effect on inter-group commu-
nication. These problems have a large negative
impact on productivity and morale.

• Improve the productivity of individual developers.
Create an environment where individual contributors
can work more efficiently, without having to wait for
other developers to complete their tasks.

• Enable parallel development targeting multiple
release dates. Develop an environment that supports
projects that require more time than a single release
cycle. This goal is a direct result of the fixed release
schedule required to support new FPGAs in a timely
fashion.

• Build in flexibility to handle a constantly changing
market. Anticipate the aspects of the software that
will most likely change: new kinds of FPGAs, new
software features, etc. Ensure that the software archi-
tecture is not brittle when these kinds of changes are
required.

• Enable accurate and efficient measurement of the
quality of the system by designing for testability.
Plan from the outset to incorporate a testing infra-
structure that supports measurement of software
quality that is both fast and accurate.

These six goals formed the foundation for the rest of our
software re-architecture work. They were driven
primarily by business rather than OOAD or software
engineering goals. When creating them, we also
explicitly decided not to consider how we would
accomplish these goals. They are merely what we
wanted in an ideal world. Consequently, they form an
ideal set of metrics with which we can evaluate the
efficacy of our software architecture decisions.

4. The Key Concepts
Once the goals were in place, the next step was to
determine how to achieve them. We soon realized that
there was too large a semantic leap from the goals to
actual architecture and code changes. What was needed
was an intermediate step where we agreed on a set of
principles from the worlds of OOAD and software
engineering. These principles would reflect the above
goals but more closely relate to the software and code
architecture itself. This tighter relationship to the
software would make it possible to create an
implementation plan.

These principles are the eight key concepts introduced
in Section 1 that tie our architecture work together. The
first two (autonomy and sharing) are primarily OOAD
techniques, and the last (release) is a business
constraint. The others lie somewhere on the spectrum of
OOAD techniques and plain old software engineering.
As with the goals, these concepts are in tension: any
plan will favor some concepts over the others. In this
section we describe these key concepts and how they
connect the six goals to changes that can be realized in a
software architecture.

4.1 Autonomy
• Autonomy: encapsulating and insulating function-

ally related software into subsystems to minimize
interactions, to reduce compile times, and to support
testing, allowing these subsystems to evolve inde-
pendently and asynchronously.

Autonomy follows directly from both of the
productivity goals: distribute productivity effectively
across development groups and improve the
productivity of individual developers. Engineers are
most efficient when they are free from dependencies
and allowed to work alone or as members of a small,
tightly-knit group.

Software dependencies can be exacerbated by poor
software architecture and by failing to adhere to OOAD
basics. For example, failing to encapsulate a data
structure means that clients of a package use that data
structure directly. When the data structure changes, the
client must also change. This is an example of poor

autonomy, since both the client and the supplier may be
forced to wait for each other. The supplier may not be
allowed to change the data structure until the client is
ready, or the client may be unable to compile code that
requires the new data structure until the supplier
completes its implementation.

We recognize two facets of autonomy that are closely
linked to OOAD principles: insulation and
encapsulation. Insulation can be defined as the process
of avoiding or removing unnecessary compile-time
coupling[9]. In practice, insulation can be implemented
by creating an opaque interface. For example, Lakos
defines a fully insulated class as one that is not derived
from another class, contains no inline functions or
default arguments, and contains only a single pointer to
an implementation class that is declared with a forward
reference. The details of the implementation class are
completely hidden from any clients that include the
fully insulating class. The effect of full insulation is to
create header files that are completely independent of
each other, dramatically reducing the compile-time
overhead of header file inclusion.

Another facet of autonomy is encapsulation, which
should be familiar to practitioners of OOAD.
Encapsulation can be defined as the concept of hiding
implementation details behind a procedural interface[9].
Encapsulation and insulation are clearly related, but a
fully insulated class need not be encapsulated. For
example, a fully insulated class can still expose its
implementation by providing public access functions to
all its private data. However, in some respects
encapsulation can be a less drastic technique than
insulation because encapsulation allows the use of other
features of C++, such as inheritance and inline
functions. In this paper we refer to insulation when
discussing the compile-time independence of modules
from one another and refer to encapsulation when
discussing the logical independence of a client class
from the implementation decisions of its suppliers.

4.2 Sharing

• Sharing: solving problems in as few places and as
few times as possible to maximize code reuse, mini-
mize code size, and promote standardization.

Sharing falls into the general category of software reuse,
a subject frequently discussed in the literature (see for
example[15]). Reuse or sharing is also connected to the
goal of developer productivity because in principle it
allows a piece of code to be written once and reused in
several places. In practice, sharing is difficult to achieve
because the clients of the shared code must agree on
what exactly the code does. If the code is too
specialized, it is unlikely to be useful to more than one
client. On the other hand, if the code is too general, it
will be too slow or so simple that reusing it
accomplishes little.

For the Xilinx software system, two kinds of sharing or
reuse are of particular interest. Because Xilinx supports
a number of different hardware devices that are
fundamentally related, the Xilinx software is an
excellent candidate for sharing via domain
engineering[16]. In domain engineering, tasks that are
needed throughout the domain are abstracted and
written once. In this case, common tasks needed to
support all devices can be abstracted and written as
configurable or data driven algorithms. Fortunately, this
characteristic had been recognized by the original
designers of the core software created in the start-up and
the software already made significant use of this kind of
sharing (although the term domain engineering had yet
to be coined).

The second kind of sharing was not as well supported in
the Xilinx software, and that is the more conventional
sharing of small generic algorithms. In sharing of this
kind, tasks that are not domain specific, but may be
general mathematical functions, data structures, or other
algorithms are collected into a reusable library. To
succeed at this sharing, this library has to be carefully
designed explicitly so that it can be reused. The
designers have to pay particular attention to making the
functionality general, efficient, and well documented.

4.3 Comprehensibility
• Comprehensibility: promoting design, documenta-

tion and coding standards that - for the general client
- make shared code and interfaces easier to under-
stand, more convenient to use, and easier to main-
tain.

Comprehensibility as defined by this key concept is not
intended to increase the amount of communication
between developers, but to reduce the need for it. This
key concept again relates back to the productivity goals.
The idea is to create a system and an environment that
inherently reduces the need for additional documents to
describe the architecture of the system itself. One of the
main benefits of such a system is the reduced need for
maintenance that can occur when a change to an
interface must be made both in code and in one or more
separate documents.

4.4 Modularity
• Modularity : allowing functional product compo-

nents to be released to end users independently and
asynchronously.

Modularity is related primarily to the goal of superior
end user productivity, but is an existing strength
characteristic of the Xilinx software. As an example of
this key concept, software support for a single Xilinx
device could be shipped as part of the overall software
system or as an individual software plug-in. This
modularity made it possible to create and support new
hardware products without shipping a complete new
software system.

4.5 Co-development
• Co-development: promoting the ability to explore,

evaluate, and develop new features without affecting
other on-going development.

The key concept of co-development has two aspects that
relate to what is being developed concurrently. Both
relate to the goal of flexibility in a constantly changing
market. In the case of support for new hardware devices,
co-development means that new hardware can be
supported with a minimal impact on software. This is
essential in a competitive marketplace where the most
successful company is the one that can innovate and
respond to change the most quickly. Similarly, the other
aspect of co-development is support for features and
changes that are not driven by hardware, but must be
developed somewhat independently from the main body
of software because they extend beyond a single release
cycle.

4.6 Innovation
• Innovation: promoting runtime, memory, and qual-

ity of result performance through optimization and
innovation.

The innovation concept follows directly from the goal
of providing superior end user productivity, which is
fundamentally tied to software performance. Superior
performance can be achieved using two methods that
are in tension. The first method is optimization. This can
be thought of as tuning existing software to improve its
runtime, memory, or quality of result performance.
Tuning software can sometimes compete with OOAD
design principles such as encapsulation. For example,
exploiting the underlying implementation of a data
structure can sometimes result in significant
improvements in performance, but at a clear cost in
encapsulation.

The second method to improve performance is
algorithmic change. For example, a developer may be
able to squeeze a few percentage points of improvement
out of a bubble sort algorithm by changing array
operations to pointers and making function calls in-line.
However, changing to a quick sort will yield
significantly greater runtime improvements for large
datasets because quicksort has better algorithmic
complexity.

The two methods of improving performance are in
tension because detailed optimizations that increase
coupling of client algorithms to supplier algorithms also
make it extremely difficult to innovate by changing
either the client or the supplier algorithm. In most cases,
algorithmic innovation yields greater improvements
than optimization, so the focus of this key concept is on
enabling innovation.

4.7 Testing
• Testing: enabling efficient automated testing by cre-

ating a levelizable system[9] (i.e., a system where

the testing and compile-time dependencies between
software modules form a directed acyclic graph).

The testing concept corresponds directly to the
testability goal. In this case, the concept has a technical
definition that can be concretely evaluated. By building
a graph from the compile-time dependency structure,
the system can be evaluated to see if it is levelizable. If
there are any loops in the dependency graph, the system
is not levelizable and is more difficult to test. This is
because all modules involved in a loop must be tested
together as a single unit. In the worst case, all modules
will be involved in a loop and the entire system must be
treated as a monolithic black box for testing. Since the
difficulty of testing a module grows exponentially with
the size of the module, creating a levelizable system is a
desirable property. In a large system such as the Xilinx
software system, it is easy to accidentally create a
dependency that creates a loop in the compile-time
dependency graph. The size of the system also makes
such loops especially expensive in testing time.

4.8 Release
• Release: supporting a release model with fixed

release dates planned long in advance.

The release concept is closely tied to the goal to enable
parallel development targeting multiple release dates.
An additional aspect of the release goal is to force the
development to happen gradually in an evolutionary
fashion. By requiring customer releases on a fixed
schedule, the development is forced into an evolutionary
path, which reduces schedule risk.

In summary, the creation of these goals and key
concepts was a long and arduous process. However,
because the key concepts provided techniques to realize
the goals, subsequent work went significantly faster.
Each new idea could be readily compared with the goals
and concepts we had already agreed to implement,
helping to keep the re-architecture process on track.

5. Planning
Armed with the newly created sets of goals, the key
concepts, and a common mindset, the system
architecture committee began to look at the software
and come up with concrete plans for what should be
changed. Here again, we followed a process that is clear
in retrospect but at the time seemed full of bumps and
blind alleys. We began by evaluating the current
architecture against the goals and key concepts. We then
chose the key concepts to be given first priority in the
redesign effort. Based on the highest priority key
concepts we proposed several different architectural
solutions intended to address these concepts, then
collected the best features of these proposals into a
coherent document called the system architecture
vision. With the vision as an endpoint, we created a plan
to evolve from the starting point of our existing software
architecture. Finally, we imposed the constraints of
having to support new FPGAs, add new software

features, fix bugs, and work with limited resources and a
fixed release date. Considering these constraints, we
then extracted a detailed short-term plan that would get
us through the current release cycle. In this section we
describe each of these planning phases in greater detail.

5.1 Prioritizing the Key Concepts
Before we could come up with an implementation plan
of attack, we first needed to prioritize among the key
concepts and decide which of them needed the most
attention. To do this, we performed a careful evaluation
of the existing software architecture against the goals
and key concepts we had labored over for so long. This
task allowed us to see which of the key concepts was
least supported in the current software, and then to
decide how we should focus our redesign efforts.

Based on this analysis, autonomy emerged as the most
important of the key concepts to guide changes to the
system. Secondary emphasis was given to sharing,
testing, and comprehensibility. This ordering did not
discount the importance of the other concepts - indeed
the final solution would need to balance among all eight
- but it recognized that the existing architecture already
had certain strengths. The existing source code
architecture was composed of two levels of hierarchy.
The first level, called the Personality Module (PM)
reflected the hardware device supported by that part of
the software. Each PM contained packages, grouping
the software within a PM by logical function. The
remainder of the code, shared by all PMs, was called the
“base”. This organization inherently supported sharing
and re-use of base code by all other PMs. Moreover,
each package from a PM created a Dynamically Loaded
Library (DLL) that was loaded on demand, once the
base code determined the device and required functions.
As shown in Fig. 1, the DLL for the PM plugged into
the base software, customizing it for a given hardware
device. This meant that if the base required no changes
an entire PM could be developed independently of the
rest of the system (the co-development concept) and
shipped to customers separately from the rest of the
software (the modularity concept). Finally, much of the
tight coupling in the system was done in the name of
performance optimization. This tight-coupling was a
two edged sword however, allowing significant
performance gains via detailed optimization on one
hand but on the other hand stifling the creation of new

Figure 1. The Personality Module (PM) contained device-
specific code that plugged in to the base code, but control

flow was determined by the base.

BASE

Personality Module

Control
Flow

algorithms that promised leaps in performance. Here
again we thought that increased autonomy was the key
as it could increase encapsulation and make it easier to
innovate algorithmically.

A secondary focus was the need for additional sharing.
As already described in Section 4.2, the combination of
base and personality module was an ideal situation for
domain engineering, so there was significant sharing
because the base code was reused for every device.
However, there was no natural place in the system for
algorithms and data structures that did not belong to any
particular PM, yet did not define a new application for
the base. Additional sharing of these generic algorithms
was a secondary consideration for the architectural
redesign.

Significant additional improvement was also desired in
the area of testing. Within the existing architecture,
anything not in a PM was added to the base, resulting in
a very large base. Within the base, there were no rules
about compile-time dependence and several packages
were involved in compile-time loops. Also, we
determined that significant gains in testability could be
achieved by re-factoring the software according to
function and designing from the outset a system that
could be tested incrementally in sections.

Finally, we sought improvement in comprehensibility.
Because the system had evolved into more than 400
packages, it was impossible to find a single person who
had even a cursory understanding of the role of each
package in the system. This made learning the system
difficult for new developers, made tracking down
integration problems difficult, and made it almost
impossible to consider any large scale decisions about
system structure.

5.2 The System Architecture Vision
Based on our priorities for the key concepts, we began
to create a vision of where the software should be
headed to better address autonomy, sharing, testing, and
comprehensibility. This vision contained several
elements and extended into the far future. Consequently,
only two of these elements played a significant role in
this first iteration through the six-step architecture re-
design process. These elements were the re-organization
of the source code into subsystems and layers and the
creation of a special layer for generic algorithms. This
section discusses these concepts in further detail.

Many long hours of discussion went into the creation of
the vision document. After failing to write anything
collectively, we delegated the task of an initial vision to
one committee member. Having this draft allowed us to
work through many problems and refine the concepts.
After several iterations we completed an initial draft.
We further refined the document based on feedback
from a group of the top engineers in the software
organization. Finally, the first version of the system

architecture vision document was published and
presented to all engineers.

However, the planning work did not stop there. The
vision encompassed work that could take years to
complete, but the next release was less than one year
away. Moreover, with each release we had to support
the latest hardware devices and offer improvements in
features, runtime and software quality. After many
hours of negotiation with marketing, sales, application
support and senior management we reached a consensus
on the resources that could be spent on re-architecting
the software system. Matching available resources
against the system architecture, we determined that we
could make two major architectural changes: the
addition of support for generic algorithms and the re-
structuring of the software into layers and subsystems.
Of these, the re-structuring of the software was a
significantly larger investment. We describe these two
changes in turn.

5.2.1 Layers and subsystems
Re-structuring the system into subsystems and layers
called for a complete re-organization of the system from
PMs and packages. It called for the creation of new units
of functionality called subsystems, which would in turn
be collected into layers.

On the surface, the software was still organized into a
two-level hierarchy. However, the subsystems were
envisioned as very different from the packages they
replaced. These differences included the following:

• A Subsystem is typically larger than a package and
can produce multiple libraries or executables. The
structure within a package was flat, but a subsystem
is truly hierarchical.

• Subsystems are logically related pieces of code that
can have multiple people working on them. A single
subsystem contains the base code and all the PM
code for a single application or function.

• A subsystem provides a single directory that con-
tains the subsystem interface, i.e., any files exported
by that subsystem, including header files, data files
and libraries. Other subsystems can access only
those files explicitly exported.

• Developers are encouraged to encapsulate and fully
insulate their subsystem interface.

• New code in subsystems must follow a naming con-
vention that limits pollution of the global namespace.

• Subsystems can have a compile-time dependency
upon another subsystem only if that subsystem is in
the same layer or a layer listed as a supplier layer.
The graph of compile-time dependencies within a
layer must not contain any loops.

• Part of the subsystem interface is a subsystem defini-
tion document that describes the subsystem and each
exported header file. To avoid synchronization prob-

lems, the header file documentation is generated
from the source code by ccdoc[14].

• The interface to a subsystem is controlled and
changes require the approval of a committee. Syn-
chronization of the changes within subsystems is
handled differently than synchronization of changes
in the subsystem interface. Each subsystem has a
subsystem integrator, a new role that makes sure the
different engineers working on the subsystem com-
municate. By having a single person responsible for
each subsystem we expect to eliminate some, but not
all, of the final build integration problems.

Of the changes proposed in the system architecture
vision, these changes were perhaps the most directly
connected with OOAD techniques.

Subsystems are grouped into layers. A layer is a set of
subsystems with certain compile-time dependency or
access rules. All subsystems within a layer have to abide
by the access rules of that layer. As shown in Fig. 2, the
entire Xilinx software system is composed of ten layers.
Five layers contain code that originates within Xilinx,
and the other five layers contain code that originates
outside of Xilinx. In the figure, the arrows show access.
For example, of Xilinx subsystems, only those in level 1
can directly include system header files. The principal
purpose of access rules is to improve testability.
However, the access rule that limits access to the system
header files has the added benefit of making it easier to
port to a new development platform.

5.2.2 Generic Algorithms
The second change to the software architecture is also
apparent in Fig. 2. This is the addition of the generic

algorithms layer. The generic algorithms layer
encourages code sharing and reuse for numerical
algorithms, data structures, and other generic
algorithms. In addition to the code sharing between base
and PM code (now contained within a subsystem) the
intent was that the generic algorithms could be used for
varied tasks throughout the software.

5.3 How the Architectural Vision Implements
the Key Concepts

Recall that for this first iteration of improvements to our
software architecture, we focussed on the key concepts
of autonomy, sharing, testing, and comprehension. To
work toward better support for these concepts, we chose
to implement two major changes from our system
architecture vision: a generic algorithms layer and the
re-organization of the system into subsystems and
layers. In this section we describe how the four key
concepts on which our re-architecture effort focussed
were realized through these two major architectural
changes.

5.3.1 Autonomy
Since our engineering organization was split between
two distinct sites, and a number of remote engineers
were also involved, we felt that a rearrangement of our
software along functional lines could help us provide
better support for autonomous code development.
Repackaging the software into subsystems created
modules that are more self-contained and can be worked
upon independently of other pieces.

Where modules are dependent on one another, greater
stability is ensured by encapsulation, insulation, and
committee approval for interface changes. Although
some engineers felt these restrictions on the interface
were overly harsh, we decided the best way to control
the overall software structure was to control the
subsystem interfaces. Ideally, we would also guarantee
that the exported functionality behind the interface was
also stable. For example, we could try to ensure that the
return codes for a function do not change. However, in
practice this is impractical and we rely on engineers to
handle this level of detail.

Encouraging developers to use encapsulation and
insulation techniques for their subsystem interface was a
direct step towards improving those aspects of
autonomy. As discussed in Section 4.1, complete
insulation would forbid techniques such as inline
functions, inheritance and default arguments[9]. We
performed some simple tests and found that in certain
cases changing a small set of inline functions to be
called functions could cause a significant run time
penalty. Since several of our applications can run for
many hours, this performance penalty was not
acceptable. Similarly, we have a reliance on inheritance
that is used as the principal mechanism for writing code
in dynamically loaded libraries. Because of these
constraints, we could not require full insulation for all

Figure 2. Include file relationships of Layers as put for-
ward in the SAV document.

Level 5 -
Jobs

Level 0 -
OS

Level 2 -
Generic
Algorithms

Level 4 -
Job & DB
Helpers

Level 3 -
Databases

Level 1 -
OS
Interface

Jobs

Helpers

DB

Generic-
Algorithms

XOS

Xilinx Layers 3rd Party

TJobs

TDB

TGen

TOS

OS

subsystem interfaces, but left it initially to engineer’s
discretion, subject to external review.

We further limited compile-time coupling by putting
access rules on layers. The access rule with the greatest
impact was that for Xilinx code, only the bottom layer
could directly include system header files. This made
designing the bottom layer more difficult because its
exported files also could not include system header files,
otherwise the system header files would be included
indirectly by unknowing clients and insulation would be
lost. We already had a set of system utilities that
supported most of the system functions that might be
needed. By making this rule we could speed up
compilations and decouple the majority of our software
from operating system quirks.

Encapsulation in our definition also includes keeping
the global name space clean. In the absence of
namespace support on every platform, every exported
symbol must be unique across the system. This requires
the creation of a system wide naming convention that
can be uniformly applied. This also requires restrictions
on the use of certain compiler features, like #define, that
can potentially cause conflicts between subsystems. We
looked for a tool that could be smart enough to help
automate this clean-up process, but could not find one.
In the end, we decided that much of what could be done
in this area was impractical within the time and resource
constraints of the initial re-architecture into subsystems
and layers.

Consequently, although we did create a system wide
naming convention that applied to all new code, we
grandfathered existing code. This can lead to
inconsistent header files that contain classes that follow
different naming schemes. To compensate, we allowed
the use of typedefs to make all classes within a
subsystem consistent with the naming convention, but
did not require clients of the existing interfaces to
change. We determined that certain naming conventions
had to be followed to avoid run time errors and required
that these be followed, but other than that made few
changes to the existing names of classes.

Despite these few exceptions left until later releases, we
expect the introduction of subsystems and all they imply
to lead to substantial improvements in autonomy.

5.3.2 Sharing
The introduction of subsystems and layers does little to
effect code sharing. The base/PM relationship that
implements sharing in the manner of domain
engineering[16] is still supported by the new
architecture. Now however, the base and its PM code
are contained within a single subsystem.

The creation of the generic algorithms layer is aimed
directly at improving the other kind of sharing, sharing
of smaller more general purpose code. In this regard, the
architecture changes are expected to lead to

significantly more code sharing of these generic
algorithms.

5.3.3 Testing
In the previous Xilinx software architecture, the
separation of PM code from base code made it difficult
to independently test the software. This is because the
PM created a dynamically loaded library that was
difficult to use in the absence of the base code. The
concept of subsystems allows us to consolidate more of
the code together and make the subsystem integrator
responsible for maintaining and running tests. By
having a single point of contact for a large set of code it
was felt we had a better chance of getting a solid
aliveness testing methodology in place.

The notion of levelizable software is also directly
addressed by the architectural changes. Recall that if the
compile-time dependency graph of a system contains no
loops, it is said to be levelizable[9]. By organizing the
subsystems into layers and strictly defining the access
rules for layers, the system is likely to be levelizable.
With the additional rule that dependencies between
subsystems within a given layer cannot cause a
dependency loop, we can guarantee that the entire
system is levelizable.

By factoring the system into layers, we get the
additional benefit that we can build and test the lowest
layer first and then on up the dependency graph.

Consequently, the architectural changes lead to testing
improvements in four areas: allowing the base and PM
code to be tested together, making the subsystem
integrator responsible for all subsystem testing, making
it easy to guarantee a levelizable system, and allowing
the system to be tested layer by layer.

5.3.4 Comprehensibility
A final contribution of repackaging the software into
subsystems is the ability to provide a consistent and
easy to use mechanism to learn about and understand
our software. As our software grew we found it
increasingly difficult to prepare developers to write new
code. The learning curve was steep due to the lack of
accurate internal documentation. Clearly more
documentation was required, but large detailed
documents are often imposing to new developers and
poorly maintain by the author, making their value
dubious at best. What was needed was a simpler
approach.

To this end, each subsystem was required to provide a
subsystem definition document. This document is
created and maintained by the subsystem integrator in a
standard HTML format. The document is not
comprehensive because it does not deal with subsystem
implementation. Instead, it briefly describes the purpose
of the subsystem, the files and libraries it produced and
its exported interface. Further documentation of the
exported interface is a set of HTML documents that are

generated directly from the exported interface header
files using ccdoc[14]. In this manner a new or existing
client of a subsystem can find an overview of the
subsystem in the subsystem definition document, and
detailed interface information in the header
documentation.

We did not require that the subsystem implementation
be described in an exported document, both because
such a document would quickly become out of date and
because it was “proprietary” knowledge not required by
a subsystem’s clients. To engineers who typically
looked at a function’s implementation before deciding
whether it was what they wanted, this level of
encapsulation and documentation was a revolutionary
concept.

5.4 The Evolutionary Plan
After reaching consensus across the organization that
the architecture would be reorganized into subsystems
and layers, the final step was to schedule each of the
packages to be converted into its corresponding
subsystem. This task was made significantly more
complex by the need to perform feature and device
support work in the same time frame. In the past, Xilinx
had tried to undertake major restructuring of its
software, only to either fail or to wait many months
before anything worked again. With the tight constraints
of the release, neither of these risks was acceptable.
Consequently we decided to convert the packages into
subsystems in waves, changing only a fraction of the
packages at a time. The exit criterion for each wave was
defined to be working software that passed our internal
engineering system test suite. The advantage of this
process was that we would have working software after
each wave. The disadvantage was that engineers had to
create a different software environment for each wave,
each with a different mix of old (packages) and new
(subsystems). In order to mitigate risk, the plan
introduced inefficiency by requiring almost everything
in the system to change for every wave.

To prepare for each wave, the new subsystems were
created several weeks in advance of the wave in which
they were first used. This provided each subsystem with
a trial period where it could be used locally but was not
required for a wave to complete. To aid this
mechanism we instituted a nightly build process where
all the software released that day was built that night.
These nightly builds gave us the chance to release a
subsystem in one wave and then attempt to use it
without affecting all existing clients in a full build.

In this section we discussed the changes to the software
architecture and how those changes reflected the key
concepts and goals for the re-architecture effort. We
began by evaluating the current architecture against the
goals and key concepts. We then chose the key concepts
of autonomy, sharing, testing, and comprehensibility to
be given first priority in the redesign effort. Based on
the highest priority key concepts we proposed several

different architectural solutions intended to address
them and collected the best features of these proposals
into a coherent document called the system architecture
vision. We selected two of the ideas from the vision,
deciding to create a generic algorithm layer and to re-
factor the system into subsystems and layers. Finally,
we created a plan to evolve from the starting point of
our existing software architecture with limited risk. This
plan called for the move from packages to subsystems to
take place in several waves, ensuring that the system
still functioned after each wave was complete.

In the following sections, we discuss the
implementation of this plan and evaluate the
effectiveness of our efforts to date.

6. Implementation
As of this writing, the initial transition to layers and
subsystems is complete, and developers have been
working with the new architecture for a few months.
The wave plan succeeded initially, but after 3 waves,
developers rebelled because the waves required a series
of changes that needed to be re-visited for every wave.
As a result, the final wave was more of a tidal wave that
swept in all remaining changes. At that point, everyone
understood the process well enough that we felt the risk
involved in such a large change was justified by the time
saved.

The major implementation hurdles to date have been
more related to people and group dynamics than to
technical issues. Initially, many engineers were
somewhat confused as to what was actually happening,
often because they were uninterested or too busy with
other issues to take the time to really understand the
process. Instead of riding the waves of change, unaware
developers were hit by them, suddenly discovering that
all their suppliers had new interfaces. Nevertheless,
most of the work has been completed and we are not
significantly behind schedule.

7. Results and Evaluation
As we said in Section 1, the re-architecture process is
ongoing and will continue for many years as the
software continues to change. However, we can begin to
evaluate the initial two changes to the software
architecture: creating a generic algorithms layer and re-
factoring into subsystems and layers. These tasks are
themselves incomplete, but preliminary results are
encouraging. We detail our intermediate evaluation in
terms of the key concepts these changes are intended to
affect most.

7.1 Autonomy
At the time of this writing, it appears that there has been
significant improvement in the ability of our engineers
to work autonomously on their code. By separating the
interface of a subsystem from its implementation and by
placing controls on that interface, we have seen far
fewer integration problems. Requiring engineers to

obtain approval for interface changes is cumbersome,
but it makes engineers consider the impact of those
changes.

In terms of insulation, results to date have been positive
but depend greatly on the amount of time the engineer
spent re-designing the interface to their subsystem. The
first engineers to begin implementing their new fully
insulated classes were greatly excited. After they spent
weeks at a time working upon a single class and
realizing that time was slipping away, the amount of
insulation began to decrease dramatically. Engineers
with less time often did almost nothing to redesign their
interface. We have begun a detailed review of each
interface to guide future work in this area.

In general, the engineers working on the lowest levels of
the system (see Fig. 2) started working on their
subsystems while other engineers were still working on
the previous release. As a result, the most progress was
made in the most heavily used portions of the system,
which provides the most leverage to improve autonomy
and reduce overall compilation times. This effect can be
seen in Table 1, which shows the reduction in include
file count for several files selected at random from
various parts of the system. This is an important metric
both because the number of included files is a rough
measure of autonomy of a subsystem (more included
files indicates less autonomy) and because including
fewer files usually means faster compilations. These
files were also selected because they are typical and
because they have essentially the same functionality in
the old system and the new. The levels in the table refer
to the level numbering system shown in Fig. 2. Because
of the additional work spent on insulating the lowest
levels of the system, the most dramatic ratios of the
numbers of included files can be seen for files in levels
2 and 3. For levels 4 and 5, more files are included

because the code is at a higher level of abstraction.
Moreover, most of the included functionality is from
levels 2, 3, and 4, which have not been as well insulated.
As a result, the ratio of the numbers of included files is
not as dramatic.

The reduction in the number of included files is also
reflected in compilation time of the system. However,
compilation times are difficult to compare both because
the functionality of any significant subset of the system
has increased and because computer hardware and
networks are continually being upgraded. However,
despite increases in functionality, compilation time for
the complete system has been reduced from
approximately 22 hours to approximately 5 hours. (The
compilation happens in parallel, but the times quoted are
the sum of the times from each machine.) Consequently,
despite any hardware improvements, it is safe to say that
compilation time has decreased.

Improvements in compilation time can also be seen in
Table 2, which shows compilation times for several
modules performed under controlled conditions: on a
200 MHz UltraSparc machine running Solaris 2.6.
These modules were selected because they have
remained relatively unchanged. It is meaningless to
compare portions of the system where most of the
improvements were made because the structure and
function of the code is dramatically different. We can
only extrapolate from the overall compilation times to
estimate that the largest compilation improvements are
in the re-written portions of the system. However, even
when the module is essentially unchanged, because the
subsystems on which the module depends has been
insulated, the compilation time has decreased.

Although insulation can improve autonomy, it can also
adversely affect the runtime of the application. In one
case, several in-line functions were re-introduced into
an insulated subsystem because of the overhead of the
function call. In each case, the function was called so
many times that the function call overhead consumed 1-

Table 1: Reduction in included files for a typical set of files

File
(Level -

see
Fig. 2)

Num.
Included

Files
Before

Num.
Included

Files
After

Ratio:
Before/
After

A (level 2) 44 6 7.3

B (level 3) 100 15 6.7

C (level 4) 217 97 2.2

D (level 5) 229 92 2.3

E (level 5) 327 223 1.5

F (level 5) 502 272 1.8

G (level 5) 266 110 2.4

H (level 5) 289 161 1.8

I (level 5) 321 156 2.1

Average 3.1

Table 2: Reduction in compilation times for modules that
are essentially unchanged

Module Compile
Time (s)
Before

Compile
Time (s)

After

Ratio:
Before/
After

A (level 2) 16 13 1.2

B (level 3) 44 25 1.8

C (level 5) 110 90 1.2

D (level 5) 513 335 1.5

E (level 5) 585 396 1.5

F (level 5) 75 50 1.5

Average 1.5

2% of the overall runtime of an application that ran
several hours. Faced with this runtime overhead, the in-
line function was re-introduced. We plan to introduce
alternative interfaces for clients with such special
requirements.

As for encapsulation, the best we can say so far is that
we have exposed our engineers to the idea of
encapsulation. A few of the engineers did take this
concept to heart and completely encapsulated their
classes. These classes are now benefiting from this work
in that they can have their class implementation changed
without affecting their clients. Most engineers went into
this project assuming that they were going to completely
encapsulate every class. Once they started this process
and saw the amount of time it took, they often retreated
to insulation. This was acceptable because insulation
provided immediately visible benefits that would
encourage engineers to return to encapsulation as time
permits.

The overall effect of the re-architecture effort on
autonomy has been dramatic, particularly in the area of
insulation. The use of encapsulation is more difficult to
quantify, but we expect it will be more noticeable as the
system continues to change.

7.2 Sharing
Improved sharing via the generic algorithm layer is also
a long term investment. To date, several algorithms
have been added to the layer and we have had at least
one successful re-use. We expect greater utility over
time, but unlike the optimistic predictions of early

advocates of re-use, do not expect dramatic results from
this effort.

7.3 Testing
Because we are not yet at that point in the process, we
have not yet seen reductions in our testing burden or bug
count. To provide a starting point for improved testing,
there will be a special build, called a test build, used by
developers to work on their internal tests. Each
subsystem integrator will use this build to determine the
amount of code coverage for their subsystem. Although
we have tried to increase code coverage in the past, tight
coupling with other developer’s code was often used as
an excuse for poor test coverage We believe that most
engineers will be horrified by the lack of coverage and
spend time increasing it. With this initial code coverage
benchmark for the new software architecture, we can
require increases in test coverage in future releases.

7.4 Comprehensibility
As with the other key concepts, comprehensibility is
difficult to quantify and results have been mixed. In
terms of documentation, we have created an on-line
internal tools documentation area that contains the
subsystem definition document for each subsystem. We
have installed the ccdoc tool that creates documentation
from C++ header files. Developers need only provide a
specified type of comment in their interface header files
and these will be added to the generated documentation.
Even with all of this working, we hear anecdotally that
not many people are using the browsing facilities. This
is likely because most engineers have spent years

Figure 3. Topologically sorted graph of package include dependencies (before re-architecture).

reading header files directly and are still most
comfortable doing so. Perhaps with the arrival of new
engineers, this new browsing facility will become more
useful. Similarly as we begin to move toward a
heterogeneous mix of C++ and Java we might find these
facilities more widely used.

One kind of comprehensibility where improvement is
more readily apparent is the documentation of the
overall architecture of the system. Drawings such as
Fig. 2 provide a simple, high-level picture of the
intended architecture. A complete drawing of all the
subsystems and their include dependencies shown in
Fig. 4 provide a more complete view of the system
architecture. This graph is topologically sorted, which
reveals that the compilation order of the system can be
mapped back to the layers of Fig. 2. Note also that
redundant edges (a direct edge to a subsystem included
indirectly) have been removed. Fig. 4 also shows two
remaining cyclic dependencies in the compilation order
(upper right). These are in an isolated part of the system
and will be eliminated soon.

Comparing Fig. 4 with Fig. 3, which was generated in
the identical fashion from the previous architecture, it is
quite apparent that the new architecture is easier to
comprehend and work with at this level of abstraction.

8. Conclusions
In this paper, we introduced a six-step process by which
Xilinx has made an initial iteration at re-architecting its
software system. We have followed the progression
through these steps and discussed the flow from

analysis, to goals, to key concepts, to planning, to
implementation and finally to evaluation. We have
shown that we can modify a large legacy software
system and create a software architecture that better
balances among key concepts that reflect the demands
of business, requirements of software engineering, and
OOAD principles. Although this first iteration of our re-
architecture is not yet complete, already we have seen
significant gains in developer productivity.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design Patterns: Elements of Reusable Object-Ori-
ented Software. Addison-Wesley, 1995.

[2] B. Foote and W. F. Opdyke, “Lifecycle and Refac-
toring Patterns that Support Evolution and Reuse,”
First Conference on Patterns Languages of Pro-
grams (PLoP '94). Monticello, Illinois, August
1994. Pattern Languages of Program Design,
edited by James O. Coplien and Douglas C.
Schmidt. Addison-Wesley, 1995

[3] G. Booch, Object-Oriented Analysis and Design:
with applications. Benjamin/Cummings, 1994.

[4] S. McConnell, Rapid development: taming wild
software schedules. Microsoft Press, 1996.

[5] http://www-cse.ucsd.edu/users/wgg/swevolu-
tion.html

[6] http://www.bell-labs.com/user/hpsiy/research/evo-
lution.html

[7] http://www.comp.lancs.ac.uk/projects/Renais-
sanceWeb/

[8] http://www.sei.cmu.edu/reengineering/

[9] J. Lakos, “Large-Scale C++ Software Design,”
Addison-Wesley Professional Computing Series

[10]http://www.xilinx.com/company

[11]M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Com-
pleteness. Freeman, San Francisco, CA, 1979.

[12]J. Frankle, “Iterative and Adaptive Slack Allocation
for Performance-driven Layout and FPGA Rout-
ing,” Proceedings of the 29th ACM/IEEE confer-
ence on Design automation conference, 1992, Page
536.

[13]E. S. Ochotta, et al, “A Novel Predictable Seg-
mented FPGA Routing Architecture,” in FPGA ‘98,
Proceedings of 1998 ACM/SIGDA intl. symp. on
FPGAs, pp 3-11.

[14]http://www.joelinoff.com/ccdoc/index.html

[15]C.W. Krueger, “Software Reuse.” ACM Computing
Survey, vol. 24, no. 2, pp. 131-182, 1992.

[16]E. Mettala and M.H. Graham, “The Domain-Spe-
cific Software Architecture Program,” CMU/SEI-
92-SR-9, 1992.

Key

Level 1 Level 2 Level 5Level 3 Level 4

Figure 4. Topologically sorted graph of subsystem include
dependencies (after re-architecture). Levels refer to Fig. 2.

