
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3–7, 1999

Implementing Causal Logging Using OrbixWeb Interception

Chanathip Namprempre, Jeremy Sussman, and Keith Marzullo
University of California, San Diego

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Implementing Causal Logging using OrbixWeb Interception

Chanathip Namprempre Jeremy Sussman

Keith Marzullo

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA, 92093-0114

fcnamprem,jsussman,marzullog@cs.ucsd.edu

Abstract

Some form of replicated data management is a ba-
sic service of nearly all distributed systems. Repli-
cated data management maintains the consistency
of replicated data. In wide-area distributed systems,
causal consistency is often used, because it is strong
enough to allow one to easily solve many problems
while still keeping the cost low even with the large
variance in latency that one �nds in a wide-area
network. Causal logging is a useful technique for
implementing causal consistency because it greatly
reduces the latency in reading causally consistent
data by piggybacking updates on existing network
tra�c.

We have implemented a CORBA service, called
COPE, that is implemented by using causal logging.
COPE also shares features with some CORBA secu-
rity services and is naturally implemented using the
OrbixWeb interception facilities. In implementing
COPE in OrbixWeb, we encountered several prob-
lems. We discuss COPE, its implementation in Or-
bixWeb, and the problems we encountered in this
paper. We hope that this discussion will be of in-
terest to both those who are implementing and who
are planning on using CORBA interception facili-
ties.

1 Introduction

In nearly all distributed systems, some data values
are replicated across di�erent processors. For ex-
ample, one might have a distributed cache to allow
reads to be performed more quickly. Or, one might
have multiple copies of a critical data structure to

ensure that should a processor crash or become iso-
lated by a network failure, a copy of the data will
still remain accessible. Replicated data manage-
ment is therefore an essential service of distributed
systems.

One issue arising in replicated data management is
how consistent the replicas need to be. Considerable
e�ort has gone into de�ning and analyzing di�erent
consistency models. A very strong requirement is
for the replicas to re
ect the real-time order in which
they were written. For example, consider two val-
ues x and y that are replicated on processors a, b, c
and d, and let the initial values of x and y be zero.
If processor a sets x to 1 before processor b sets y

to 2, then c and d will both see x set to 1 before
seeing y set to 2 (the same, of course, holds for a

and b). This kind of consistency, called atomic con-
sistency [7], is in general expensive to implement,
and thus used only when absolutely required. A
weaker form of consistency is called sequential con-
sistency [6] in which some total order on updates
is imposed. With the above example, c and d will
both see the same order of updates to x and y, but
not necessarily the update of x before the update
of y. Sequential consistency is less expensive to im-
plement than atomic consistency and yet is often
strong enough for many applications.

A still weaker consistency property is causal consis-
tency [1]. Suppose that processor b did not update
y until it read x and found a value of 1. In this
case, we say that the value of y causally depends
upon the value of x|that is, the act of a setting x

to 1 in some sense caused b to set y to 2. Causal
consistency ensures that the sequence of updates as
read by other processors is consistent with causal
dependency. In this case, both c and d would see
the update of x before the update of y. On the other
hand, if b did not read x before setting y, then the

updates are said to be concurrent. Concurrent up-
dates are not ordered, and so c could see x updated
before y while d could see y updated before x.

Preserving only causal dependencies among repli-
cated data is su�cient for many applications [1]. We
give an example of such an application later in this
paper, namely optimistic execution in an object-
oriented environment. And, causal consistency is
cheaper to implement than sequential consistency
in a wide-area setting. A problem with wide-area
networks is the large variance in communication la-
tency. With sequential consistency, a processor that
updates a shared variable must ensure that its up-
date is ordered with any other potentially concur-
rent updates, and so the latency of an update can
be no smaller than the longest latency from the up-
dating processor to a copy of the data [11]. Causal
consistency does not require concurrent updates to
be ordered and so a processor can simply update
its local copy and continue. There can, however,
be latency introduced when reading a shared vari-
able [10].

Latency can be reduced by implementing causal
consistency through a technique called causal log-
ging [3]. With causal logging, a message that up-
dates a shared variable piggybacks the updates upon
which the variable causally depends. That is, causal
logging trades o� bandwidth for latency. Causal log-
ging has been used in several applications besides
implementing causally consistent replicated data,
including distributed simulation [5] and techniques
for low-cost failure recovery [2]. These applications
all share the same general property: a process does
not observe an action (such as the delivery of a
message or the update of a shared variable) until
it has observed all actions that the observed action
causally depends upon.

In one of our research projects, we faced the problem
of implementing causal logging when constructing a
CORBA service. We call this service COPE and
brie
y describe it in Section 2. To implement this
service in CORBA, we hoped to use an interception
facility. Interception is a way to add functionality to
CORBA services in a manner that is orthogonal and
non-intrusive to the main computation. CORBA in-
terception is implemented using interceptors which
are code that can be invoked upon a message be-
ing sent, or upon a message being received (as well
as other trigger points). We describe why this fa-
cility allows for a straightforward implementation
of causal logging, as well as describing this imple-

mentation, in Section 3. We chose OrbixWeb as
the platform for implementing COPE because it is
a popular Java ORB that provides interception fa-
cilities. We detail these features in Section 4.

COPE is a somewhat complex CORBA service, and
to the best of our knowledge no other group has
considered a service with similar functionality. It
shares some features with proposed CORBA secu-
rity services, most notably Application Access Pol-
icy [9]. In implementingCOPE, we encountered sev-
eral problems with OrbixWeb, which we describe in
Section 5. We believe that the problems we encoun-
tered will also be encountered by those implement-
ing similar CORBA services. Our goal in writing
this paper is to discuss the problems we encountered
in hope that those building CORBA ORBs will be
aware of them when building interception facilities.

2 COPE

We have implemented a new CORBA service called
COPE that is based on causal logging. We give a
brief overview of COPE to ground the discussion in
Section 3 on what we require of a CORBA causal
logging implementation.

One of the two abstractions that COPE implements
is the class of assumptions. An assumption is a
CORBA object that is eventually either asserted
or refuted. An assumption keeps track of the ob-
jects that wish to be noti�ed when it is resolved.
Assumptions can also be subclassed to associate se-
mantics with them, such as assumptions that de-
pend on other assumptions. An example of such an
assumption is a proposition which is expressed as a
boolean formula over a symbol table. Each entry in
the symbol table is itself an assumption. A proposi-
tion assumption becomes asserted or refuted when
the value of its formula evaluates to true or false
as determined by the assumptions that have been
asserted and refuted in the symbol table.

The other abstraction that COPE implements is the
class of optimists. An optimist is a CORBA object
that takes on assumptions. Optimists can execute
optimistically based on the assumptions that it has
taken on. More speci�cally, an optimist can either
checkpoint its state when it takes on an assumption
or it can block, awaiting the eventual assertation
or refutation of the assumption. If, in either case,

the assumption is asserted then the optimist is no-
ti�ed so that it can either discard the checkpoint or
continue execution. If, on the other hand, the as-
sumption is refuted, then the optimist is noti�ed so
that it can either roll it state back to the associated
checkpoint or continue execution knowing that the
assumption was refuted.

Assumptions are causally consistent with respect to
CORBA communications. For example, consider
optimist a invoking method b:m on optimist b. If
a has taken on an assumption x which is still unre-
solved by the time a invokes b:m, then b must take
on x by the time it begins execution of b:m. Sim-
ilarly, if b:m constructs an optimist c, then c must
also take on x by the time c completes initialization.

Put into terms of shared memory, each optimist has
a list of replicas of unresolved assumption. These
replicas are causally consistent, where \causally de-
pends" is de�ned in terms both of optimists invoking
methods on other optimists and of optimists creat-
ing new optimists. This list is maintained as follows:

1. When an optimist amakes a method invocation
on an optimist b, it piggybacks on the method
invocation a list of unresolved assumptions that
a has taken on.

2. When an optimist b has a method invoked by
an object a, b checks to see if a has a class that
derives from Optimist. If so, then b strips o�
any assumptions piggybacked on the method
invocation and decides whether to add them
to its own list of unresolved assumptions or to
block the invocation.

3. When an optimist a creates an optimist b, it
makes a method call to an optimist factory. As
when invoking a method on an optimist, a pig-
gybacks on the method invocation a list of as-
sumptions that a has taken on. The factory f

checks to see if a has a class that derives from
Optimist. If so, it then passes a's unresolved as-
sumptions to b. Optimist b can choose either to
accept a's assumptions, in which case the cre-
ation is successful, or to deny them, in which
case b is not created.

These three rules for maintaining the list of assump-
tions together implement causal logging of assump-
tions. Other features of COPE, such as assertion
resolution and object noti�cation, are not germane

to the discussion. Interested readers can �nd further
details on COPE in [8].

3 Implementing Causal Logging Us-
ing Interception

Consider implementing causal logging on top of
CORBA. The following properties of an implemen-
tation state what we believe constitutes a well-
engineered solution.

� Transparency. The piggybacking and strip-
ping of piggybacked information should be im-
plemented without explicit involvement of the
objects using causal logging. To do otherwise
would make it hard to ensure that the causal
logging mechanism is correct.

� Scheduling. Causal logging implies that in-
formation is made available to an object at cer-
tain points in its execution. To do otherwise
might violate the causal consistency condition.
Hence, the causal logging mechanism noti�es of
the delivery of causal information ordered with
respect to the invocation of methods and cre-
ation of new objects.

� Context Sensitivity. The information that
an object a piggybacks to an object b may de-
pend both on the state and class of a and on
the class of b. Without knowledge about a, it
is hard to piggyback any information because
there is no way to obtain it, and without in-
formation about b an object would have to pig-
gyback all possibly useful information on every
method invocation. The latter would both be
ine�cient and would pose a possible security
problem.

CORBA interception is ideally suited as a piggy-
backing mechanism that provides the properties of
transparency and scheduling. Interceptors are or-
thogonal to the regular path of computation, and
therefore provide transparency. Furthermore, since
interception can be placed at many points in the
method invocation sequencing, it can be used to
provide scheduling as well.

A simple implementation of causal logging would be
as follows. Consider an interception mechanism in

which every object has an interceptor that is speci�c
to that object. The interceptor knows the identity
of the object with which it is associated, and the
interceptor is invoked upon both ends of a method
invocation|that is, by the invoked object and by
the invoking object.

When a method is invoked, the interceptor on the
invoking object uses some mechanism to determine
what type of information is to be piggybacked. This
mechanism can base its determination on the class
of the invoked object. The actual information can
be determined from the current state and the class
of the invoking object. Hence, context sensitivity is
implemented. The interceptor adds this data to the
outgoing method invocation.

When the invoked object receives the invocation,
its interceptor removes the data that was added
by the invoking object's interceptor. The invoked
object's interceptor then implements scheduling by
ordering the method invocations that deliver the
causally logged information with respect to the in-
coming method invocation.

This scheme implements encapsulation of the
method invocations within the causal logging mech-
anism. That is, the underlying method invocations
are not altered, but rather are used as a conduit
of causally logged information and are scheduled to
maintain causal consistency. The CORBA intercep-
tion facility is intended for exactly this kind of en-
capsulation. Our simple model of CORBA intercep-
tion requires the following capabilities:

1. Interceptors should be invoked on all outgoing
and incoming invocations.

2. Interceptors should be able to add information
when a method invocation is initiated at the
invoking side and remove information when the
method invocation is initiated at the invoked
side.

3. An interceptor on the invoking side should
know the state and class of the object with
which it is associated and the class of the object
being invoked.

4. An interceptor on the invoked side should have
the ability to make method calls on the object
with which it is associated before it allows the
initiating method to be invoked.

As discussed in Section 5, we had a few di�culties
in creating such an architecture in OrbixWeb.

4 OrbixWeb

In COPE we implement interception by using Or-
bixWeb �lters. OrbixWeb is an implementation of
CORBA by IONA Technologies Inc. It is compli-
ant with the Object Management Group's (OMG)
CORBA speci�cation Version 2.0 and is imple-
mented in Java. It provides a �ltering mechanism
with support for piggybacking of additional infor-
mation onto method invocations. There are two
types of �lters in OrbixWeb: per-process and per-
object �lters. We describe both types in turn.

4.1 Per-Process Filters

A per-process �lter is code that is associated with
a client or server process. The �lter monitors
all incoming and outgoing method invocations and
attribute references that reference objects associ-
ated with another process. More than one pro-
cess �lter can be chained together to the same pro-
cess. There are ten points where code in a �lter
can be associated with a process: inRequestPre-
Marshal, outRequestPreMarshal, inReplyPreMar-
shal, outReplyPreMarshal, inRequestPostMarshal,
outRequestPostMarshal, inReplyPostMarshal, out-
ReplyPostMarshal, inReplyFailure, and outReply-
Failure. Figure 1 (taken from [4]) illustrates these
�lter points.

The name of a �lter method indicates where in the
method invocation sequence it is invoked. The mod-
i�er request or reply indicates whether the �lter is
associated with the invocation of the method or the
reply from the method. The modi�er in or out indi-
cates the direction the method invocation or method
reply is going with respect to the process with which
the �lter is associated. In particular, out indicates
the invoking object for method invocations and the
invoked object for method reply, and in indicates the
invoked object for method invocations and the in-
voking object for method reply. The stem indicates
exactly where in the processing of the method invo-
cation the �lter is associated: PreMarshal is before
parameter marshalling,PostMarshal is after param-
eter marshalling. Failure is for exceptions. Speci�-

outReplyPostMarshal

outReplyPreMarshal

request

reply

outRequestPreMarshal

outReplyFailure

inReplyPostMarshal

inReplyFailure inReplyPreMarshal

outRequestPostMarshal

inRequestPreMarshal

Target ProcessCaller Process

inRequestPostMarshal

Figure 1: Per-process �lter monitor points

cally, code that is associated with failure �lter points
is executed under two conditions: (1) when an ex-
ception condition is raised by the target of the invo-
cation or (2) when there are return values from any
preceding �lter points indicating that the call is not
to be processed any further.

The OrbixWeb abstract class IE.Iona.OrbixWeb.

Features.Filter implements per-process �lters. A
user-de�ned �lter is implemented by de�ning a class
that inherits from the Filter class. When a process
creates an object of this class, the newly-created
�lter is associated with the creating object's process.
Successive �lter creation results in these �lters being
chained in the order of their creation.

The following demonstrates the construction of a
per-process �lter [4]:

1 public class ProcessFilter extends Filter {

2 public boolean outReplyPreMarshal(Request r)

{

3 String s, o;

4 long l = 27;

5 try {

6 s = ORB.init().object_to_string(

(r.target()));

7 o = r.operation ();

8 OutputStream outs =

9 _OrbixWeb.Request(r).create_output_stream();

10 outs.write_long (l);

11 } catch (SystemException se) {

12 System.out.println("Caught exception "+se);

}

13 System.out.println ("Request to "+ s);

14 System.out.println ("with operation "+ o);

15 return true; // continue the call

}

}

Information about the invocation such as the tar-
get, operation name, and arguments can be ac-
cessed through the parameter r, which is of type
IE.Iona.OrbixWeb.CORBA.Request. For example,
the call r.target() in Line 6 of the code above
returns the target of the invocation while the call
r.operation() in Line 7 returns the name of the
operation being invoked.

As mentioned previously, OrbixWeb also allows ex-
tra information to be piggybacked onto the method
invocation. The call OrbixWeb.Request(r).

create output stream() in Line 9 above creates
a stream to which extra information can be written
(outs.write long(l) in Line 12). This informa-
tion can later be read by the corresponding �lter
point on the other side of the invocation (in this
example, an inReply �lter on the client side).

4.2 Per-Object Filter

Filters can be associated with a given object as
well. To de�ne a per-object �lter, one de�nes a Java
object that implements the Java interface for the
CORBA object that was generated by the IDL com-
piler. This new Java object implements the desired
�lters. For example, assume the CORBA object a

provides a method m. The IDL compiler generated
Java interface includes the declaration of methodm.
Any per-object �lter that can be associated with the
class a must implement this interface, including the
method m. The association is done by having the
implementation of a create an instance of the per-
object �lter object, and then specify where in the
method invocation path the �lter is to be invoked.
The following demonstrates the association of two
per-object �lters filter1 and filter2 with an ob-
ject of class Foo:

1 Foo foo;

2 ((_FooSkeleton) foo)._preObject

= filter1;

3 ((_FooSkeleton) foo)._postObject

= filter2;

This mechanism for implementing a per-object �lter
is simple and elegant. However, as will be discussed
in Section 5.2, it is too restrictive for our purposes.

5 Problems

In building COPE, we encountered di�culties in us-
ing OrbixWeb. This section describes two of these
di�culties:

1. Representing the CORBA inheritance of an ob-
ject in the underlying Java implementation.

2. The lack of support for a generic per-object �l-
ter.

We also give our corresponding workarounds and
evaluate their e�ectiveness.

5.1 CORBA Inheritance Issues

This problem arose because COPE piggybacks ref-
erences to assumption objects, and it is common
to derive speci�c kinds of assumptions from the as-
sumption class. It is always somewhat complex �g-
uring out how to implement a CORBA-based pro-
gram using a speci�c ORB, but �guring out how to
structure COPE was especially hard. It took ap-
proximately a month of mail exchange with Iona
before the problem was understood well enough to
resolve.

Most ORBs are implemented using an object-
oriented language, such as Java or C++. A
CORBA-based application is de�ned, in IDL, as
a set of classes that may be related via single in-
heritance. The IDL compiler translates these in-
heritance relations in some manner into a set of
class de�nitions in the implementation language.
Consider a CORBA class Bar that inherits from
a CORBA class Foo. The implementation object
(say, BarImpl) should also inherit from the imple-
mentation object FooImpl. In addition, with most
IDL compilers both implementation objects are in-
stances of a base CORBA object class.

The problem discussed here is concerned with the
translation chosen by the OrbixWeb IDL compiler.1

Before discussing the problem further, we provide
some background concerning how objects are im-
plemented in OrbixWeb. Suppose we have an IDL
interface as follows:

interface Foo {

void foo_method();

};

interface Bar : Foo {

void bar_method(Foo f);

};

The OrbixWeb IDL compiler generates eight
�les for each CORBA interface. For exam-
ple, the CORBA interface Foo is compiled into
FooHolder, FooHelper, FooSkeleton, FooStub,
FooImplBase, tie Foo, FooOperations, and
Foo. The �rst two are helper classes that support
marshalling, narrowing, and other CORBA support

1Recall that Java supports only single inheritance, and so

a translation based on multiple inheritance is only possible

through interfaces, not classes.

Foo

Object ObjectImpl

_tie_Foo _FooStub_FooImplBase

DynamicImplementation

_FooSkeleton

Streamable

FooHolder

_FooOperationsFooHelper

Figure 2: IDL-generated �les for Foo

operations. The next two are classes that are place-
holders for the stubs. The last four, two classes and
two interfaces respectively, are described in more
detail below.

The complete inheritance hierarchy for Foo is de-
picted in Figure 2. Rectangles represent interfaces.
Shaded ovals and rectangles represent classes and
interfaces provided in standard packages such as
org.omg.CORBA. These packages are part of Or-
bixWeb core classes.

There are two approaches with which one can im-
plement an OrbixWeb object: the \ImplBase" ap-
proach and the \tie" approach [4]. Suppose you wish
to implement the CORBA class Foo with the Java
class FooImpl. In the ImplBase approach, FooImpl
has the following signature:

public class FooImpl extends _FooImplBase

That is, FooImpl is a subclass of the class
FooImplBase. And, since FooImplBase imple-
ments the Java interface Foo (See Figure 2),
FooImpl also implements Foo. Therefore, a CORBA
Foo object can be instantiated as follows:

Foo foo = new FooImpl();

The tie approach, in contrast, is a delegation
model. With this approach the FooImpl class im-
plements the FooOperations interface. However,
since FooOperations and Foo are both interfaces,
to instantiate a CORBA Foo object one �rst instan-
tiates a FooImpl instance and then instantiates a

_BarOperations

_FooOperations

BarImpl

FooImplBar

Foo

_tie_Bar

_tie_Foo
has a

has a

Figure 3: Inheritance Diagram

tie Foo instance with the FooImpl instance as a
parameter:

Foo foo = new _tie_Foo(new FooImpl());

Since tie Foo implements Foo, the variable foo

has type Foo as desired.

Now consider implementing the class Bar. One
would naturally wish the implementation BarImpl

to inherit from FooImpl. But, BarImpl also im-
plements the methods declared in the CORBA Bar

class. As was done in implementing Foo, we can use
either the ImplBase approach or the tie approach.
However, the ImplBase approach requires BarImpl
inheriting from BarImplBase. This implies multi-
ple inheritance of classes, which Java does not sup-
port. Thus, one is constrained to use the tie ap-
proach, viz.:

public class BarImpl extends FooImpl

implements _BarOperations

Since we are using the tie approach, an instance of
Bar is created by wrapping an instance of BarImpl
in an instance of tie Bar:

Bar bar = new _tie_Bar(new BarImpl());

Figure 3 illustrates the resulting inheritance dia-
gram of a FooImpl object and a BarImpl object.

The problem with the tie approach, however, is that
the implementation objects (FooImpl and BarImpl

in this example), are not instances of the Java in-
terface that represents the CORBA object (Foo and
Bar in this example). This poses a problem when
using CORBA operations.

For example, suppose that there is a CORBA Bar

object B1 on processor 1 and a CORBA Bar object
B2 on processor 2. B2 has a reference r to B1, and
invokes the method r.bar method(this).

Further suppose that the implementation of
bar method in BarImpl tests the parameter f to see
if it is an instance of Bar:

1 public bar_method (Foo f) {

2 if (f instanceof Bar)

3 ...

4 else

5 ...

}

One might expect that the code in Line 3 would
be executed, but it is not due to an implemen-
tation decision by Iona. While marshalling this

on B2, CORBA determines the class of the value
it is marshalling through a method on it named
type, e.g., it invokes this.type(). If this

were to implement the Java interface Bar, then
this.type() would return a value indicating the
CORBA class Bar. But, since this implements
BarOperations, this.type() returns the value
null. The marshalling code therefore declares the
parameter passed in the message to B1 to be of type
reference to Foo.

We dealt with this problem in the manner recom-
mended by Iona. We save in the Java implemen-
tation of every CORBA object a reference to the
tie object. For example, let the member variable
referring to the tie object of an instance of Bar be
tieObject. The declaration of tieObject and the
constructor in the de�nition of the class BarImpl

can be as follows:2

public class BarImpl

implements _BarOperations {

protected Bar tieObject; // declaration

BarImpl() {

...

tieObject = new _tie_Bar(this);

}

}

2Note that the setting of tieObjectmust be the last mem-

ber variable initialization. If not, then the member variables

of the tie object may be initialized to incorrect values.

Then, B2 invokes r.bar method(tieObject) in-
stead of r.bar method(this). Since tieObjects

implements Bar, tieObject.type() returns a value
indicating the CORBA class Bar.

This problem occurs in other situations. It is in
general a good OrbixWeb design practice to have
objects like BarImpl implement a method that re-
turns a reference to the tie object. This reference
should be used in all places where a reference to the
implementation is passed using CORBA.

This additional complexity in structure can be
avoided by enforcing a �le naming structure on the
user's code. For example, some IDL compilers gen-
erate a �le that the user edits to include the Java
implementation of the CORBA object. Unlike Or-
bixWeb, the IDL compiler knows the name of the
implementation class when it generates the �les.
Hence, the IDL compiler can generate �les that ex-
plictly inherit from this class as needed. In our ex-
ample, if the IDL compiler names the implementa-
tion class for Foo as FooObj, then the implementa-
tion class for Bar might be generated as

public class BarObj

extends FooObj

implements _BarOperations

5.2 Per-Process Filters

The �lters that implement COPE's causal logging
perform the same operations for each method of an
optimist object: they add assumptions to a method
invocation on the invoking object's side and remove
the assumptions on the invoked object's side. Ide-
ally, one would like to be able to associate the same
�lter with each method of any class that derives
from optimist, and this association should be done
in a general way. Unfortunately, this cannot be done
in OrbixWeb. As discussed in Section 4.2, an object
that implements per-object �lters is required to im-
plement all methods de�ned in the IDL de�nition
for the class a of objects with which it is associated.
Classes that inherit from a require their own �lters
to be explicitly implemented.

Since a general purpose �lter cannot be constructed
as a per-object �lter and since we are unwilling to
change the OrbixWeb IDL compiler, a per-process
�lter is our only option. A per-process �lter is in-
voked for all method invocations leaving and enter-

ing the process, and so it can be used to implement
a generic �lter. However, using per-process �lters
raises other problems. We have found workarounds
for these problems, but we do not believe that the
workarounds are acceptable in terms of meeting our
engineering requirements.

5.2.1 Performance

There are performance reasons leading one to imple-
ment several objects in the same process. It is rel-
atively inexpensive for these objects to invoke each
other's methods, since such an invocation does not
require a context switch. Furthermore, there are
serious problems in resource utilization with run-
ning multiple Java virtual machines on the same
processor. Hence, one often tries to structure an
OrbixWeb application with as many objects as pos-
sible in the same process.

However, per-process �lters are not invoked for
method invocations between objects in the same
process. Hence, per-process �lters can not be used
to implement causal logging among objects in the
same process. This implies that each COPE op-
timist must run in its own process. This solution
carries an enormous performance penalty.

5.2.2 Lack of Required Information

An OrbixWeb �lter can obtain various information
about the invocation that it is intercepting. This in-
formation includes the reference of the object whose
method is being invoked, the name of the method
being invoked, the parameters of the method be-
ing invoked, and the name of the user running the
program that resulted in the invocation. Unfortu-
nately, the �lter cannot determine the reference of
the object making the invocation.

Without this information, it is impossible to provide
the context sensitivity property de�ned in Section 3.
The reason is that the piggybacked data depends
on the state of the invoking object. Thus, the �lter
cannot obtain the information to be piggybacked
from the invoking object.

A per-object �lter is aware of the object with which
it is associated, and so does not su�er from this
problem. However, as we saw in Section 5.2, per-

object �lters cannot be used. Hence, we needed to
�nd a workaround.

Because of the constraint of having only one object
per process, we work around this problem by allo-
cating a static variable that contains a reference to
the tie object. This static variable is referenced by
the �lters when they need to make a invocation on
the invoking process. This is a simple workaround,
but it is arti�cially simple because of the constraint
of one object per process. If the per-process �lter
could be imposed for communications between ob-
jects in the same process, then this static variable
would need to be updated before every method in-
vocation. Doing so would violate transparency of
Section 3.

6 Discussion

In implementing causal logging to achieve causal
consistency for our CORBA service, COPE, we use
the interception facilities provided by OrbixWeb �l-
ters. OrbixWeb �lters allow us to add functionality
to legacy software in a manner that is orthogonal
and non-intrusive to the main computation. Using
�lters, invocations in the system can be captured
and processed before continuing with the normal

ow of the program. However, despite our best
endeavors, we were faced with a few di�culties.
One problem was in understanding how to structure
an OrbixWeb application that passes references to
CORBA objects that can be subclassed. With the
help of Iona, we were able to �nd a practical solu-
tion. The two remaining problems were more seri-
ous:

1. One cannot impose a per-object �lter that is
generic|that is, that need not conform to the
interface implemented by the object. The level
of interception implementable using OrbixWeb
�lters therefore poses a fundamental problem.
As we discovered in our case, getting around
the problem incurs a very high performance
penalty and is thus not a practical solution.

2. One has no means to access the calling object
in a �lter. This violation of context sensitivity
property leads to the static variable solution
which, except for the problem above, would vi-
olate the transparency property.

It is not clear why such a limit to disallow ac-
cess to the calling object was imposed in the
�rst place. But with this limitation, the piggy-
backing mechanism in place cannot be utilized
to its full potential.

We believe that any communications middleware
platform for distributed computing should be pow-
erful enough to build the engineering solution de-
scribed in Section 3. Such a solution might even
be considered a benchmark for the utility of such
platforms.

Although we have not attempted to implement
COPE using other CORBA ORBs, we have looked
into using the Legion system [12]. And, Legion ap-
pears to be powerful enough to e�ciently implement
COPE, but it would be interesting to actually do
so to see what problems might arise. Of course,
it would also be interesting to see how well other
CORBA ORBs could support COPE.

7 Acknowledgments

We would like to thank Treasa O'Shaughnessy,
Anne O'Shea and John O'Shea of IONA who helped
us work through the technical problems we have
encountered with OrbixWeb. We were unable to
resolve the problem described in Section 5.1 with-
out their help. We bene�ted from discussions with
Ang Nguyen-Toung at the University of Virginia of
how COPE might be implemented on Legion. The
COPE architecture was developed by the authors
and Ramanathan Krishnamurthy and Aleta Riccia-
rdi, both of the University of Texas at Austin.

This work was supported by the Defense Advanced
Research Projects Agency (DoD) under contract
number F30602-96-1-0313. The views, opinions,
and �ndings contained in this report are those of the
authors and should not be construed as an o�cial
Department of Defense position, policy, or decision.

8 Availability

The source of COPE is available from the COPE
home page at the following URL:

http://www.cs.ucsd.edu/users/

marzullo/COPE.html

References

[1] M. Ahamad, J. E. Burns, P. W. Hutto, and
G. Neiger. Causal memory. In Distributed Algo-
rithms, Fifth International Workshop WDAG
'91, pages 9{30, October 1991.

[2] Lorenzo Alvisi and Keith Marzullo. Message
logging: pessimistic, optimistic, causal, and op-
timal. IEEE Transactions on Software Engi-
neering, 24(2):149{159, February 1998.

[3] K. P. Birman and T. Joseph. Reliable com-
munications in the presence of failures. ACM
Transactions on Computer Systems, 5(1):47{
76, February 1987.

[4] IONA Technologies Inc., Dublin, Ireland. Or-
bixWeb Programmer's Guide, 1997.

[5] David R. Je�erson. Virtual time. ACM Trans-
actions on Programming Languages and Sys-
tems, 7(3):404{425, July 1985.

[6] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
C-28(9):690{691, September 1979.

[7] Kai Li and Paul Hudak. Memory coherence in
shared virtual memory systems. ACM Trans-
actions on Computer Systems, 7(4):321{359,
November 1989.

[8] Keith Marzullo, Chanathip
Namprempre, Jeremy Sussman, Ramanathan
Krishnamurthy, and Aleta Ricciardi. Combin-
ing optimism and intrusion detection. Tech-
nical Report TR CS98-605, University of Cal-
ifornia, San Diego, Department of Computer
Science and Engineering, October 1998.

[9] Randy Otte, Paul Patrick, and Mark Roy. Un-
derstanding CORBA: Common Object Request
Broker Architecture. Prentice Hall Press, Oc-
tober 1995.

[10] Michel Raynal, Andre Schiper, and Sam Toueg.
The causal ordering abstraction and a simple
way to implement it. Information Processing
Letters, 39(6):343{350, September 1991.

[11] Fred B. Schneider. Implementing fault-tolerant
services using the state machine approach: a
tutorial. Computing Surveys, 22(4):299{319,
December 1990.

[12] C. Viles, M. Lewis, A. Ferrari, A. Nguyen-
Toung, and A. S. Grimshaw. Enabling
exibil-
ity in the Legion run-time library. In Proceed-
ings of the International Conference on Parallel
and Distributed Processing Techniques and Ap-
plications (PDPTA '97), pages 265{274, June
1997.

