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Abstract

The performance of CORBA(Common Object Re-
quest Broker Architecture)objects is greatly influenced
by theapplication contextand by the performance of the
ORB endsystem, which consists of the middleware, the
operating system and the underlying network. Applica-
tion developers need to evaluate how candidate applica-
tion object architectures will perform within heteroge-
nous computing environments, but a lack of standard
and user extendable performance benchmark suites ex-
ercising all aspects of the ORB endsystem under realis-
tic application scenarios makes this difficult. This paper
introduces thePerformance Pattern Languageand the
Performance Measurement Objectwhich address these
problems by providing an automated script based frame-
work within which extensive ORB endsystem perfor-
mance benchmarks may be efficiently described and au-
tomatically executed.

1 Introduction

The Common Object Request Broker Architecture
(CORBA)[15] is emerging as an important open stan-
dard for distributed-object computing, especially in
heterogenous computing environments combining mul-
tiple platforms, networks, applications, and legacy
systems[27]. Although the CORBA specifications de-
fine the features of a compliant ORB, they do not spec-
ify how the standards are to be implemented. As a re-
sult, the performance of a given application supported
by ORBs from different vendors can differ greatly, as
can the performance of different applications supported
by the same ORB.

A number of efforts have been made to measure the
performance of ORBs, often comparing with perfor-
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Corporation.

mance of other ORBs [23]. These efforts generally mea-
sure only specific aspects of ORB performance in isola-
tion. While performance of specific ORB functions is
important, it is also important to realize that superior re-
sults in a few simple testsdoes not ensurethat the ag-
gregate performance of ORB A is better than ORB B for
a particular application object architecture. The perfor-
mance of ORB based applications implemented as a set
of objects is greatly influenced by the application con-
text and by the architecture and performance of the ORB
endsystem. The endsystem consists of the ORB middle-
ware, the operating system and the underlying network.
An application’s performance is determined by how well
these components cooperate to meet the particular needs
of the application.

Current benchmark suites and methods tend to con-
centrate on a specific part of the endsystem. Operating
system benchmarks concentrate on component operat-
ing system operations, but may say comparatively little
about how well the operating system will support ORB
middleware. ORB benchmarks concentrate on compo-
nent operations of the middleware, but are less effec-
tive at pinpointing problems at the application, operat-
ing system, and network layers. Developers consider-
ing non-trivial ORB based applications need the abil-
ity to evaluate, in some detail, how well a given ORB
and endsystem combination can support candidate ap-
plication object architectures. They need this informa-
tion before implementing a significant portion of the en-
tire application. Such developers should begin with a
set of standard performance benchmark suites exercis-
ing various aspects of the ORB endsystem under realis-
tic application scenarios, but they also require the ability
to create test scenarios which specifically model their
candidate application architectures and behavior in the
endsystem context.

Current benchmarking methods and test suites do not
adequately solve the real problem developers face be-
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cause current methods concentrate on only a part of the
application and endsystem in isolation and thus do not
enable the developer to consider how implementation
decisions at various levels interact. An effective and
efficient tool set supporting an integrated performance
evaluation methodology should support ORB, endsys-
tem, and application oriented tests, should be automated,
and should make it easy for the user to extend and mod-
ify the set of tests performed. Only such an integrated
tool set and benchmark test suite supporting realistic ap-
plication scenarios and capable of collecting information
from all layers of the endsystem can enable developers
to effectively evaluate candidate application object ar-
chitecturesbeforeimplementation.

This paper describes how a combination of tools de-
veloped at the University of Kansas (KU) can address
this challenge. This integrated tool set represents a
significant advance in support for performance evalua-
tion of ORB based applications because it increases the
range and complexity of tests that a benchmark suite
can contain, it extends the types of performance in-
formation which can be gathered during an individual
test, and its support for automated test execution sig-
nificantly extends the number of tests that a practical
benchmark suite can contain. The NetSpec tool pro-
vides a control framework for script driven automation
of distributed performance tests. The Data Stream Ker-
nel Interface (DSKI) provides the ability to gather time
stamped events and a variety of other performance data
from the operating system as part of a NetSpec exper-
iment. The Performance Measurement Object (PMO)
provides the ability to conduct NetSpec based experi-
ments involving CORBA objects, and the Performance
Pattern Language (PPL) provides a higher level lan-
guage for describing NetSpec based experiments involv-
ing sets of CORBA objects more succinctly.

NetSpec has been used by a number of research
projects at the University of Kansas (KU) and elsewhere.
It provides the automation and script based framework
supporting experiments including a wide range of condi-
tions, component behaviors, and data collection [12, 16].
NetSpec is designed to be extended and modified by the
user through the implementation ofdaemons. Test dae-
mons support basic network performance tests and sup-
ply background traffic in other NetSpec based experi-
ments. Measurement daemons gather information dur-
ing an experiment but contribute no traffic or behavior
beyond that required to gather data.

The DSKI is a pseudo-device driver which enables
a NetSpec experiment, through the DSKI measurement
daemon, to specify and collect the set of operating sys-
tem level events of interest which occur during the ex-
periment [1]. The PMO is a NetSpec test daemon de-
signed to support CORBA based performance experi-

ments. A NetSpec PMO script can specify the creation
of CORBA objects, their execution time behavior, and
the relations that hold among the objects. Using exist-
ing traffic related NetSpec test daemons, the DSKI, and
PMO, a user can write a script specify a set of interact-
ing objects, a set of network background traffic provid-
ing a context within which the objects exist, and gather
operating system level information about network and
operating system level events affecting performance.

A practical drawback of the NetSpec PMO support is
that the language is defined at a low level of detail, and
PMO scripts for scenarios with many objects are thus
long and repetitive. The PPL addresses this by defin-
ing a higher level language for more compactly describ-
ing application level object interaction scenarios, which
abstract the performance aspects of commonly used im-
plementation strategies. We have called these scenarios
performance patternsto draw a direct analogy to design
patterns which the definitive bookDesign Patternsde-
fines on page 3 as “descriptions of communicating ob-
jects and classes that are customized to solve a general
design problem in a particular context”[6].

A performance pattern is a set of objects exhibiting
a set of behaviors, relationships, and interactions typical
of an application architecture or class of application ar-
chitectures. This pattern can be customized through pa-
rameter specification or user extension to match the in-
tended application behaviors and architecture as closely
as required. The PPL compiler emits NetSpec PMO
scripts implementing the specified performance pattern.

It is important to realize that the PPL approach is
quite general and is not ORB or even CORBA specific.
The PPL could easily be used to create object based per-
formance scenarios given support from a NetSpec dae-
mon of the correct type. The PMO is CORBA specific,
but it would be straightforward to implement and analo-
gous NetSpec daemon for DCE or DCOM based per-
formance evaluation. The PMO is not ORB specific
and has been ported with minimal effort to four ORBs:
The ACE ORB (TAO)[20], OmniORB[23], ExperSoft’s
CORBAplus[5], and ILU[11]. We currently focus on
TAO, OmniORB, and CORBAPlus for project specific
reasons. The range of experiments which can be sup-
ported is a function, in part, of the set of possible ob-
ject behaviors supported by the PMO. PMO behaviors
are implemented by routines linked into the PMO, and
it has been designed to make adding new behaviors sim-
ple, thus supporting user extension.

The rest of the paper first discusses related work in
Section 2, and then describes the implementation of the
PMO and PPL in Section 3. Section 4 presents exam-
ples of PMO and PPL use, while Section 5 presents our
conclusions and discusses future work.



2 Related Work

A number of efforts have been made to measure the
performance of ORBs, often comparing with perfor-
mance of other ORBs [23]. Earlier studies on the per-
formance of CORBA objects focussed mainly on identi-
fying the performance constraints of an Object Request
Broker (ORB) alone. Schmidt analyzed the performance
of Orbix and VisiBroker over high speed ATM networks
and pointed out key sources of overhead in middleware
ORBs [7, 8]. This paper complements Schmidt’s work
by demonstrating an integrated and automated approach
which is capable of simultaneously measuring the influ-
ence of the ORB, the operating system and the underly-
ing network on the performance of CORBA objects.

Studies have also been conducted on IDL compiler
optimizations that can improve overall performance of
the ORB. One such effort is the Flick project[4]. It
is claimed that Flick-generated stubs marshal data be-
tween 2 and 17 times faster than stubs produced by tra-
ditional IDL compilers, resulting in an increased end-to-
end throughput by factors between 1.2 and 3.7. While
clearly addressing an important topic, the Flick work
also clearly concentrates on one specific facet of endsys-
tem performance. Our work complements such efforts
by providing a platform within which the effect of such
efforts on endsystem performance can be evaluated.

TAO is the ACE ORB being developed at Washing-
ton University [17]. This project focuses on: (1) identi-
fying the enhancements required to standard ORB spec-
ifications that will enable applications to specify their
Quality of Service (QoS) requirements to ORBs, (2)
determining features required to build real-time ORBs,
(3) integrating the strategies for I/O subsystem architec-
tures and optimizations with ORB middleware, and (4)
to capture and document key design patterns necessary
to develop, maintain and extend real-time ORB middle-
ware. The work described in this paper compliments
these goals by providing a way to capture, document,
and evaluate performance aspects of ORB based design
patterns.

In addition to providing a real-time ORB, TAO is
an integrated ORB endsystem architecture that consists
of a high-performance I/O subsystem and an ATM port
inter-connect controller (APIC). They have developed a
wide range of performance tests which include through-
put tests[7], latency tests[8] and demultiplexing tests[8].
They have used these performance tests to test TAO
[17] and other CORBA2.0 compliant ORBs. Their tests
formed a basis for several of the basic tests in the auto-
mated framework described in this paper.

A commercially available CORBA test suite is the
VSORB from X/Open [28]. VSORB is implemented
under the TETware test harness, a version of the Test

Environment Toolkit (TET), a widely used framework
for implementing test suites [24]. It is designed for
two primary uses: (1) testing ORB implementations for
CORBA conformance and interoperability under formal
processes and procedures, and (2) CORBA compliance
testing by ORB implementors during product develop-
ment and quality assurance. This work differs from ours
in that it concentrates on compliance rather than perfor-
mance, but clearly shares the goal of creating a general
framework for large scale evaluation tests.

The Manufacturing Engineering Laboratory at the
National Institute of Standards & Technology(NIST)
takes a different approach towards the benchmarking
of CORBA in their current work on the Manufacturer’s
CORBA Interface Testing Toolkit(MCITT) [13]. They
use a emulator-based approach in which the actual
servers are replaced by test servers and the person do-
ing the testing only needs to specify the behaviors that
are important for the specific scenario being examined.
The approach provides an extremely simplified procedu-
ral language, the Interface Testing Language, for spec-
ifying and testing the behavior of CORBA clients and
servers. This work is similar to ours with respect to its
abstraction of the object behavior, but it does not explic-
itly integrate endsystem evaluation, concentrating only
on the application and ORB middleware.

The Distributed Systems Research Group at Charles
University, Czech Republic, have done a comparison of
three ORBs based on a set of criteria including dispatch-
ing ability of the ORB, throughput provided for the in-
vocation of different data types, scalability, and perfor-
mance implications of different threading architectures
[2, 19]. The criteria address different aspects of the
ORB functionality and the influence of each criterion
has been discussed with respect to specific ORB usage
scenarios. They have also developed a suite of bench-
marking applications for measurement and analysis of
ORB middleware performance. This is a strong effort,
but the drawback to this approach, in our view, is that
it is restricted to evaluating ORB level performance and
specific predefined application scenarios. This is signif-
icant because application behaviors will vary and their
method does not appear, by our understanding, to be de-
signed to support user specified test scenarios.

Performance evaluation is an important topic in many
areas of computer system design and implementation,
and significant related work exists which does not con-
sider ORB performance. Data bases provide some of the
best developed examples of benchmarks addressing ap-
plication scenarios. It is interesting to observe that both
data bases and ORBs support applications by assuming
the role of middleware. As such, performance evaluation
of data bases is most meaningful and useful to potential
users when it considers application scenarios.



The Wisconsin Benchmark is an early effort to sys-
tematically measure and compare the performance of
relational database systems with database machines[3].
The benchmark is a single-user and single-factor exper-
iment using a synthetic database and a controlled work-
load. It measures the query optimization performance
of database systems with 32 query types to exercise the
components of the proposed systems. This is similar to
our effort in that it abstracts the application scenario and
considers a range of system functions. Our work differs,
however, in that we also provide for placing the set of
ORB based objects in an endsystem context including
background load and traffic.

The ANSI SQL Standard Scalable and Portable
Benchmark (AS3AP) models complex and mixed work-
loads, including single-user and multi-user tests, as well
as operational and functional tests [25]. There are 39
single-user queries consisting of utilities, selection, join,
projection, aggregate, integrity, and bulk updates. The
four multi-user modules include a concurrent random
read test and a pure information retrieval (IR) test[26].
The concurrent random write test is used to evaluate the
number of concurrent users the system can handle updat-
ing the same relation. The mixed IR test and the mixed
OLTP test are to measure the effects of the cross-section
queries on the system with concurrent random reads or
concurrent random writes. This effort has a stronger
similarity to ours in that it considers a wider range of
activity as well as multiple users. It does not, to our
knowledge, provide support for users to specify applica-
tion based test scenarios.

3 Implementation

We have implementedan integrated tool-based ap-
proach for performance measurement of ORB endsys-
tem performance. The single most important aspect of
our system is that it measures performance within the
target environment, rather than relying on published data
that may be inaccurate, or which accurately describes as-
pects of performance under a different environment. The
main features of this approach are:

1. A script based approach for conducting perfor-
mance tests which promises better expressiveness
of experiments.

2. The ability to study the performance of CORBA
objects in the context of different operating system
loads and network traffic.

3. The ability to study the influence of different com-
ponents of the CORBA endsystem including the
middleware, the operating system, and the network
on the performance of CORBA objects.

4. The ability to measure the performance of objects
in heterogeneous distributed systems from a single
point of control.

5. The flexibility and scalability to specify a wide
range of distributed tests and behavior patterns.
This includes scalability in time, number of objects,
and number of hosts supporting the pattern.

6. The ability to measure latencies, throughput and
missed deadlines among a wide range of perfor-
mance metrics.

7. An automated highly scalable framework for per-
formance measurement. This is a crucial fea-
ture because it enables practical us of much
larger benchmarking suites than non-automated ap-
proaches.

The performance metrics which best predict appli-
cation performance depend, in part, on the properties
of the application. This is one reason why a pattern
based and automated framework is required. The pat-
tern orientation enables the user to describe scenarios
with a rich and varied set of behaviors and requirements,
closely matching the proposed application architecture.
Automation enables testing on a large scale, permitting
the user to test a wide range of parameters under a wide
range of conditions, which permits the user toavoid
making many potentially unjustified assumptions about
what aspects of the application, ORB, and endsystem are
important in determining performance.

The metrics which will be crucial for important
classes of applications include: throughput, latency,
scalability, reliability and memory use. The system
parameters which can affect application performance
with respect to these metrics include: multi-threading,
marshalling and demarshalling overhead, demultiplex-
ing and dispatching overhead, operating system schedul-
ing, integration of I/O and scheduling, and network la-
tency. Our approach currently enables us to examine
the influence of many of these aspects of the system on
performance, and further development will enable us to
handle all of them.

Figure 1 shows our integrated benchmarking frame-
work supporting performance evaluation tests. The
experiment description expressed in the PPL script is
parsed by the PPL compiler which emits a PMO Net-
Spec script implementing the specified experiment. The
NetSpec parser processes the PMO based script and
instructs the NetSpec controller daemon to create the
specified sets of daemons on each host used by the
distributed experiment. Note that Figure 1 illustrates
a generic set of daemons, rather than those support-
ing a specific test. The PMO daemon interfaces the



CORBA based objects on that host to the NetSpec con-
trolling daemon. An additional PMO object is some-
times used, and communicates with the PMO daemon,
because CORBA objects can be created dynamically.
Note that the line between the PMO objects represents
their CORBA based interaction, which is the focus of
the experiment. The DSKI measurement daemon, if
present, is used to gather performance data from the
operating system. It is a generic daemon and is not
CORBA based. The traffic daemon is also not CORBA
based, but is used to create a context of system load and
background traffic within which the CORBA objects ex-
ist.

Our approach integrates several existing tools and
adds significant new abilities specifically to support
CORBA. The tools integrated under this framework
are NetSpec[12, 16], the Data Stream Kernel Inter-
face (DSKI)[1], the Performance Measurement Object
(PMO)[10, 9], and thePerformance Pattern Language
(PPL). The rest of this section discussed each compo-
nent in greater detail.

3.1 NetSpec

NetSpec has been used by a number of research
projects at the University of Kansas (KU) and elsewhere.
It provides the automation and script based framework
supporting experiments including a wide range of condi-
tions, component behaviors, and data collection [12, 16].
NetSpec is designed to be extended and modified by the
user through the implementation of daemons supporting
specific component roles in experiments. Test daemons
are used as active components, traffic sources and sinks,
while measurement daemons are passive with respect to
the experiment since they only collect measurements.
Existing NetSpec daemons support network level per-
formance tests with many simultaneous connections and
traffic load profiles, as well as data collection from both
hosts and network nodes using measurement daemons.
A wide range of NetSpec daemons exist, providing a
range of behaviors and functions, including: TCP/UDP
traffic load, ATM signaling load, SNMP data collection,
and DSKI data collection from the operating system.

3.2 Data Stream Kernel Interface

The DSKI is a pseudo-device driver which enables
a NetSpec experiment, through the DSKI measurement
daemon, to specify and collect a series of time-stamped
operating system level events of interest which occur
during the experiment [1]. This is particularly useful
when considering interactions among the application,
middleware, and operating system levels of the endsys-
tem. The primary target platform for the DSKI is Linux,

but we have also ported it to DEC UNIX, and as a
pseudo-device driver it can be ported relatively easily
to any version of UNIX. The DSKI supports a range
of data collection options with differing in level of de-
tail and overhead. One particularly powerful feature is
the ability to associate and arbitrarytag with an event.
For example, when the tag is a packet ID or buffer ad-
dress this enables post processing to track the progress
of specific messages through the protocol stack. In the
CORBA context, post processing of the event stream
shows the amount of time spent by messages in differ-
ent portions of the operating system when making ob-
ject request calls to and from the ORB. We are currently
working to create a similar ability to create, configure,
and process streams of events from the CORBA and ap-
plication levels.

3.3 Performance Measurement Object

The PMO is a NetSpec test daemon designed to
support CORBA based performance experiments. The
PMO enables a NetSpec script to specify the creation of
CORBA objects, their execution time behavior, and the
relations that hold among the objects. The PMO control
layer parses the instructions from the NetSpec controller
specifying its role within an experiment. These objects
can exhibit a variety of behaviors, and are capable of ex-
changing a wide range of CORBA data with each other.

The PMO provides all the basic abilities required to
conduct CORBA based evaluation experiments, but ex-
perience has shown that it is not always the best way.
The reason for this is that NetSpec’s method of ensur-
ing user extendibility and portability also ensures that
NetSpec scripts are very long. The best analogy is to
consider the NetSpec scripting language an architec-
ture independent assembly language. It is thus possible
to describe any desired experiment, but sometimes te-
dious. The PMO level is appropriate for describing ba-
sic CORBA component tests, but can be unwieldy when
used for application level object interaction scenarios.
The PPL addresses this problem, and is discussed in
Section 3.4

The PMO NetSpec script language describes an ex-
periment in terms of sets of daemons. Each daemon
specification provides a complete list of parameter-value
pairs describing that daemons role in the experiment.
Groups of daemons are created and executed by the Net-
Spec controller either inserial or in parallel. These
simple constructs make it possible to describe a wide
range of sophisticated application level behaviors. Ad-
ditional constructs make it possible to have sets of dis-
tributed subordinate controller daemons for large scale
distributed experiments. The details of the NetSpec syn-
tax are described elsewhere [12, 16], but the examples
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described in Section 4 should provide a clear idea of how
the system works.

3.4 Performance Pattern Language

The PPL was designed as a higher level language
for describing such application level object interac-
tion scenarios[14, 6] in terms ofperformance patterns.
Within each pattern, the user describes objects, object
behaviors, test types and relations among the objects
that influence the performance of the pattern as a whole.
For convenience, the PPL also permits the user to de-
fine parameter blocks describing aspects of object be-
havior which are referenced by object definitions using
the same set of parameters. After the patterns associ-
ated with the experiment are specified, theschedulefor
their execution is given. Currently the only schedule
supported is a simple sequential execution of one pattern
at a time. However, we are working on extending this to
permit flexible pattern composition and dynamic time
dependent behavior to better support application sce-
nario based testing. The correspondence between PPL
constructs and the PMO level scripts produced by the
PPL compiler is illustrated by the examples in Section
4.

The combination of the PMO and PPL provides a
powerful and efficient way for developers to describe
and conduct a wide range of application scenario based
performance evaluation experiments for CORBA sys-

tems. The method is applicable to any ORB and has
been ported with minimal effort to four ORBs: The
ACE ORB (TAO)[20], OmniORB2[23], ExperSoft’s
CORBAplus[5], ILU[11]. The range of experiments
which can be supported is a function, in part, of the set of
possible object behaviors supported by the PMO. PMO
behaviors are implemented by routines linked into the
PMO, and it has been designed to make adding new be-
haviors simple.

The scalability of our method is important in two
ways. First, script driven automation of the experiments
makes it fairly easy to describe tests at a scale represen-
tative of the final application. Second, the script driven
automation makes it possible to conduct an acceptably
large and comprehensive set of tests in an acceptably
short period of time. For example, sets of tests produc-
ing graphs discussed in Section 4 are fully automated
and execute in periods ranging from a few seconds to al-
most an hour. Scalability is important because the num-
ber of properties of an ORB which can significantly af-
fect performance of a particular application is large, re-
quiring a large test suite for adequate evaluation.

4 Evaluation

This section illustrates current capabilities as well as
the potential of our automated script driven and appli-
cation scenario based performance evaluation methods



and tools. The examples show how the tests used in cur-
rent benchmarks are supported by the framework, and
how these can be used as components of more sophisti-
cated scenario based performance patterns. This section
presents results of two types of tests under two patterns
to illustrate our methods. Section 4.1 presents results
under the simple client-server pattern and behaviors for
thecubitandthroughputtest types. Section 4.2 presents
the results under theproxy pattern for the same behav-
iors and test types. Section 4.3 demonstrates the use of
the DSKI to reveal the components of the system sup-
port overhead for the client-server pattern using a sim-
ple request-response behavior. We also demonstrate the
portability of our method by presenting results for both
Linux and Solaris. Table 1 presents the Linux testing
environment for thecubitandthroughputbehavior tests,
while Table 2 presents that for Solaris. Note that the
sending machine is slightly slower than the receiving
machine. We originally used identical machines, but a
machine failure forced us to use a different receiving
machine for tests presented here.

Name of ORB omniORB2, TAO
Language Mapping C++
Operating System Redhat Linux 5.1

kernel 2.1.126
CPU info Pentium Pro 200 MHz

128 MB RAM
Compiler info egcs-2.90.27

(egcs-1.0.2 release)
no optimizations

Thread package Linux-Pthreads 0.7
Type of invocation static
Measurement method getrusage
Network Info. ATM

Table 1. Operating Environment Used for
the Tests on Linux Platform

Significant further development of our approach is
desirable, and is proceeding, but the current capabilities
of the tools generally meet and modestly exceed some
aspects of current practice. It is important to note that the
framework is explicitly designed for user extension pre-
cisely because no single developer or authority can know
every significant aspect of ORB evaluation. Accumula-
tion of the sum of the CORBA community’s collective
wisdom concerning ORB evaluation would significantly
advance the state of the art. The script based automated
approach described here is designed to support such a
collective effort.

Parameter Description
Name of ORB omniORB2, TAO,

CORBAplus
Language Mapping C++
Operating System Solaris 2.6
CPU info Ultra Sparc-II 296 MHz (S)

Ultra Sparc-IIi 350 MHz (R)
128 MB RAM

Compiler info SUN C++ 4.2
no optimizations enabled

Type of invocation static
Measurement method getrusage
Network Info. ATM

Table 2. Operating Environment Used for
the Tests on Solaris Platform

4.1 Simple Client-Server Pattern

This example illustrates the basic elements of the
PPL and PMO in the context of a simple client-server
pattern, which reflects current conventional benchmark-
ing practice. Listed below is the PPL script correspond-
ing to the scenario of Figure 2. The client and server in
this case are Sender and Receiver respectively. The in-
formation regarding the parameters required for the test-
ing between these two CORBA objects is provided in
the object blocksof the PPL script and the kind of rela-
tion between the objects is specified in therelation block
of the PPL script. Execution of the pattern is specified
by the one line schedule.

The PPL compiler takes the script as input, analyzes
the object definitions and relations, and generates the
NetSpec PMO script shown in Figure 3. The first thing
to note is that the PMO script has two major sections,
one defining the client as acorba daemon running on
the machinemarcus, and the server as acorbadaemon
running on the machinezeno. The other major point is
that the parameter block is specified explicitly for each
daemon. The main point is that the PMO script defines
each object separately and that the relations among them
are more difficult to discern in the PMO language.

Figure 4 shows the performance of the Client-Server
pattern supporting thecubit test type for OmniORB and
TAO on a Linux platform, while Figure 5 shows the re-
sults for OmniORB, TAO and CORBAplus on a Solaris
platform. The CORBAPlus ORB is not currently avail-
able for Linux, but should be soon. The flexibility of the
script driven approach is demonstrated by the observa-
tion that the TAO based tests were repeated for the Om-
niORB by replacingorb name = TAOwith orb name =
OmniORBin the PPL script. Thecubit test emphasizes
basic communication performance because it involves



 CORBA Client CORBA Server

pattern CUBIT-TESTS {
param_block param1 {

test_type = cubit; orb_name = TAO;
minsize = 512; maxsize = 8192;
predelay = 5; postdelay = 5;
duration = 10; multiples = 2;
protocol = iiop; qos = normal;
criteria = latency;

}

object Sender {
machine_name = marcus; interface = eth;
behavior = client; param = param1;
numsamples = 250;

}

object Receiver {
machine_name = zeno; interface = eth;
behavior = server; param = param1;
numsamples = 250; port_num = 22222;

}

relations {
(TAO-sender,TAO-receiver);

}
}

/* Execution Schedule */

CUBIT-TESTS;

Figure 2. Simple Client-Server Pattern

cluster {
corba marcus {

NameOfORB = TAO;
TypeOftest = cubit;
TestParams = (

numsamples = 250, minsize = 512,
maxsize = 8192, multiples = 2,
predelay = 5, postdelay = 5,
duration = 10 );

protocol = iiop;
objname = Sender;
role = client;
relations = server{Receiver};
criteria = latency;
qos = normal;
own = marcus (interface = eth);

}

corba zeno {
NameOfORB = TAO;
TypeOftest = cubit;
TestParams = (

numsamples = 250, minsize = 512,
maxsize = 8192, multiples = 2,
predelay = 5, postdelay = 5,
duration = 10 );

protocol = iiop;
objname = Receiver;
role = server;
relations = client{Sender};
criteria = latency;
qos = normal;
own = zeno (interface = eth, port = 22222);

}
}

Figure 3. Corresponding Client-Server
PMO NetSpec Script
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Figure 4. Client-Server Cubit for OmniORB
and TAO on Linux

small packets, and a simple computation (cube a num-
ber) on the server side. Thecubit behavior thus focuses
on the time spent by each packet in the system layers
and the middleware for a CORBA call invocation. The
results shown are the average values for 250 invocations
of the basic operation for each of several CORBA data
types, and are presented in terms of calls per second.

There are several points of interest in these results.
First, is the fact that even such a simple test reveals dif-
ferences between ORB implementations, and between
operating system platforms. The most striking differ-
ence is that while TAO performance is essentially con-
stant on both Linux and Solaris, OmniORB performance
on Solaris is roughly double that on Linux for many data
types but not all. Another observation is that OmniORB
generally outperforms the other ORBs, but that its per-
formance for the “llse” (long long sequence) data type is
substantially below that of TAO on Linux.

Determining why these observed behaviors occur
will take further study, but this demonstrates the im-
portant point that our compact PPL script describes a
test which can be run automatically in a matter of sec-
onds, revealing significant differences in ORB behav-
ior, and providing a convenient and efficient founda-
tion for further experimentation. The flexibility of the
PPL approach is further illustrated by changing the test
type from cubit to throughputin the client-server pat-
tern, producing the Linux throughput results for TAO
illustrated in Figure 6 and Figure 7 for OmniORB. A
data file, essentially CORBA “char” data type, ranging
from 1 MB to 64 MB is sent using buffer sizes ranging
from 512 bytes to 16 KB. This test shows that through-
put for both ORBs is constant with the total amount of
data, but that throughput is significantly affected by the
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Figure 5. Client-Server Cubit for OmniORB,
TAO and CORBAplus on Solaris

buffer size used for each data transfer session. The TAO
throughput increased with buffer size, indicating that the
packet transfer rate was limited, but not the packet size.
The OmniORB throughput varied in a much less obvi-
ous way, and was significantly greater for 4KB buffers.
Determining why OmniORB performance varies so hap-
hazardly with buffer size would require gathering data
from the operating system layer, as discussed in Section
4.3. The throughput tests for a single client-server pair
ran under NetSpec control in an elapsed time of approx-
imately 15 minutes.

4.2 Proxy Pattern

This section discusses a more complex CORBA ap-
plication scenario, the Proxy Pattern [22], in which the
proxy object acts as an interface between the CORBA
clients and CORBA servers as shown in Figure 8 for
three client and server objects, with the PPL script im-
plementing this pattern for thecubit test type under Om-
niORB. The proxy pattern uses the basic client-server
pattern as a component, extending it to a group of client-
server pairs communicating through a proxy object. In
this case we use three client server pairs under the proxy
pattern which exhibit the client and server behaviors, re-
spectively, while executing thecubitandthroughputtest
types. The client contacts the corresponding server at
run-time either by passing the object reference, or the
server’s name registered with the CORBA Naming Ser-
vice, to the Proxy object which forwards the client re-
quest to the appropriate server. The data type used for
the transfer of information between the clients and the
proxy Object is CORBA “Any”.

0 1 2 3 4 5 6 7

x 10
7

0

10

20

30

40

50

60

Data Size

T
hr

ou
gh

pu
t i

n 
M

bp
s

0.5KB
1KB  
2KB  
4KB  
8KB  
16KB 

Figure 6. Client-Server Throughput for TAO
on Linux
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Figure 7. Client-Server Throughput for Om-
niORB on Linux



proxy-C1

 proxy-C2

proxy-C3

proxy-router

 proxy-S1

proxy-S2

proxy-S3

pattern Proxy {
param_block client-param {

orb_name = omniORB2; test_type = cubit;
numsamples = 250; minsize = 1;
maxsize = 1; multiples = 1;
predelay = 3; postdelay = 3;
protocol = iiop; qos = normal;
criteria = latency; interface = eth;
machine_name = marcus;

}

param_block server-param {
orb_name = omniORB2; test_type = cubit;
predelay = 3; postdelay = 4;
interface = eth; machine_name = zeno;

}

object proxy-C1 {
behaviour = client; param = client-param;

}
object proxy-C2 {

behaviour = client; param = client-param;
predelay = 5; postdelay = 3;

}
object proxy-C3 {

behaviour = client; param = client-param;
predelay = 7; postdelay = 3;

}
object proxy-S1 {

behaviour = server; param = server-param;
port_num = 10000;

}
object proxy-S2 {

behaviour = server; param = server-param;
port_num = 20000;

}
object proxy-S3 {

behaviour = server; param = server-param;
port_num = 30000;

}
object proxy-router {

behaviour = proxy ; param = server-param;
port_num = 30003;

}

relations {
(proxy-C1,proxy-router); (proxy-C2,proxy-router);
(proxy-C3,proxy-router); (proxy-router,proxy-S1);
(proxy-router,proxy-S2); (proxy-router,proxy-S3);

}
}

/* Execution Schedule */
Proxy;

Figure 8. Proxy Pattern and PPL Script
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Figure 9. Proxy Cubit Results for OmniORB
and TAO on Linux
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Figure 10. Proxy Cubit Results for Om-
niORB, TAO and CORBAplus on Solaris
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The proxy object can be used in two modes. In the
first, the proxy only plays a role when establishing a
connection between the client and server. In the other
mode, the proxy actually routes the data between the
objects, with a significant effect on performance. We
present results for the second mode.

Figure 9 shows the performance of the omniORB and
TAO client objects using thecubit test type under the
proxy pattern on Linux, while Figure 10 shows the per-
formance of clients under those ORBS as well as under
CORBAplus on Solaris. The number of calls per sec-
ond shown in Figure 9 are the average of the numbers
of the three clients in both OmniORB and TAO. There
was some non-trivial variance among clients for some
tests and some ORBs, which would be another interest-
ing point for further investigation. However, we illus-
trate the use and utility of our methods using the average
results, within which there are several points of interest.

The most obvious point is that using the proxy object
to mediate data transfer between client and server signif-
icantly impacts performance, reducing it to approximate
10 percent of that for the simple client-server pattern.
Some impact is certainly expected due to the use of three
concurrent client-server pairs, and reduction to 30 per-
cent of the single pair performance would be plausible.
Clearly, using a proxy object has a significant additional
impact on performance. While not particularly surpris-
ing, this result emphasizes the importance of application
scenario based testing. This pattern was, for example,
discussed in a popular magazine [22] and is used by one
of our colleagues as the basis for a WWW meta-search
engine. Clearly, any developer contemplating such an
architecture would be grateful to know the likely impact
before implementing the software.

The second point of interest is that both TAO and
OmniORB enjoy a significant performance increase in
moving from Linux to Solaris, while the TAO perfor-
mance for the client-server pattern was relatively con-
stant between the two systems. A third significant ob-
servation is that the magnitude of the performance in-
crease for OmniORB in moving from Linux to Solaris is
much greater, increasing three to five fold in most cases.
Finally, the difference between TAO and CORBAplus
performance under Solaris is greater under this pattern
than under the client-server pattern.

These observations support our assertion that ap-
plication performance scenarios, performance patterns,
should be part of any comprehensive benchmark. The
comparative performance between different ORBs on
the same operating system and between the same ORB
on different operating systems changed significantly
with the change in pattern. This also supports our idea
that developers using performance results to select an
ORB and operating system as an implementation plat-

form should use test results for object architectures, per-
formance patterns, which faithfully represent their pro-
posed application.
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Figure 12. Proxy Throughput for TAO on
Solaris

We also changed the test type, as we did for the
client-server pattern, to test thethroughputperformance
among the object pairs. Figure 11 shows results for the
OmniORB under Solaris while Figure 12 presents the
throughput results for TAO. Both tests show throughput
is reduced from five to ten fold. The TAO results still
show an orderly increase in throughput with buffer size,
although this converges to a level of 2 Mb/s for all but
the smallest buffer size. OmniORB performance, in con-
trast, does not vary in nearly as orderly a manner with
buffer or data set size, and does not converge to similar
throughput for most buffer sizes. The performance using
8 KB, 4 KB, and 2 KB buffers is particularly interesting.
As with the client-server pattern, the 4 KB buffer size
provides the best performance, but 8 KB buffers do sub-
stantially better for small data set than large. This could
easily be due to system level buffering effects.

Determining why the throughput varies in these ways
with data and buffer size will require gathering informa-
tion from the operating system layer to see if the net-
working protocols play a role, and gathering informa-
tion from the ORB layer to see if there is an influence at
that level. Section 4.3 illustrates how we might use the
DSKI to gather protocol layer information, but discusses
a simpler example.

4.3 Using the DSKI

This section briefly illustrates the use of the DSKI to
gather performance information from the operating sys-
tem during a test using the simple client-server pattern



discussed in Section 4.1. As discussed in Section 3 the
DSKI creates a stream of time stamped records for each
occurrence of a predefined event in the operating sys-
tem kernel. The set of event records produced can be
post-processed to calculate the time spent in providing
different types of system services. In this case, the time
spent in various portions of the TCP/IP stack can be cal-
culated because we have defined a set of events capable
of tracing the progress of packets through the TCP/IP
stack. Figure 13 presents the NetSpec PMO script im-
plementing the experiment.

cluster {
corba testbed2 {

NameOfORB = omniORB2;
TypeOftest = rrstring;
TestParams = (

numsamples = 1, minsize = 1,
maxsize = 2, multiples = 2,
predelay = 3, postdelay = 3,
duration = 30 );

protocol = iiop;
objname = omni-receiver;
role = server;
relations = client{omni-sender};
criteria = throughput;
qos = normal;
own = testbed2(interface = eth,

port = 41777);
}

corba testbed1 {
NameOfORB = omniORB2;
TypeOftest = rrstring;
TestParams = (

numsamples = 1, minsize = 1,
maxsize = 2, multiples = 2,
predelay = 3, postdelay = 3,
duration = 30 );

protocol = iiop;
objname = omni-sender;
role = client;
relations = server{omni-receiver};
criteria = throughput;
qos = normal;
own = testbed1 (interface = eth);

}

dstream testbed1 {
type = active (numevents = 100, port=40778,

duration=30);
ds_tcpip = all;

}

dstream testbed2 {
type = active (numevents = 100, port=40778,

duration=30);
ds_tcpip_read = all;

}
}

Figure 13. PMO NetSpec Script using DSKI

Figure 14 presents the packet flow in and out of the
Sender and Receiver hosts, as well as the performance
figures from the kernel obtained using the DSKI. The
socket, TCP, IP, and Ethernet layers are numbered 1
through 4 on the sending host, and 5 through 8 from the
bottom up on the receiver host. The path of a packet sent
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Figure 14. Time trace in the Operating Sys-
tem Layers Obtained Using DSKI

from the sender to the receiver in the diagram would thus
flow through layers in numerical order. The bar graph in
Figure 14 shows the time in microseconds spent by a
packet in each layer, by number.

This experiment demonstrates that the DSKI pro-
vides the ability to gather fine grain operating system
level time stamped events. Note that the Y-axis in Fig-
ure 14 is a logarithmic scale, showing that we were able
to monitor time intervals ranging from 10 microseconds
to 10 milliseconds. It also illustrates an important fea-
ture of the DSKI which we calltagging. Each event in
the operating system can include a context dependent
tagwhen it logs the event. In the case of tracing TCP/IP
performance we used the port and sequence numbers to
uniquely identify each packet as it moves among proto-
col layers on each machine.

A similar approach would be used to investigate how
buffer size affects throughput under the proxy pattern.
DSKI events could be used to monitor when and how



packets are transmitted, combined or broken into frag-
ments, and what size system buffers are used to hold
them. Tagging would be used to determine the progress
of each packet, and would tell us if the buffer size influ-
enced protocol behavior. Monitoring at the system level
might also tell us something about the middleware, even
without explicit instrumentation. If, for example, buffers
of one size were given to the CORBA layer, but buffers
of a different size were passed onto the system layer we
would know that the middleware was manipulating the
data buffers.

The DSKI can thus be used to investigate a wide
range of interactions between the operating system and
software layers using its services. This is by no means
a simple endeavor, since it requires access to the sys-
tem source code and sufficient knowledge of the system
to enable the investigator to define a reasonable set of
events, and then to interpret the results. However, for
the investigator willing to learn how to use it well, it
can provide an important new source of detailed infor-
mation from the operating system layer which plays an
important role in determining what aspects of endsystem
architecture limit application performance under various
sets of execution conditions.

5 Conclusions and Future Work

The performance of CORBA based applications im-
plemented as sets of objects is greatly influenced by
by the application contextand by the performance of
the ORB endsystem. Application developers need to
evaluate how candidate application object architectures
will perform within heterogenous computing environ-
ments, but a lack of standard and user extendable per-
formance benchmark suites exercising all aspects of the
ORB endsystem under realistic application scenarios
makes this difficult. This paper introduced thePerfor-
mance Pattern Languageand thePerformance Measure-
ment Objectwhich address these problems by provid-
ing, under NetSpec control, an automated script based
framework within which extensive ORB endsystem per-
formance benchmarks may be efficiently described and
automatically executed.

The tools described are implemented, and the viabil-
ity of the framework they provide has been demonstrated
by implementation of small but non-trivial sets of perfor-
mance evaluation scripts. The examples presented show
that the full range of evaluation information can be gath-
ered and a rich set of performance scenarios examined.
The automated nature of the script driven framework is
also important because it makes it possible to describe
and conduct a large set of evaluation experiments cov-
ering a adequately diverse and detailed set of scenarios
and performance metrics.

Performance evaluation of CORBA based distributed
applications, and of candidate object architectures, is
an extremely important and difficult problem. Current
benchmarking and testing methods are not as compre-
hensive as they might be because the scale and complex-
ity required is daunting. The tools described here make a
significant increase in the scale, complexity, and level of
detail of performance evaluation studies possible, thus
significantly advancing the state of the art.

Our future work will include creation of new test
types and performance patterns. We are particularly in-
terested in extending this approach to testing to include
execution of applications under real-time constraints.
We will use this set of tests to drive an investigation
of what kinds of system support can be used to im-
prove real-time performance of ORB based applications.
We will concentrate on a time constrained event service
and integration of operating system scheduling, I/O, and
ORB level operations to improve time constrained com-
munication among objects.

Availability

NetSpec and many daemons developed for various
types of performance evaluation are publicly available.
The PMO and the PPL have been developed with sup-
port from Sprint, and are not yet publicly available, but
should be soon. The work described here is intended
as a contribution to the CORBA community and are in-
tended for full availability on the WWW. For further de-
tails check:

www.ittc.ukans.edu/˜niehaus/research.html
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