USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5" USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3-7, 1999

The Application of Object-Oriented Design Techniques to the
Evolution of the Architecture of a Large Legacy Software
System

Jeff Mason and Emil S. Ochotta

Xilinx Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

The Application of Object-Oriented Design Techniques to the

Evolution of the Architecture of a Large Legacy Software System
Jeff Mason (jeff.mason@xilinx.com) and Emil S. Ochotta (emil.ochotta@xilinx.com)
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124

ABSTRACT This paper describes the process one company
undertook to re-architect their large legacy software
system and begin reaping the benefits of OOAD
techniques despite the constraints of continuing feature

Object Oriented Analysis and Design (OOAD) is
increasingly popular as a set of techniques that can

be used to initially analyze and design software. improvements and a strict release schedule. This six-
Unfortunately, OOAD is a relatively new concept step process is as follows:

and many large legacy systems predate it. This paper

presents the approach one company followed in 1. Analysis evaluating the current state of the legacy
applying OOAD techniques to an existing 2.5 million software;

line code base. We present an iterative process that
provides an avenue for the software to evolve while
balancing the needs of business and software engi-
neering. Our case study reveals the many pitfalls
that can derail a software re-engineering effort, but 3. Key Concept Selectiomefining the goals into a set
also shows promising initial results from continued of key concepts based on business requirements’
perseverance in this effort. software engineering principles and object oriented
analysis and design principles;

2. Goal Selectiondetermining a set of goals to guide
changes to the software and allow evaluation of the
results;

) 4. Planning determining how best to apply the key
1. Introduction concepts to the legacy software to allow it to evolve

Object Oriented Analysis and Design (OOAD) towards a system that satisfies those concepts;
techniqgues promise many benefits to softwares. Implementationmaking it happen; and
developers and software companies - software reuse and
resilience to change through component libraries and"
patterns[1][2], lucid code structure that more clearly
reflects the problem domain[3], and reduced risk byThere is a substantial body of research that focuses on
introducing a formal design process where often nonghe technical aspects of software evolution[5][6] and
existed previously[4] - to name only a few. To reapreengineering[7][8], and many of the technical ideas
these rewards, most OOAD techniques assume softwatiscussed in this paper have been described elsewhere in
developers apply the techniques at the beginning of thene form or another. The contribution of this paper is
software lifecycle, i.e., the beginning of the designthe description of the process we undertook and how we
process, and continue to use them as the softwaklected and satisfied key concepts that balanced the
matures. Unfortunately, OOAD is a relatively new demands of business, the requirements of software
concept and many large legacy systems predate igngineering, and the OOAD principles we wanted to
Moreover, because the pressures of commercigbursue. Inthe end, these key concepts included:
competition focus directly on adding features, fixing

bugs, and releasing the product on-time, software Autonomy encapsulating and insulating function-
developers often (misguidedly) skimp on the things that ally related software into subsystems to minimize
should be done for long term benefit in favor of the interactions, to reduce compile times, and to support
things that absolutely must be done to complete the testing, allowing these subsystems to evolve inde-
product. Since not all developers are educated as to the pendently and asynchronously;

benefits of OOAD it is often one of the things
overlooked in the headlong rush to a software release.
The long-term price of this behavior is a large body of
difficult to maintain software, proving the well-known
adage that the overriding cost of software is not it2 Comprehensibility promoting design, documenta-
initial development but rather its maintenance. In this tion and coding standards that - for the general client
environment of legacy software and corporate pressure, - make shared code and interfaces easier to under-
reaping the benefits of OOAD seems a very elusive stand, more convenient to use, and easier to main-
goal. tain;

Measurement evaluating the effectiveness of the
changes against the original goals.

Sharing: solving problems in as few places and as
few times as possible to maximize code reuse, mini-
mize code size, and promote standardization;

e Modularity: allowing functional product compo- software system. We first present the environment in
nents to be released to end users independently awhich our work was performed, including a brief
asynchronously; description of Xilinx, the company where the work was

. Co-developmer: promoting the ability to explore, performed, and the purpose of the software. We then

evaluate, and develop new features without affectin@iSCuss the state of disrepair we found when we first
other on-going development; began to look at the software system itself and the costs

])) associated with that disrepair. These costs were the
* Innovation: promoting runtime, memory, and qual- jnitial motivation that drove our re-architecture.

ity of results performance through optimization and .

innovation; 2.1 Xilinx Inc.

. Testing enabling efficient automated testing by cre- 1 NS work was performed at Xilinx[10]. Xilinx was
ating a levelizable system[9] (i.e., a system whereCréated as a hardware company, producing FPGAs,

the testing and compile-time dependencies betweeWhich are members of the family of integrated circuits
(ICs) called programmable logic.

software modules form a directed acyclic graph);

+ Releas: supporting a release model with fixed Understanding how an FPGA is used provides some
re|ease dates p|anned |0ng in advance_ Useful InSIght Into the CompleXIty Of the FPGA deS|gn

. software we discuss in this paper. An example FPGA

To implement these concepts, we developesystem 5 yjication is emulating another IC or computer chip. In

architecture visio that outlined the changes to the y,iq 4nnjication, the design to be emulated is loaded into

software architecture that were designed to put thes, . EpGA and the FPGA inserted into the system of

key concepts into practice. We then put forward arypioh the chip being emulated is a part. This technique

evolutionary plan to implement the vision. What quickly allows the design of the new chip and the system of

became apparent is that the inertia of the software W, pion it is part to be tested and debugged before the
too large to allow all our changes to be implemented &g,y chip is actually built. Similar to a compiler, FPGA

once, Wh”ef. Sti(ljl relhea(;sirllg évorking sofltware on If"m design software automatically translates the high-level
aggressive fixed schedule. Consequently, we realizéqeqqriniion of the chip to be emulated into millions of

that the six-step process described above must Ly oamming bits that configure the FPGA to perform
applied iteratively, over an extended period of years. ¢ emuylation. Part of this translation task involves
Since the full implementation of this vision is an Selecting a location from among the thousands available
ongoing task whose costs and benefits may not be fullon the FPGA for each logical element. These locations
evaluated for many years, this paper describes the initimust be selected to optimize chip performance or other
iteration through that six-step process. In this firstuser-specified constraints, creating an NP-complete[11]
iteration the implementation had to be scaled back to ficombinatorial optimization problem[12]. Moreover, in
within a single release cycle of less than a year anresponse to competition and customer demand, FPGAs
focussed primarily on the key concepts of autonomyare continually increasing in size and new hardware
sharing, testing, and comprehensibility. In these areafeatures are added to each new FPGA[13]. To keep pace
we have seen some dramatic improvements, particularwith these newer, bigger FPGAs and still provide new
where quantitative measurement is straightforwardsoftware features, the FPGA design software is
such as compile-time coupling. increasing in size and complexity at an even faster rate.
) .) . Finally, because software provides the abstract model
The remainder of this paper is organized as follows. Inyith which most FPGA customers interact, Xilinx has
the next section we detail the first step in the six-stelpyt increasing emphasis on software development in
process we followed, outlining the state of the softwaréorder to turn our software into a competitive advantage.
system and the corporate situation that forms thehe ifficulty of the FPGA optimization problem,
backdrop for our work. In Section 3 and Section 4, Wecontinually evolving FPGA hardware, and increasing
describe the next two steps in the process, theystomer reliance on fast reliable software conspire to

conceptual steps of setting the correct goals we armake writing FPGA design software a challenging
working toward and selecting key concepts that reflecproposition.

those goals. In Section 5, we present the evolutionarv

plan we created to work towards realizing those key2.2 The State of Xilinx Software

concepts in our software. In Section 6, we discuss thAs one step toward improving its software, in early
implementation of this evolutionary plan, and in 1995 Xilinx acquired a small software start-up company
Section 7, we evaluate this implementation against thbased in Colorado. At that time, Xilinx’ FPGA design

key concepts and our initial goals. Finally, in Section 8 software consisted of nearly 1.5 million lines of C code

we present our conclusions. developed and maintained by approximately 70 staff
. members. Xilinx had released 30 software revisions to
2. Background and Analysis over 10,000 software customers. In contrast, the 30

In this section, we describe the first of the six steps irengineers of the close-knit start-up had written just over
the process we followed to re-architect our legacy700,000 lines of highly interconnected C++ and had

released 6 software revisions to about 200 customers.

The start-up’s code was poorly documented, but a
knowledgeable person was always at hand to deal with

any issue or problem. Thus, change requests wele

informal conversations and system-wide changes could
be implemented and compiled within a few hours.

After the purchase, the corporate goal was to merge the

two software systems, keeping the strengths of both.

was no longer possible to find any one person who
understood most of it.

Autonomy (Encapsulation) The interfaces
between packages had evolved as necessary to meet
tactical, local needs, without regard for strategic,
system-level concerns. Consequently interfaces were
extremely broad and ill defined. There was no clear
division between the interface and the implementa-

This was easier said than done. The C++ code from the tion of most classes. Much of the code was really just
start-up was selected as the software base for the future old C code transformed into C++ objects. One of the
merged product, and features that had been added to the major indicators of a lack of encapsulation was direct

original Xilinx product based on customer requests were

to be added as needed. Software developers in Colorado

were now faced with a much larger development
environment and had to work with developers in
California who understood the features to be added but
did not understand the software base. Softwarg
developers in California were now faced with giving up
their old software, learning a new and undocumented
software base and working with developers in Colorado
who did not understand the new features to be added.
Neither group was used to working across multiple
development sites, so “lack of communication” was one
of the most common complaints by both groups about
their peers on the other side of the mountains. Software
was not getting built on time and fingers were being
pointed in all directions. It was a difficult time for all
involved.

Work toward the first merged release took substantially

longer than anyone had dared to predict, and we missed

access of class data by another class. Many of our
classes had been designed with public get/set func-
tions for each of the class data members. Conse-
guently, changes that should have been internal to a
package had repercussions throughout the system.

Autonomy (Insulation). The compile-time depen-
dencies (due to included files) had never been
designed or analyzed. Often the vast majority of the
compilation time for a module consisted of reading
and processing included files. When first designing
C++ classes, the tendency is to make the header file
as convenient as possible for the implementation of
that header. For example, the lowest level header file
in the Xilinx software system directly or indirectly
included almost 60 system header files, establishing
a platform independent interface to the operating
system. However, in such a large system, most of
this functionality was not used by most of the clients
that included it. This overhead is an unneeded bur-

several target release dates. Upper management beganden to clients, who often compile complete defini-

to apply greater pressure to the software team, justifying
decisions to take “short-cuts” on the basis of short-term
necessity. As is frequently the case, it is arguable
whether these “short-cuts” reduced the time to first

customer shipment, but they unquestionably came back
to haunt us by adding to our maintenance burden over
the next few releases.

After the frenzied days and nights of making our first
few merged releases a reality, we took stock of our new
software. The start-up’s 700,000 lines of C++ had
ballooned to approximately 2.5 million lines of C++

code in roughly 2200 source and header files. Our

software shipped as 45 executables, 130 shared librarigs

(loaded at program start up), and 110 dynamically
loaded libraries that customized the software for the
different FPGAs in the Xilinx product line. Our single

source software supported the Solaris, Windows, HP

and RS6000 platforms. The source code was organized

into approximately 400 subdirectories called packages,
where each package produced either a library or an
executable. After a brief inspection, we identified
several major problem areas that we later categorized
according to the key concepts to which they relate:

« Comprehensibility. Just as it was in the start-up, the
code was mostly undocumented, but now it was
much more complex and growing so rapidly that it

tions of many unused classes or classes that require
only a forward reference. Engineers, recognizing this

system-wide problem but unable to change it, were

starting to make extremely large source files because
the compilation times were faster than the aggregate
compilation time of many smaller files.

Autonomy (Insulation). Another problem was the
rampant use of ‘inline’ functions. Inline functions are
expanded at compile time rather than run time. This
implies that a class that defines an inline function can
not change the implementation of that inline function
without forcing all of its clients to recompile.

Autonomy. The turn around time to build and verify
our software had become one to two weeks. Most of
that time was spent in tracking down integration
problems and then rebuilding everything. Because of
the interdependence of the software, a compilation
problem in one package may actually be caused by
interface problems in any one of a large number of
packages. Tracking down and solving these integra-
tion problems was made even more difficult because
finding someone who understood the disparate parts
of the system was no longer possible. Because of the
difficulty of compiling several million lines of code
on a single workstation, developers typically devel-
oped and tested against builds that were several

weeks out of date, exacerbating the integration probinconsistent, which led to disagreement over the
lems for the next build. changes that were required, which in turn led to
« Sharing and Autonomy There was no person or Stalemate and inaction. Consequently, the committee
group whose responsibility it was to review or co-had to agree on its goals before it could take any steps to
ordinate code changes. Each engineer or group wdmprove the software architecture. Choosing the goals
free to implement or use what they needed to geWas the seed for the six-step process that we eventually
their specific job completed. Sometimes system-followed to bring our architectural changes to fruition.

wide integration builds failed because large changeThe committee agreed upon six goals, several of which
were made to shared code to support a new featurconflicted, making them impossible to satisfy all the
b_ut the changes were not tested for all clients. Othegoa|3 simultaneously. Initially the group was
times, when small changes to a large package weldisheartened that we could not select a set of goals that
required, engineers would copy the entire packagcould be satisfied completely, but over time it became
into their package to avoid having to work with the clear that this tension between the goals reflected the
other package's owner. reality of business and of the software design process. In
Problems like these were creating a software anboth environments, there are no right answers and
corporate environment where developers no longer hacompromise is essential to success. Moreover, the
the freedom or time to innovate. They had no freedonability to strike the correct balance between competing
because every non-critical project was deemed higigoals is what distinguishes successful businesses and
risk, since the complex package interdependenciesoftware organizations, and this made the design
could cause minor errors to have major repercussiorprocess challenging and exciting.

throughout the system. They had no time because fixin; . : L .
each small problem required an inordinate amount OAfter much discussion and negotiation, the committee

time to implement and verify. agreed upon the following six goals:

Provide superior end user productiv. Make inter-

After this analysis, it was clear that something needed to . .
y g nal architectural improvements that eventually result

change. Fortunately for Xilinx, senior management . o - .
understood the issues and that the long-term viability of " Customer visible improvements in our software.
the software product was at stake. With their support, <IINX customers are the first priority.
several members of the company were chartered witn Distribute productivity effectively across develop-
re-architecting the software to fix these problems. ment group. Address “geography problems,” where

.) developers in different groups do not communicate.
3. Goal Selection and The System Architec- The developers who were originally in the start-up
ture Committee felt they could not get their work done due to contin-
The software management team recognized that Xilinx' ually having to educate the other developers. The
software needed significant re-design at the architectural other developers felt they could not get their work
level, requiring co-operation from the entire software done because they were not trusted to modify the
organization. They created the System Architecture existing core of the software. In practice, geography
Committee, a seven member team of engineers and problems can happen even when the groups are
managers that represented both development sites. The physically adjacent, and the software architecture
VP of software was a member of the committee, giving can have a significant effect on inter-group commu-
it the needed management clout. The authors were nhication. These problems have a large negative
selected as members of this committee. impact on productivity and morale.

Initially, it was thought that members of the committee® Improve the productivity of individual develorers
would spend roughly 10% of their time looking at ~ Create an environment where individual contributors
system architecture issues, but as the weeks passed and¢an work more efficiently, without having to wait for
the extent of the problem became more clear, the work- other developers to complete their tasks.

load quickly grew beyond 10% of each member's time. Enable parallel development targeting multiple
To give the architectural work the attention it required, release date. Develop an environment that supports
the authors became full time architects, and most projects that require more time than a single release
members were required to put aside their other duties cycle. This goal is a direct result of the fixed release

for short periods of time to complete work for the schedule required to support new FPGASs in a timely
committee. fashion.

In the first few weeks of meetings, little was + Build in flexibility to handle a constantly changing
accomplished and frustrations grew. Several members market. Anticipate the aspects of the software that
proposed changes that they felt would improve the will most likely change: new kinds of FPGAs, new
existing software architecture, but the group could not software features, etc. Ensure that the software archi-
reach consensus. Eventually, it became clear that the tecture is not brittle when these kinds of changes are
goals of the various members of the committee were required.

« Enable accurate and efficient measurement of theautonomy, since both the client and the supplier may be
quality of the system by designing for testal.ility forced to wait for each other. The supplier may not be
Plan from the outset to incorporate a testing infra-allowed to change the data structure until the client is
structure that supports measurement of softwarready, or the client may be unable to compile code that
quality that is both fast and accurate. requires the new data structure until the supplier

These six goals formed the foundation for the rest of oucOmpletes its implementation.
software re-architecture work. They were driven
primarily by business rather than OOAD or software
engineering goals. When creating them, we alsc
explicitly decided not to consider how we would
accomplish these goals. They are merely what wi
wanted in an ideal world. Consequently, they form ar
ideal set of metrics with which we can evaluate the
efficacy of our software architecture decisions.

We recognize two facets of autonomy that are closely
linked to OOAD principles: insulation and
encapsulation. Insulation can be defined as the process
of avoiding or removing unnecessary compile-time
coupling[9]. In practice, insulation can be implemented
by creating an opaque interface. For example, Lakos
defines a fully insulated class as one that is not derived
from another class, contains no inline functions or
4. The Key Concepts default arguments, and contains only a single pointer to
Once the goals were in place, the next step was tan implementation class that is declared with a forward
determine hOW to achieve them We soon rea”zed thEreference. The details Of the implementation CIaSS are
there was too large a semantic leap from the goals tcompletely hidden from any clients that include the
was an intermediate step where we agreed on a set create header files that are completely independent of
principles from the worlds of OOAD and software €ach other, dramatically reducing the compile-time
engineering. These principles would reflect the abovverhead of header file inclusion.

goals but more closely relate to the software and code . _ .
architecture itself. This tighter relationship to the/Another facet of autonomy is encapsulation, which

software would make it possible to create anshould be familiar to practitioners of OOAD.
implementation plan. Encapsulation can be defined as the concept of hiding

implementation details behind a procedural interface[9].
These principles are the eight key concepts introducegncapsulation and insulation are clearly related, but a
in Section 1 that tie our architecture work together. Tthu”y insulated class need not be encapsu|ated_ For
first two (autonomy and sharing) are primarily OOAD example, a fully insulated class can still expose its
techniques, and the last (release) is a businesmplementation by providing public access functions to
constraint. The others lie somewhere on the spectrum || jts private data. However, in some respects
OOAD techniques and plain old software engineeringencapsulation can be a less drastic technique than
As with the goals, these concepts are in tension: aninsulation because encapsulation allows the use of other
plan will favor some concepts over the others. In thiEfeatureS of C++, such as inheritance and inline
section we describe these key concepts and how the¢ynctions. In this paper we refer to insulation when
connect the six goals to changes that can be realized irgiscussing the compile-time independence of modules
software architecture. from one another and refer to encapsulation when
4.1 Autonomy discussing the logical independence of a client class

- Autonomy: encapsulating and insulating function- from the implementation decisions of its suppliers.

ally related software into subsystems to minimize4 2 Sharin

interactions, to reduce compile times, and to suppor.” g
testing, allowing these subsystems to evolve indes Sharing: solving problems in as few places and as
pendently and asynchronously. few times as possible to maximize code reuse, mini-

Autonomy follows directly from both of the mize code size, and promote standardization.
productivity goals: distribute productivity effectively
across development grot and improve the
productivity of individual develope. Engineers are
most efficient when they are free from dependencie:
and allowed to work alone or as members of a small
tightly-knit group.

Sharing falls into the general category of software reuse,
a subject frequently discussed in the literature (see for
example[15]). Reuse or sharing is also connected to the
goal of developer productivity because in principle it
allows a piece of code to be written once and reused in
several places. In practice, sharing is difficult to achieve
Software dependencies can be exacerbated by pobecause the clients of the shared code must agree on
software architecture and by failing to adhere to OOADwhat exactly the code does. If the code is too
basics. For example, failing to encapsulate a datspecialized, it is unlikely to be useful to more than one
structure means that clients of a package use that declient. On the other hand, if the code is too general, it
structure directly. When the data structure changes, ttwill be too slow or so simple that reusing it
client must also change. This is an example of pooaccomplishes little.

For the Xilinx software system, two kinds of sharing or4.5 Co-development

reuse are of parti_cular interest. Because _Xilinx supports Co-developmen: promoting the ability to explore,

a number of different hardware devices that are evaluate, and develop new features without affecting
fundamenta”y r_elated, the X|||n)-(SOftV_/are IS a..n other On_going deve|0pment_

excellent candidate for sharing via domain he k ‘ | h h
engineering[16]. In domain engineering, tasks that ar] N€ key concept of co-development has two aspects that
needed throughout the domain are abstracted ar'€late to what is being developed concurrently. Both
written once. In this case. common tasks needed t'€late to the goal of flexibility in a constantly changing
support all devices can be abstracted and written ;market. In the case of support for new hardware devices,
configurable or data driven algorithms. Fortunately, thiccO-development means that new hardware can be
characteristic had been recognized by the originaSUPPOrted with a minimal impact on software. This is
designers of the core software created in the start-up a€ssential in a competitive marketplace where the most

the software already made significant use of this kind oSUCCeSSful company is the one that can innovate and
sharing (although the term domain engineering had yErespond to change the most_qwckly. Similarly, the other
to be coined). aspect of co—developme_nt is support for features and
changes that are not driven by hardware, but must be
The second kind of sharing was not as well supported ideveloped somewhat independently from the main body
the Xilinx software, and that is the more conventionalof software because they extend beyond a single release
sharing of small generic algorithms. In sharing of thiscycle.
kind, tasks that are not domain specific, but may be .
general mathematical functions, data structures, or oth¢H-6 Innovation
algorithms are collected into a reusable library. To* [nnovation: promoting runtime, memory, and qual-
succeed at this sharing, this library has to be carefully ity of result performance through optimization and

designed explicity so that it can be reused. The innovation.

designers have to pay particular attention to making thThe innovation concept follows directly from the goal

functionality general, efficient, and well documented. of providing superior end user productivity, which is
o fundamentally tied to software performance. Superior
4.3 Comprehensibility performance can be achieved using two methods that
» Comprehensibility: promoting design, documenta- are in tension. The first method is optimization. This can
tion and coding standards that - for the general clienbe thought of as tuning existing software to improve its

- make shared code and interfaces easier to underuntime, memory, or quality of result performance.
stand, more convenient to use, and easier to mairTuning software can sometimes compete with OOAD
tain. design principles such as encapsulation. For example,

Comprehensibility as defined by this key concept is no€XPloiting the underlying implementation of a data
structure can sometimes result in significant

intended to increase the amount of communicatior; . .
between developers, but to reduce the need for it. ThiMProvements in performance, but at a clear cost in
key concept again relates back to the productivity goalsgncapsulatlon.
The idea is to create a system and an environment thThe second method to improve performance is
inherently reduces the need for additional documents talgorithmic change. For example, a developer may be
describe the architecture of the system itself. One of thgple to squeeze a few percentage points of improvement
main benefits of such a system is the reduced need figut of a bubble sort algorithm by changing array
maintenance that can occur when a change to apperations to pointers and making function calls in-line.
interface must be made both in code and in one or moiHowever, changing to a quick sort will vyield

separate documents. significantly greater runtime improvements for large
. datasets because quicksort has better algorithmic
4.4 Modularity complexity.

* Modularity : allowing functional product compo-
nents to be released to end users independently ai
asynchronously.

The two methods of improving performance are in
tension because detailed optimizations that increase
coupling of client algorithms to supplier algorithms also
Modularity is related primarily to the goal superior make it extremely difficult to innovate by changing
end user productivi, but is an existing strength either the client or the supplier algorithm. In most cases,
characteristic of the Xilinx software. As an example ofalgorithmic innovation yields greater improvements
this key concept, software support for a single Xilinxthan optimization, so the focus of this key concept is on
device could be shipped as part of the overall softwarenabling innovation.

system or as an individual software plug-in. This]

modularity made it possible to create and support nev4.7 Testing

hardware products without shipping a complete new Testing: enabling efficient automated testing by cre-
software system. ating a levelizable system[9] (i.e., a system where

the testing and compile-time dependencies between
software modules form a directed acyclic graph).

The testing concept corresponds directly to the Control
testability goal. In this case, the concept has a technica Elnoro
definition that can be concretely evaluated. By building J U U U U U\ w

a graph from the compile-time depgar_ldgancy structure, Personality Module
the system can be evaluated to see if it is levelizable. I
there are any loops in the dependency graph, the systerigure 1. The Personality Module (PM) contained device-

is not levelizable and is more difficult to test. This is specific code that plugged in to the base code, but control
because all modules involved in a loop must be tested flow was determined by the base.

together as a single unit. In the worst case, all modules

will be involved in a loop and the entire system must befeatures, fix bugs, and work with limited resources and a
treated as a monolithic black box for testing. Since thdixed release date. Considering these constraints, we
difficulty of testing a module grows exponentially with then extracted a detailed short-term plan that would get
the size of the module, creating a levelizable system is us through the current release cycle. In this section we
desirable property. In a large system such as the Xilindescribe each of these planning phases in greater detail.
software system, it is easy to accidentally create 2 D

dependency that creates a loop in the compile-tim@-1 Prioritizing the Key Concepts

dependency graph. The size of the system also makBefore we could come up with an implementation plan

such loops especially expensive in testing time. of attack, we first needed to prioritize among the key
concepts and decide which of them needed the most

4.8 Release attention. To do this, we performed a careful evaluation
* Releas: supporting a release model with fixed of the existing software architecture against the goals
release dates planned long in advance. and key concepts we had labored over for so long. This

The release concept is closely tied to the goenable task allowed us to see which of the key concepts was
parallel development targeting multiple release datesleast supported in the current software, and then to
An additional aspect of the release goal is to force thdecide how we should focus our redesign efforts.
development to happen gradually in an evolutionary; . . ‘

fashion. By requirirrl)g cugtomer >rleleases on a fixerzBased on this analysiautonom emer_ged as the most
schedule, the development is forced into an evolutionar"rnportant of the key concepts to gwdg change_s to the
path, which reduces schedule risk. system. Secondary emphasis was givensharing,

testing, and comprehensibilit. This ordering did not
In summary, the creation of these goals and kewdiscount the importance of the other concepts - indeed
concepts was a long and arduous process. Howevethe final solution would need to balance among all eight
because the key concepts provided techniques to reali- but it recognized that the existing architecture already
the goals, subsequent work went significantly fasterhad certain strengths. The existing source code
Each new idea could be readily compared with the goalarchitecture was composed of two levels of hierarchy.
and concepts we had already agreed to implemenThe first level, called the Personality Module (PM)
helping to keep the re-architecture process on track. reflected the hardware device supported by that part of
. the software. Each PM contained packages, grouping
5. Planning the software within a PM by logical function. The
Armed with the newly created sets of goals, the keyremainder of the code, shared by all PMs, was called the
concepts, and a common mindset, the syster‘base”. This organization inherently supported sharing
architecture committee began to look at the softwar@and re-use of base code by all other PMs. Moreover,
and come up with concrete plans for what should beach package from a PM created a Dynamically Loaded
changed. Here again, we followed a process that is cleiLibrary (DLL) that was loaded on demand, once the
in retrospect but at the time seemed full of bumps anbase code determined the device and required functions.
blind alleys. We began by evaluating the currentAs shown in Fig. 1, the DLL for the PM plugged into
architecture against the goals and key concepts. We thi¢he base software, customizing it for a given hardware
chose the key concepts to be given first priority in thedevice. This meant that if the base required no changes
redesign effort. Based on the highest priority keyan entire PM could be developed independently of the
concepts we proposed several different architecturerest of the system (the co-development concept) and
solutions intended to address these concepts, theshipped to customers separately from the rest of the
collected the best features of these proposals into software (the modularity concept). Finally, much of the
coherent document called thsystem architecture tight coupling in the system was done in the name of
visior. With the vision as an endpoint, we created a plaiperformance optimization. This tight-coupling was a
to evolve from the starting point of our existing softwaretwo edged sword however, allowing significant
architecture. Finally, we imposed the constraints olperformance gains via detailed optimization on one
having to support new FPGAs, add new softwarehand but on the other hand stifling the creation of new

algorithms that promised leaps in performance. Herarchitecture vision document was published and
again we thought that increased autonomy was the kegyresented to all engineers.
as it could increase encapsulation and make it easier

innovate algorithmically. }—?owever, the planning work did not stop there. The

vision encompassed work that could take years to
A secondary focus was the need for additional sharingzomplete, but the next release was less than one year
As already described in Section 4.2, the combination ofway. Moreover, with each release we had to support
base and personality module was an ideal situation fdhe latest hardware devices and offer improvements in
domain engineering, so there was significant sharingeatures, runtime and software quality. After many
because the base code was reused for every devideurs of negotiation with marketing, sales, application
However, there was no natural place in the system fosupport and senior management we reached a consensus
algorithms and data structures that did not belong to angn the resources that could be spent on re-architecting
particular PM, yet did not define a new application forthe software system. Matching available resources
the base. Additional sharing of these generic algorithmggainst the system architecture, we determined that we
was a secondary consideration for the architectursgould make two major architectural changes: the
redesign. addition of support for generic algorithms and the re-
structuring of the software into layers and subsystems.
Significant additional improvement was also desired inOf these, the re-structuring of the software was a
the area of testing. Within the existing architecture significantly larger investment. We describe these two
anything not in a PM was added to the base, resulting iBhanges in turn.
a very large base. Within the base, there were no rules
about compile-time dependence and several packag&s2.1 Layers and subsystems
were involved in compile-time loops. Also, we Re-structuring the system into subsystems and layers
determined that significant gains in testability could becalled for a complete re-organization of the system from
achieved by re-factoring the software according toPMs and packages. It called for the creation of new units
function and designing from the outset a system thadf functionality called subsystems, which would in turn
could be tested incrementally in sections. be collected into layers.

Finally, we sought improvement in comprehensibility. On the surface, the software was still organized into a
Because the system had evolved into more than 408vo-level hierarchy. However, the subsystems were
packages, it was impossible to find a single person whenvisioned as very different from the packages they
had even a cursory understanding of the role of eacteplaced. These differences included the following:
package in the system. This made learning the system
difficult for new developers, made tracking down
integration problems difficult, and made it almost
impossible to consider any large scale decisions about
system structure.

A Subsystem is typically larger than a package and
can produce multiple libraries or executables. The
structure within a package was flat, but a subsystem
is truly hierarchical.

_ o * Subsystems are logically related pieces of code that
5.2 The System Architecture Vision can have multiple people working on them. A single

Based on our priorities for the key concepts, we began Subsystem contains the base code and all the PM
to create a vision of where the software should be code fora single application or function.
headed to better address autonomy, sharing, testing, and A subsystem provides a single directory that con-
comprehensibility. This vision contained several tains thesubsystem interfacee., any files exported
elements and extended into the far future. Consequently, by that subsystem, including header files, data files
only two of these elements played a significant role in and libraries. Other subsystems can access only
this first iteration through the six-step architecture re- those files explicitly exported.
design process. These elements were the re-organization
of the source code into subsystems and layers and the
creation of a special layer for generic algorithms. This
section discusses these concepts in further detail. * New code in subsystems must follow a naming con-
vention that limits pollution of the global namespace.

Subsystems can have a compile-time dependency
upon another subsystem only if that subsystem is in
the same layer or a layer listed as a supplier layer.
The graph of compile-time dependencies within a

layer must not contain any loops.

Developers are encouraged to encapsulate and fully
insulate their subsystem interface.

Many long hours of discussion went into the creation of
the vision document. After failing to write anything *
collectively, we delegated the task of an initial vision to
one committee member. Having this draft allowed us to
work through many problems and refine the concepts.
After several iterations we completed an initial draft.
We further refined the document based on feedback Part of the subsystem interface is a subsystem defini-
from a group of the top engineers in the software tion document that describes the subsystem and each
organization. Finally, the first version of the system exported header file. To avoid synchronization prob-

- algorithms layer. The generic algorithms layer
Xilinx Layers 3rd Party encourages code sharing and reuse for numerical
algorithms, data structures, and other generic
algorithms. In addition to the code sharing between base

Level 5 -
Jobs

and PM code (now contained within a subsystem) the
Level 4 - intent was that the generic algorithms could be used for
Job & DB varied tasks throughout the software.
Helpers

5.3 How the Architectural Vision Implements
Level 3 -
5 the Key Concepts

atabases L) . .

Recall that for this first iteration of improvements to our

Level 2 - - software architecture, we focussed on the key concepts
X Generic- .) .

Generic Algorithms of autonomy, sharing, testing, and comprehension. To
Algorithms work toward better support for these concepts, we chose
Tevel1- to implement two major changes from our system

0s architecture vision: a generic algorithms layer and the
Interface re-organization of the system into subsystems and
layers. In this section we describe how the four key
concepts on which our re-architecture effort focussed
were realized through these two major architectural
changes.

Level 0 -
0S

Figure 2. Include file relationships of Layers as put for-

ward in the SAV document. >.3.1 Autonomy

Since our engineering organization was split between

two distinct sites, and a number of remote engineers

lems, the header file documentation is generatelwere also involved, we felt_thata rearrangement of_our
from the source code by ccdoc[14]. software along functional lines could help us provide

. . better support for autonomous code development.

* The interface to a subsystem is controlled antRepackaging the software into subsystems created

changes require the approval of a committee. Synmqqyles that are more self-contained and can be worked
chronization of the changes within subsystems ISupon independently of other pieces.

handled differently than synchronization of changes
in the subsystem interface. Each subsystem has Where modules are dependent on one another, greater
subsystem integrator, a new role that makes sure trstability is ensured by encapsulation, insulation, and
different engineers working on the subsystem comcommittee approval for interface changes. Although
municate. By having a single person responsible fosome engineers felt these restrictions on the interface
each subsystem we expect to eliminate some, but nwere overly harsh, we decided the best way to control
all, of the final build integration problems. the overall software structure was to control the
Of the changes proposed in the system architecturSuPSystem interfaces. Ideally, we would also guarantee
vision, these changes were perhaps the most directthat the exported functionality behind the interface was
connected with OOAD techniques. also stable. For exampI(_e, we could try to ensure that t_he
return codes for a function do not change. However, in
Subsystems are grouped into layers. A layer is a set (practice this is impractical and we rely on engineers to
subsystems with certain compile-time dependency ohandle this level of detail.
access rules. All subsystems within a layer have to abide))
by the access rules of that layer. As shown in Fig. 2, thEncouraging developers to use encapsulation and
entire Xilinx software system is composed of ten |ayersm_sulat|on techniques for_thelr s_ubsystem interface was a
Five layers contain code that originates within Xilinx, diréct step towards improving those aspects of
and the other five layers contain code that originate@utonomy. As discussed in Section 4.1, complete
outside of Xilinx. In the figure, the arrows show accessinsulation would forbid techniques such as inline
For example, of Xilinx subsystems, only those in level 1functions, inheritance and default arguments[9]. We
can directly include system header files. The principaPerformed some simple tests and found that in certain
purpose of access rules is to improve testabilityCaSe€s changlng a small set of |nl!ne_ functlons to be
However, the access rule that limits access to the systec@lled functions could cause a significant run time
header files has the added benefit of making it easier fP€nalty. Since several of our applications can run for

acceptable. Similarly, we have a reliance on inheritance
5.2.2 Generic Algorithms that is used as the principal mechanism for writing code

The second change to the software architecture is alin dynamically loaded libraries. Because of these
apparent in Fig. 2. This is the addition of the genericconstraints, we could not require full insulation for all

subsystem interfaces, but left it initially to engineer’ssignificantly more code sharing of these generic
discretion, subject to external review. algorithms.

We further limited compile-time coupling by putting 5.3.3 Testing
access rules on layers. The access rule with the greatggt e previous Xilinx software architecture, the

impact was that for Xilinx code, only the bottom layer separation of PM code from base code made it difficult
could directly include system header files. This madgq jndependently test the software. This is because the
de3|gn|ng_the bottom Iayer_more difficult because_ltspM created a dynamically loaded library that was
exported files also could not include system header fileyitficult to use in the absence of the base code. The
otherwise the system header files would be includegsncept of subsystems allows us to consolidate more of
indirectly by unknowing clients and insulation would be the ¢ode together and make the subsystem integrator
lost. We already had a set of system utilities thajesponsible for maintaining and running tests. By
supported most of the system functions that might bgaying a single point of contact for a large set of code it

neede_d._ By making this rule we could speed URyas felt we had a better chance of getting a solid
compilations and decouple the majority of our software,j;yeness testing methodology in place.

from operating system quirks.

o o) . The notion of levelizable software is also directly
Encapsulation in our definition also includes keepingaddressed by the architectural changes. Recall that if the
the global name space clean. In the absence @iompile-time dependency graph of a system contains no
namespace support on every platform, every exporteghops, it is said to be levelizable[9]. By organizing the
symbol must be unique across the system. This requireghsystems into layers and strictly defining the access
the creation of a system wide naming convention thales for layers, the system is likely to be levelizable.
can be uniformly applied. This also requires restrictionsysith the additional rule that dependencies between
on the use of certain compiler features, like #define, thaéubsystems within a given layer cannot cause a

can potentially cause conflicts between subsystems. Wgependency loop, we can guarantee that the entire
looked for a tool that could be smart enough to helgsystem is levelizable.

automate this clean-up process, but could not find one.) _

In the end, we decided that much of what could be donBY factoring the system into layers, we get the
in this area was impractical within the time and resourcé@dditional benefit that we can build and test the lowest
constraints of the initial re-architecture into subsystemdayer first and then on up the dependency graph.

and layers. Consequently, the architectural changes lead to testing
Consequently, although we did create a system widénprovements in four areas: aIIowmg the base and PM
naming convention that applied to all new code, wefode to be tested together, making the subsystem
grandfathered existing code. This can lead tdntegrator responsible for all subsystem testing, making
inconsistent header files that contain classes that followf €asy to guarantee a levelizable system, and allowing
different naming schemes. To compensate, we allowet€ system to be tested layer by layer.

the use of typedefs to make all classes within l??'.3.4 Comprehensibility

subsystem consistent with the naming convention, b : o . .
did not require clients of the existing interfaces to~* final contribution of repackaging the software into

change. We determined that certain naming conventior&!PSystems is the ability to provide a consistent and
had to be followed to avoid run time errors and require@Sy {0 use mechanism to learn about and understand

that these be followed, but other than that made fefp!’ Software. As our software grew we found it
changes to the existing names of classes. increasingly difficult to prepare developers to write new
code. The learning curve was steep due to the lack of

Despite these few exceptions left until later releases, waccurate internal documentation. Clearly more
expect the introduction of subsystems and all they impldocumentation was required, but large detailed

to lead to substantial improvements in autonomy. documents are often imposing to new developers and
. poorly maintain by the author, making their value
5.3.2 Sharing dubious at best. What was needed was a simpler

The introduction of subsystems and layers does little t@approach.
effect code sharing. The base/PM relationship th
implements sharing in the manner of domain
engineering[16] is still supported by the new
architecture. Now however, the base and its PM cod
are contained within a single subsystem.

o this end, each subsystem was required to provide a
subsystem definition documenThis document is
greated and maintained by the subsystem integrator in a
standard HTML format. The document is not
comprehensive because it does not deal with subsystem
The creation of the generic algorithms layer is aimedmplementation. Instead, it briefly describes the purpose
directly at improving the other kind of sharing, sharingof the subsystem, the files and libraries it produced and
of smaller more general purpose code. In this regard, thés exported interface. Further documentation of the
architecture changes are expected to lead texported interface is a set of HTML documents that are

generated directly from the exported interface headedifferent architectural solutions intended to address
files using ccdoc[14]. In this manner a new or existingthem and collected the best features of these proposals
client of a subsystem can find an overview of theinto a coherent document called isystem architecture
subsystem in the subsystem definition document, anvisior. We selected two of the ideas from the vision,
detailed interface information in the headerdeciding to create a generic algorithm layer and to re-
documentation. factor the system into subsystems and layers. Finally,
We did not require that the subsystem implementatiol’V€ created a ?Ian to evr(])_lve from thel_st_artlng io[I[\rt]_of
be described in an exported document, both becayLUr existing software architecture wit imited risk. This
such a document would quickly become out of date anwplan called f_or the move from packag_es to subsystems to
take place in several waves, ensuring that the system

because it was “proprietary” knowledge not required bystill functioned after each wave was complete
a subsystem’s clients. To engineers who typically piete.

looked at a function’s implementation before decidingin the following sections, we discuss the
whether it was what they wanted, this level ofimplementation of this plan and evaluate the
encapsulation and documentation was a revolutionareffectiveness of our efforts to date.

concept.

5.4 The Evolutionary Plan 6. Implementation

After reaching consensus across the organization th:AS of this writing, the initial transition to layers and

the architecture would be reorganized into subs stemSlJbSyStemS is complete, and developers have been
9 Y working with the new architecture for a few months.

and layers, the final step was to schedule each Of.trThe wave plan succeeded initially, but after 3 waves
Esgzsgteesm toThibSe t ac:kn v\(levggd mlgé% 'St%nﬁ%gﬁﬁsomgédevelopers rebelled because the waves required a series
complex b.y the need to perform feature and deViC(Of changes that needed to be re-visited for every wave.
support work in the same time frame. In the past XiIinxAs a re_sult, the f|r_1a_l wave was more of a t|<_jal wave that
had tried to undertake major restructuring ’of itsSWept In all remaining changes. At that point, ceveryone
understood the process well enough that we felt the risk

software, only to either fail or to wait many months. . S .
before anything worked again. With the tight constraintsggl\g\éed in such a large change was justified by the time

of the release, neither of these risks was acceptablc.
Consequently we decided to convert the packages infThe major implementation hurdles to date have been
subsystems irwave:, changing only a fraction of the more related to people and group dynamics than to
packages at a time. The exit criterion for each wave watechnical issues. Initially, many engineers were

defined to be working software that passed our internesomewhat confused as to what was actually happening,
engineering system test suite. The advantage of thioften because they were uninterested or too busy with
process was that we would have working software afteother issues to take the time to really understand the
each wave. The disadvantage was that engineers hadprocess. Instead of riding the waves of change, unaware
create a different software environment for each wavedevelopers were hit by them, suddenly discovering that
each with a different mix of old (packages) and newall their suppliers had new interfaces. Nevertheless,
(subsystems). In order to mitigate risk, the planmost of the work has been completed and we are not
introduced inefficiency by requiring almost everything significantly behind schedule.

in the system to change for every wave.

7. Results and Evaluation
To prepare for each wave, the new subsystems wet-

created several weeks in advance of the wave in whic"'S We said in Section 1, the re-architecture process is
they were first used. This provided each subsystem wit®"90ing and will continue for many years as the
a trial period where it could be used locally but was noSOftware continues to change. However, we can begin to
required for a wave to complete. To aid thisevaIL_Jate the |n|t!al two ch_anges to the software
mechanism we instituted a nightly build process wher@/Chitecture: creating a generic algorithms layer and re-
all the software released that day was built that nightfactoring into subsystems and layers. These tasks are
These nightly builds gave us the chance to release themselves incomplete, but preliminary results are

subsystem in one wave and then attempt to use encouraging. We detail our intermediate evaluation in
without affecting all existing clients in a full build. terms of the key concepts these changes are intended to

]] _ affect most.
In this section we discussed the changes to the software

architecture and how those changes reflected the ke/.1 Autonomy

concepts and goals for the re-architecture effort. WAt the time of this writing, it appears that there has been
began by evaluating the current architecture against trsignificant improvement in the ability of our engineers
goals and key concepts. We then chose the key concefto work autonomously on their code. By separating the
of autonomy, sharing, testing, and comprehensibility tcinterface of a subsystem from its implementation and by
be given first priority in the redesign effort. Based onplacing controls on that interface, we have seen far
the highest priority key concepts we proposed severdewer integration problems. Requiring engineers to

Table 1: Reduction in included files for a typical set of fles Table 2: Reduction in compilation times for modules that
are essentially unchanged

File Num. Num. Ratio:
(Level - Included Included | Before/ Module Compile Compile | Ratio:
see Files Files After Time (s) Time (s) | Before/
Fig. 2) Before After Before After After
A (level 2) 44 6 7.3 A (level 2) 16 13 1.2
B (level 3) 100 15 6.7 B (level 3) 44 25 1.8
C (level 4) 217 97 2.2 C (level 5) 110 90 1.2
D (level 5) 229 92 2.3 D (level 5) 513 335 15
E (level 5) 327 223 15 E (level 5) 585 396 15
F (level 5) 502 272 1.8 F (level 5) 75 50 15
G (level 5) 266 110 2.4 Average 1.5
H (level 5) 289 161 1.8
I (level 5) 321 156 21 because the code is at a higher level of abstraction.
Moreover, most of the included functionality is from
Average 31 levels 2, 3, and 4, which have not been as well insulated.

As a result, the ratio of the numbers of included files is
obtain approval for interface changes is cumbersomenot as dramatic.

but it makes engineers consider the impact of those)
changes. 9 P The reduction in the number of included files is also

reflected in compilation time of the system. However,
In terms of insulation, results to date have been positivcompilation times are difficult to compare both because
but depend greatly on the amount of time the engine€the functionality of any significant subset of the system
spent re-designing the interface to their subsystem. Thhas increased and because computer hardware and
first engineers to begin implementing their new fully networks are continually being upgraded. However,
insulated classes were greatly excited. After they sperdespite increases in functionality, compilation time for
weeks at a time working upon a single class anthe complete system has been reduced from
realizing that time was slipping away, the amount ofapproximately 22 hours to approximately 5 hours. (The
insulation began to decrease dramatically. Engineercompilation happens in parallel, but the times quoted are
with less time often did almost nothing to redesign theilthe sum of the times from each machine.) Consequently,

interface. We have begun a detailed review of eacldespite any hardware improvements, it is safe to say that
interface to guide future work in this area. compilation time has decreased.

In general, the engineers working on the lowest levels ¢y 5o ements in compilation time can also be seen in
the system (see Fig.2) started working on theilrghle 2 which shows compilation times for several
subsystems while other engineers were still working oty oqyles performed under controlled conditions: on a
the previous release. As a result, the most progress Wong MHz UltraSparc machine running Solaris 2.6.
made in the most heavily used portions of the systenThase modules were selected because they have
which provides the most leverage to improve autonomyemained relatively unchanged. It is meaningless to
and reduce overall compilation times. This effect can b‘compare portions of the system where most of the

seen in Table 1, which shows the reduction in i”d“d‘improvements were made because the structure and
file count for several files selected at random fromenetion of the code is dramatically different. We can
various parts of the system. This is an important metruomy extrapolate from the overall compilation times to

both because the number of included files is a rouglestimate that the largest compilation improvements are
measure of autonomy of a subsystem (more includejp, he re-written portions of the system. However, even
files indicates less autonomy) and because includinghen the module is essentially unchanged, because the

fewer files usually means faster compilations. Thes‘subsystems on which the module depends has been
files were also selected b_ecause they are ty_plcal_ Alinsulated, the compilation time has decreased.
because they have essentially the same functionality in

the old system and the new. The levels in the table refeAlthough insulation can improve autonomy, it can also
to the level numbering system shown in Fig. 2. Becausadversely affect the runtime of the application. In one
of the additional work spent on insulating the lowestcase, several in-line functions were re-introduced into
levels of the system, the most dramatic ratios of thean insulated subsystem because of the overhead of the
numbers of included files can be seen for files in levelfunction call. In each case, the function was called so
2 and 3. For levels 4 and 5, more files are includeimany times that the function call overhead consumed 1-

2% of the overall runtime of an application that ranadvocates of re-use, do not expect dramatic results from
several hours. Faced with this runtime overhead, the irthis effort.

line function was re-introduced. We plan to introduce]

alternative interfaces for clients with such special/-3 Testing

requirements. Because we are not yet at that point in the process, we

As for encapsulation, the best we can say so far is tn;nave notyet seen reductions in our testing burden or bug
we have exposed ’our engineers to the idea Ccount. To provide a starting point for |mprov_ed testing,
encapsulation. A few of the engineers did take thicthere will be a special build, cqllet_j a test build, used by
concept to héart and completely encapsulated the‘developers_ to work on thelr_ mtc_ernal tests. Each

. . subsystem integrator will use this build to determine the
classes. These classes are now benefiting from this wo

in that they can have their class implementation chang amount of_code coverage for their subsystem. Althou_gh
without affecting their clients. Most engineers went im:we ha_we trl_ed to increase code coverage in the past, tight
this project assuming that théy were going to completelwcoummg with other developer’s code was _often used as
encapsulate every class. Once they started this proce'an excuse f(_)r poor test coverage We believe that most
X engineers will be horrified by the lack of coverage and

f:)nciinzz\;\;ttiz(ra] a?ﬁgn\t/\gst'g‘ciét ttggll(é tg?é;ljtseen if;;?%ﬁspend time increasing it. With this initial code coverage
. - ; \cCep ; benchmark for the new software architecture, we can
provided immediately visible benefits that would

; . -_require increases in test coverage in future releases.
encourage engineers to return to encapsulation as time

permits. 7.4 Comprehensibility

The overall effect of the re-architecture effort onAs with the other key concepts, comprehensibility is
autonomy has been dramatic, particularly in the area ddifficult to quantify and results have been mixed. In
insulation. The use of encapsulation is more difficult toterms of documentation, we have created an on-line
quantify, but we expect it will be more noticeable as theinternal tools documentation area that contains the
system continues to change. subsystem definition document for each subsystem. We
i have installed the ccdoc tool that creates documentation
7.2 Sharing from C++ header files. Developers need only provide a
Improved sharing via the generic algorithm layer is alscspecified type of comment in their interface header files
a long term investment. To date, several algorithmand these will be added to the generated documentation.
have been added to the layer and we have had at leiEven with all of this working, we hear anecdotally that
one successful re-use. We expect greater utility ovenot many people are using the browsing facilities. This
time, but unlike the optimistic predictions of early is likely because most engineers have spent years

B, = >\ %
ey m'-gxﬂx\vﬁrsﬁ'l{ﬁ’
i
\Y

NN e—
S

\\\\\\\\‘\\“\\\‘{i =5 g

' 7—

SN RN iy AR

Fiaure 3. Taoloaically sortedaraph of package include deendenciedbefore re-architecture).

reading header files directly and are still mostanalysis, to goals, to key concepts, to planning, to
comfortable doing so. Perhaps with the arrival of newimplementation and finally to evaluation. We have
engineers, this new browsing facility will become moreshown that we can modify a large legacy software
useful. Similarly as we begin to move toward asystem and create a software architecture that better
heterogeneous mix of C++ and Java we might find thesbalances among key concepts that reflect the demands
facilities more widely used. of business, requirements of software engineering, and
OOAD principles. Although this first iteration of our re-

22?6k'rgid?rycgrgggfgﬁn?'sb”t% V\g:)ifn:gnna;?i\gimg?t t;iarchitecture is not yet complete, already we have seen
overall architecture of the system. Drawings such a;slgnlflcantgams in developer productivity.

Fig. 2 provide a simple, high-level picture of the paferences

intended architecture. A complete drawing of all the
subsystems and their include dependencies shown (1l
Fig. 4 provide a more complete view of the system
architecture. This graph is topologically sorted, which
reveals that the compilation order of the system can b[2]
mapped back to the layers of Fig. 2. Note also that
redundant edges (a direct edge to a subsystem included
indirectly) have been removed. Fig. 4 also shows two
remaining cyclic dependencies in the compilation order
(upper right). These are in an isolated part of the system
and will be eliminated soon.

Comparing Fig. 4 with Fig. 3, which was generated in[3]
the identical fashion from the previous architecture, it is
quite apparent that the new architecture is easier tjg
comprehend and work with at this level of abstraction.

8. Conclusions [3]
In this paper, we introduced a six-step process by which
Xilinx has made an initial iteration at re-architecting its [g]
software system. We have followed the progression
through these steps and discussed the flow fronf7]

(8]
(9]

Key
== N - L —
Level 1 Level 2 Level 3 Level 4 Level 5

Figure 4. Topologically sorted graph of subsystem include
dependencies (after re-architecture). Levels refer to Fig. 2.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Ori-
ented Softwal. Addison-Wesley, 1995.

B. Foote and W. F. Opdyke, “Lifecycle and Refac-
toring Patterns that Support Evolution and Reuse,”
First Conference on Patterns Languages of Pro-
grams (PLoP '94). Monticello, lllinois, August
1994.Pattern Languages of Program Des, yn
edited by James O. Coplien and Douglas C.
Schmidt. Addison-Wesley, 1995

G. Booch,0Object-Oriented Analysis and Design:
with application. Benjamin/Cummings, 1994.

S. McConnellRapid development: taming wild
software schedul. Microsoft Press, 1996.

http://www-cse.ucsd.edu/users/wgg/swevolu-
tion.html

http://lwww.bell-labs.com/user/hpsiy/research/evo-
lution.html

http://ivww.comp.lancs.ac.uk/projects/Renais-
sanceWeb/

http://iwvww.sei.cmu.edu/reengineering/

J. Lakos, “Large-Scale C++ Software Design,”
Addison-Wesley Professional Computing Series

[10] http://www.xilinx.com/company
[11]M. R. Garey and D. S. JohnscComputers and

Intractability: A Guide to the Theory of NP-Com-
pletenessFreeman, San Francisco, CA, 1979.

[12]J. Frankle, “Iterative and Adaptive Slack Allocation

for Performance-driven Layout and FPGA Rout-
ing,” Proceedings of the 29th ACM/IEEE confer-
ence on Design automation conference, 1992, Page
536.

[13]E. S. Ochottaet a, “A Novel Predictable Seg-

mented FPGA Routing Architecture,” in FPGA ‘98,
Proceedings of 1998 ACM/SIGDA intl. symp. on
FPGAs, pp 3-11.

[14] http://www.joelinoff.com/ccdoc/index.html
[15] C.W. Krueger, “Software Reuse.” ACM Computing

Survey, vol. 24, no. 2, pp. 131-182, 1992.

[16]E. Mettala and M.H. Graham, “The Domain-Spe-

cific Software Architecture Program,” CMU/SEI-
92-SR-9, 1992.

