USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5" USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3-7, 1999

The Design and Implementation Gtiarana

Alexandre Oliva and Luiz Eduardo Buzato
Universidade Estadual de Campinas, Brazil

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

The Design and Implementation of Guarana

Alexandre Oliva

oliva@dcc.unicamp.br

Luiz Eduardo Buzato

buzato@dcc.unicamp.br

Laboratorio de Sistemas Distribuidos
Instituto de Computagdo
Universidade Estadual de Campinas

Abstract

Several reflective architectures have attempted to
improve meta-object reuse by supporting composi-
tion of meta-objects, but have done so using limited
mechanisms such as Chains of Responsibility. We
advocate the adoption of the Composite pattern to
define meta-configurations. In the meta-object pro-
tocol (MOP) of Guarand, a composer meta-object
can control reconfiguration of its component meta-
objects and their interactions with base-level ob-
jects, resolving conflicts that may arise and estab-
lishing meta-level security policies.

Guarana is currently implemented as an extension
of Kaffe OpenVM ™ a free implementation of the
Java! Virtual Machine. Nevertheless, most design
decisions presented in this paper can be transported
to other programming languages and MOPs, im-
proving their flexibility, reconfigurability, security
and meta-level code reuse. We present performance
figures that show that it is possible to introduce
run-time reflection support in a language like Java
without much impact on execution speed.

1 Introduction

Object-oriented design is based on abstraction and
information hiding (encapsulation). These concepts
have provided an effective framework for the man-
agement of complexity of applications. Within this
framework, software developers strive to obtain ap-
plications that are highly coherent and loosely cou-
pled. Unfortunately, object orientation alone does

1Java is a trademark of Sun Microsystems, Inc.

not address the development of software that can be
easily adapted.

The concept of open architectures [6, 7] has been
proposed as a partial solution to the problem of
creating software that is not only modular, well-
structured, but also easier to adapt. Open archi-
tectures encourage a modular design where there is
a clear separation of policy, that is, what a module
has been designed for, from the mechanisms that
implement a policy, that is, how a policy is material-
ized. The implementation of system-oriented mech-
anisms such as concurrency control, distribution,
persistence and fault-tolerance can benefit from this
approach to software construction.

Computational reflection [13, 21] (henceforth just
reflection) has been proposed as a solution to the
problem of creating applications that are able to
maintain, use and change representations of their
own designs (structural or behavioral). Reflective
systems are able to use self-representations to ex-
tend and adapt their computation. Due to this
property, they are being used to implement open
software architectures. In reflective architectures,
components that deal with the processing of self-
representation and management of an application
reside in a software layer called meta-level. Compo-
nents that deal with the functionality of the applica-
tion are assigned to a software layer called base-level.
In object-oriented reflective systems, meta-level ob-
jects that implement management policies are called
meta-objects.

Due to their inherent structure, the existing reflec-
tive architectures and MOPs may induce developers
to create complex meta-objects that, in an all-in-one
approach, implement many management aspects of
an application or, alternatively, to construct coher-
ent but tightly coupled meta-objects. Both alterna-

tives make reuse, maintenance and adaptation of an
application harder, especially of its meta-level, the
layer in which most of the adaptations tend to occur
in an open architecture.

In contrast, Guarana [20] allows meta-objects to
be combined through the use of composers. Com-
posers [17] are meta-objects that can be used to de-
fine arbitrary policies for delegating control to other
meta-objects, including other composers. They pro-
vide the glue code to combine meta-objects, and to
resolve conflicts between incompatible ones. The
use of composers encourages the separation of the
structure of the meta level from the implementation
of individual management aspects.

Our implementation of Guarand, based on a Java
interpreter that supports just-in-time compilation,
has shown that it is possible to introduce intercep-
tion mechanisms, essential for the deployment of
behavioral reflection, with a small overhead. We
believe that this overhead is a minor drawback,
when compared with the flexibility introduced by
our MOP.

This paper is structured as follows. In the next sec-
tion, we discuss some related works. In Section 3,
we present the reflective architecture of Guarana.
Section 4 contains a short description of our imple-
mentation of this architecture, extending a freely-
available Java Virtual Machine. In Section 5, we
present some figures about the impact of Guarana
on the performance of applications. Section 6 lists
some possible future optimizations for our imple-
mentation of Guarand. Finally, in Section 7, we
summarize the main points of the paper.

2 Related Work

The development of generic mechanisms for the
composition of meta-objects is still in its initial
stages. OpenC++ [2] does not provide direct
support for composition. MOOSTRAP [16] and
MetaXa [9] (formerly known as MetaJava) support
sequential composition of similar meta-objects. We
say that meta-objects are similar if they implement
the same interface.

Apertos [23] and CodA [14] assign aspects of base-
level execution, such as sending, receiving and

O O
meta

base
: Op Op’
]

R R’

When a Client requests an operation Op from
a Server object, the operation is intercepted,
reified (represented as an object) and presented
to a Meta-Object. It may choose to deliver a
different operation Op' to the Server, obtain-
ing the result R', that is also reified. Having
delivered an operation or not, it must reply
with a result R, that is unreified and returned
to the Client.

Figure 1: Basic interception.

scheduling operations, to specialized, dissimilar
meta-objects. A pre-determined set of aspects can
be extended, through intrusive modification of the
implementation of the meta-objects responsible for
them. We consider this a primitive mechanism of
composition, that fails in the general case, because
the modifications are very likely to clash.

Several run-time MOPs have been designed so that,
when a meta-object is requested to handle a reified
operation (for example, a method invocation), it is
obliged, by the design of the MOP, to return a valid
result for the operation (typically the value returned
by the method), as shown in Figure 1. The meta-
level computation that yields the result can include
or not the delivery of the operation to the base-level
object.

This design implies that the only way to combine
the behavior of meta-objects is by arranging for one
meta-object, say MO;, to forward operation han-
dling requests to another, say MO3, delegating to
MO the responsibility for computing the result of
the operation. Only after MO, returns a result will
MO; be able to observe and/or to modify it.

Given such a protocol, meta-objects are likely to
be organized in a Chain of Responsibility [5, chap-
ter 5], so that each meta-object delegates operation
handling requests to its successor, as depicted in
Figure 2. The last element of the chain is either the
base-level object [9] or a special meta-object that
delivers operations to it [16]. We argue that this
design presents some serious drawbacks:

=]][] o]
e TR oL
=

meta

Given the basic interception mechanism of
Figure 1, meta-objects can only be composed
with a Chain of Responsibility [5, chapter 5],
a sequential delegation pattern.

Figure 2: Chain of Meta-Objects.

e it is intrusive upon the meta-object implemen-
tation, in the sense that a meta-object must
explicitly forward operations to its successor;

e it forbids multiple meta-objects from concur-
rently handling the same operation, because,
at a given moment, at most one meta-object
can be responsible for producing a result or de-
livering the operation to the base level;

¢ it forces meta-objects to receive the results of
operations they handled, even if they are not
interested in them;

e the order of presentation of results is necessar-
ily the reverse order of the reception of oper-
ations, even though different (possibly concur-
rent) orderings might be more appropriate or
efficient, according to the semantics and the re-
quirements of the application;

e it is impossible to mediate interactions be-
tween meta-objects and base-level objects with
an adaptor capable of resolving conflicts that
might arise when multiple meta-objects are put
to work together.

Even AspectJ [11, 12], an aspect-oriented program-
ming [8] extension of Java, lacks the possibility of
introducing such an adaptor to manage conflicting
weaves of aspects so that they can coexist.

3 The Reflective Architecture of
Guarana

The problems presented in the end of Section 2 are
solved in the MOP of Guarana by splitting the
meta-level processing associated with a base-level
operation in the following steps:

—=1MO|

=]|[<]

3(a) traditional

=
Op’,R?

3(d) handle result

g

3(c) request result

- form () -
perform m

Operation
<——0 | Factory

3(e) create operation 3(f) perform operation

This figure presents the basic MOP of
Guarand: although a meta-object is allowed
return a result when requested to handle an op-
eration (a), it may prefer to return an opera-
tion to be performed (b), with or without an in-
dication that it is interested in its result (¢). If
it 18, it will be presented the result after the ex-
ecution of the operation (d). Meta-objects can
use operation factories to create operations (e)
that can replace other operations (b,c) or be
performed as stand-alone ones (f).

Figure 3: Operations and Results.

1. If the target object of the operation is as-
sociated with a meta-object, the kernel of
Guarania—the entity that implements the
MOP— intercepts and reifies the operation and
requests the meta-object to handle it; other-
wise, no meta-level computation occurs, reduc-
ing the overhead for non-reflective objects.

2. A meta-object may produce a result for an op-
eration, as in Figure 3(a). In this case, the
meta-level processing terminates by unreifying
the result as if it had been produced by the
execution of the intercepted operation.

3. However, the meta-object is not required to re-
ply with a result. This permission is essen-
tial because it cannot deliver the operation to
the base-level object. Instead, it should reply
with an operation to be delivered to the base
level (Figure 3(b)) —usually the operation it
was requested to handle— and with an indi-
cation of whether it is interested in observing
and/or modifying the result of the operation
(Figure 3(c)).

4. Finally, the operation is delivered to the base
level, and its result may or may not be pre-
sented to the meta-object, depending on its pre-
vious reply (Figure 3(d)). If it had requested
for permission to modify the result, it may now
reply with a different result for the operation.

Replacement operations can be created in the meta-
level using operation factories, as in Figure 3(e).
Operation factories allow meta-objects to obtain
privileged access to the base-level objects they man-
age. Stand-alone operations can also be created
with operation factories, and then performed, i.e.,
submitted for interception, meta-level processing
and potential delivery for base-level execution, as
in Figure 3(f).

We have been able to define composers by separat-
ing operation handling from result handling, imple-
mented in two distinct methods, namely, handle op-
eration and handle result. A composer is a meta-
object that delegates operations and results to mul-
tiple meta-objects, then composes their replies in
its own replies. For example, a composer can im-
plement the chain of meta-objects presented before,
but in a way that one meta-object does not have
to keep track of its successor. Another implemen-
tation of composer may delegate operations and/or
results concurrently to multiple meta-objects, or re-
frain from delegating an operation to some meta-
objects if it is aware they are not interested in that
operation.

In Guarand, at any given moment, each object can
be directly associated with at most one meta-object,
called its primary meta-object. If there is no such
association, operations addressed to that object are
not intercepted, and we say that the object is not
reflective at that moment.

The fact that Guarand associates a single (pri-
mary) meta-object with an object keeps the design
of the interception mechanism simple. Since the pri-
mary meta-object can be a composer, as can any
meta-object it delegates to, multiple meta-objects
can reflect upon an object. These meta-objects form
a Composite pattern [5, chapter 4] that we call the
meta-configuration of that object (Figure 4), a po-
tentially infinite hierarchy of composition that is or-
thogonal to the well-known infinite tower of meta-
objects [13].

MOs

meta-meta

Composer

Primary
Meta-Object

meta

base

The meta-configuration of O1 is elaborate: a
composer, called its primary meta-object, dele-
gates to three other meta-objects, one of which
is a composer itself, and delegates to two other
meta-objects. Oz s not associated with any
meta-object, so its operations are not inter-
cepted; it is not reflective. Oz shares MOs with
01. MO, is a reflective meta-object, since it
has its own (meta-)meta-configuration.

Figure 4: Meta-configurations.

3.1 Meta-configuration management

Guarana presents two additional features that en-
force the separation of concerns between the base
level and the meta level: (i) the meta configuration
of an object is completely hidden from the base level
and even from the meta level itself; and (ii) the ini-
tial meta-configuration of an object is determined
by the meta-configurations of its creator and of its
class, a mechanism we call meta-configuration prop-
agation.

The first design decision implies that there is no way
to find out what is the primary meta-object associ-
ated with an object. It is possible, however, to send
arbitrary messages and reconfiguration requests to
the components of the meta-configuration of an ob-
ject, through the kernel of Guarana.

Messages can be used to extend the MOP of
Guaranad, as they allow meta-objects to exchange
information even if they do not hold references to
each other. Meta-objects that do not understand a
message are supposed to ignore it, and composers
are expected to forward messages to their compo-
nents, as in Figure 5. The kernel operation that

Guarana.reconfigure(Object,null,MO0) ; '

Any object M (for message) can be sent to
the primary meta-object of an object O. Com-
posers usually forward messages to their com-
ponents. For non-reflective objects, this re-
quest s ignored.

Figure 5: Broadcasting a message.

Guarana.reconfigure(0,M03,M0g) ; '

reconfigure

(0,M03,M0¢)

meta

@ base

A request to replace MOz with MQOg in the
meta-configuration of O was issued. As the
request descends the composition hierarchy, it
reaches the target meta-object. In this case, it
agrees to be replaced, by returning the proposed
meta-object. A meta-object must return itself
in order to ignore the request, as C1 does, oth-
erwise the returned meta-object will replace it.

Figure 6: Dynamic reconfiguration.

implements this mechanism is called broadcast.

A reconfiguration request (Figure 6) carries a pair
of meta-objects, suggesting that the first meta-
object (M O3) should be replaced with the second
(M Og) in the meta-configuration of object 0. A spe-
cial value (null) can be used to refer to the pri-
mary meta-object. It is up to the existing meta-
configuration to decide whether the request is ac-
ceptable or not. However, if the base-level ob-
ject is not reflective, an InstanceReconfigure mes-

| M:InstanceReconfigure Object
MO
MO; MO
T meta
base

Object

The null meta-object can be used as an alias
for the primary meta-object in reconfigura-
tion requests. When the object is not reflec-
tive, the meta-configuration of its class will
be given the opportunity to affect the proposed
meta-configuration of the instance. An In-
stanceReconfigure message will carry the pro-
posed meta-object, so that meta-objects of the
object’s class(es) may modify it. The remain-
ing meta-object will become the object’s pri-
mary meta-object.

Figure 7: Reconfiguration of a non-reflective object.

sage is broadcast to the meta-configurations of its
class and of its superclasses, as depicted in Fig-
ure 7. Their components can modify the suggested
meta-configuration, for example, forcing it to re-
main empty.

In most object-oriented programming languages,
creating an object consists of two steps: (i) allocat-
ing storage for the object, possibly initialized with
default values, then (ii) invoking its constructor. We
say that these steps are performed by the creator of
the object.

Meta-configuration propagation takes place between
these two steps in Guarana. The primary meta-
object of the creator is responsible for providing a
meta-object for the new object. It may return null,
a different meta-object or even itself, as a meta-
object can belong to multiple meta-configurations.
A composer is expected to forward this request to
its components and to create a composer that del-
egates to the meta-objects returned by them, as in
Figure 8.

After meta-configuration propagation, the kernel of
Guarana broadcasts a NewObject message to the

configure(New)

MOgy
meta
base

Creator

When a reflective object instantiates another
object, its meta-configuration may propagate
to the new object before the object is initial-
ized. In fact, the meta-configuration does not
have to propagate as a whole: in the picture,
only MOs was effectively propagated; MOs was
discarded, whereas MO1 named MQ4 to occupy
its place in the meta-configuration of the new
object. Ci created a new composer to delegate
to MO4 and MOQOs.

Figure 8: Meta-configuration propagation.

meta-configuration of the class of the new object,
so that its meta-objects can try to reconfigure it,
as shown in Figure 9. Finally, the object is con-
structed, but the constructor invocation will be in-
tercepted if the new object has become reflective.

3.2 Support for proxy objects

Guarana provides a mechanism that allows prozy
objects to be created from the meta level, without
invoking their constructors. In addition to the tra-
ditional use of a proxy, namely, for representing an
object from another address space, a proxy can be
used to reincarnate an object from persistent stor-
age, to migrate an object, etc.

When a proxy is created, as in Figure 10, the kernel
of Guarand broadcasts to the meta-configuration
of its class a NewProxy message, a subclass of
NewObject. A proxy will usually be given a meta-
configuration that prevents operations from reach-
ing it, but it may be transformed in a real object by
its meta-configuration, through constructor invoca-
tion or direct initialization.

M: NewObject (o Object

After meta-configuration propagation, the
meta-configuration of the class of a new o0b-
ject is notified about the new instance, with a
NewObject message, so that it can try to af-
fect the meta-configuration of its instances, by
issuing reconfiguration requests.

Figure 9: NewObject messages.

Object = Guarana.makeProxy(Class,MOp); '
M: NewProxy
NewObject B Ob.je.ct. reconfigure(Object,null,MOp) ; '

It is possible to request the creation of a
prozy object of any class. As soon as the
prozy 1is created, a NewProxy message, sub-
class of NewObject, is broadcast to the meta-
configuration of the class, so that it can take
control over the prozy before the proposed
meta-object does. Afterwards, a reconfigure
request is automatically issued to try to install
the proposed meta-object as the primary meta-
object of the prozxy.

Figure 10: Proxy objects.

3.3 Security

Another advantage of the MOP of Guarani is its
concern with security. The hierarchy of composi-
tion can be used to limit the ability of a meta-object
to affect a base-level object. For example, a com-
poser may decide not to present an operation to a
meta-object, or to ignore results or replacement op-
erations it produces. The composer can withhold a
message to a component, reject a meta-object pro-
duced by a component at a reconfiguration or prop-
agation request, or provide restrictive operation fac-
tories to its components, thus limiting their ability
to create operations. Furthermore, since the iden-
tity of the primary meta-object of an object is not
exposed, the hierarchy cannot be subverted.

4 Implementation

We had originally intended to implement Guarana
in 100% Pure Java, either by writing an extended
Java interpreter in Java or by introducing intercep-
tion mechanisms through a bytecode preprocessor.
The first alternative was discarded because it could
imply poor performance and difficulties in handling
native methods [22]. A bytecode preprocessor im-
plementation was not possible either, due to restric-
tions imposed by the Java bytecode verifier [10] and
the impossibility to rename native methods, needed
in order to ensure their interception.

Therefore, we have decided to implement Guarana
by modifying the Kaffe OpenVM™, an open-source
Java Virtual Machine. Most of Guarana is coded
in Java, but the Java Virtual Machine has suffered
a very minor and localized modification, in order
to provide for interception of operations. The per-
formance impact due to the modification was quite
small (Section 5) especially when compared to the
benefit of transparent interception of method invo-
cations, field and array accesses, object instantia-
tion, and monitor primitives.

The Java Programming Language, however, has not
been modified. Thus, any Java program, compiled
with any Java compiler, will run on our implementa-
tion, within the limitations of the Kaffe OpenVM,
the most portable existing Java Virtual Machine.
We consider this aspect of Guarana yet another
benefit of our approach as programmers will be
able to use the reflective mechanisms provided to
adapt Java programs originally implemented in the
absence of any concern with reflection, even with-
out access to the program’s source code. This is
possible by starting a meta-application to set up
meta-configurations of application classes and ob-
jects before the application runs. Then, the meta-
application starts the application, but it can still
control it through interception, meta-configuration
propagation and instance reconfiguration messages.
Guarana also provides probe meta-objects that can
be helpful for figuring out the behavior of certain
objects, so that they can be properly configured.

The MOP of Guarana can also be implemented
in other object-oriented programming languages, or
even upon existing reflective platforms, as an exten-
sion to their built-in MOPs. However, some partic-
ular features of Guarana may be difficult to dupli-

cate, if some design decisions for the target language
or MOP conflict with those of Guarana.

Java 1.1 was an excellent choice as a target language
for Guarand, because it already provides some re-
flective properties, such as the ability to represent
classes, methods and fields as objects (i.e., these el-
ements of the language are reified), so that it is pos-
sible to navigate a class hierarchy (introspection)
and even interact with objects using the Java Core
Reflection API to reflectively invoke methods and
to get or set the value of fields. However, such in-
teractions are restricted by the language access con-
trol rules, mimicked at run-time. In Java 2, access
control can be supressed for particular instances of
Methods and Fields, allowing an instance of class
that is able to perform the access to supply privi-
leged access to other objects. Other than that, the
Reflection APT allows an object to perform only the
operations that it would have been allowed to per-
form directly in source code, i.e., access control is
based on class permissions.

Guaranda builds upon these features, introducing
mechanisms for interception, that are missing in
Java, and per-object (as opposed to per-class) se-
curity mechanisms, so that meta-objects can obtain
privileged access to objects they control.

5 Performance

We have run some performance tests to try to eval-
uate the impact of introducing reflective capabilities
into a Java interpreter. Like the other few papers in
the literature on reflection that provide performance
data, we have preferred to evaluate the overhead of
reflection on each particular operation, instead of
running standard benchmarks. In fact, there are no
standard benchmarks to evaluate the impact of re-
flection. Existing general-purpose benchmarks usu-
ally focus on optimization of complex patterns of
control flow, which would not be affected by the
introduction of interception for objects operations,
and calculations on large arrays, which would incur
a huge overhead.

Our tests have been performed on four different
platforms, listed in Table 1. On the Solaris plat-
forms, the tests were run in real-time scheduling
mode, so as to ensure that no other processes would
affect the measured times. On the GNU/Linux plat-

Table 1: Description of the platforms.

This table describes the platforms on which the
performance tests were run.

Tag | Description
i586 | 100 MHz Pentium running RedHat

Linux 5.1

1686 | 233 MHz Pentium Pro running RedHat
Linux 5.0

spul | 167 MHz SPARC Ultra 1 running So-
laris 2.6

spu2 | 200 MHz SPARC Ultra Enterprise 2
running Solaris 2.5

forms, this scheduling mechanism was not available,
so we just ensured that the tested hosts were as
lightly loaded as possible.

On each host, we have run the same Java program,
compiled with Sun JDK’s Java compiler, without
optimization, to prevent method inlining. The pro-
duced bytecodes were executed by different inter-
preters under different configurations.

We have used Guarana 1.4.1 and the snapshot
of Kaffe 1.0.bl distributed with it, using the JIT
compiler and the interpreter engines. Kaffe and
Guarana were compiled with EGCS 1.1b, with
default optimization levels. The program used to
perform the tests was the one distributed with
Guarana 1.4.1.

For each configuration, we have timed several differ-
ent operations, described in Table 2. Each operation
was timed by running it repeatedly inside a loop, af-
ter running it once outside the loop, before starting
the timer. This ensures that, before the loop starts,
any JIT compilation has already taken place, all the
data and code was brought into the cache and, un-
less the test involves object allocation, the garbage
collector will not run.

This inner loop is run repeatedly, with the iteration
count being adjusted at every outer iteration, aim-
ing at a running time longer than 1 second. Since
the operations that read the clock at the beginning
and at the end of each inner loop take less than
1 microsecond to run, and the clock resolution is
1 millisecond, a total running time of 1 second is
enough to elliminate any effects they might have in
the outcome of the tests.

Table 2: Description of the tests.

This table describes the operation(s) per-
formed within a loop in our performance tests.

Operation

Description

emptyloop
synchronized

invokestatic

invokespecial

invokevirtual

invokeinterface

getstatic
putstatic
getfield
putfield
arraylength
iaload

iastore

println

compile

No reflective operation.

Empty block synchronized on an
arbitrary object.

Invoke an empty static method
that takes no arguments and re-
turns void.

Invoke a non-static private do-
nothing method that returns void
and takes only the implicit this
as argument. The same byte-
code is used to invoke construc-
tors and, in some cases, final
methods.

Invoke an empty method that
takes only the implicit this as ar-
gument, and returns void. Dy-
namic binding, performed with a
dispatch table, occurs before in-
terception test.

Invoke the same method, but
through an object reference of
interface type. Dynamic bind-
ing is much slower in this case.
Load a static int field into a
variable.

Store a zero-valued variable in a
static int field.

Load a non-static int field into
a variable.

Store a zero-valued variable in a
non-static int field.

Load the length of an array of int
into a variable.

Load the first element of an array
of int into a variable.

Store a zero-initialized variable in
the first element of an array of
int.

Print the line ¢ ‘Hello world!’’
to System.err, which was redi-
rected to /dev/null before start-
ing the Virtual Machine. It is a
first attempt to estimate the over-
all impact of introducing inter-
ception abilities.

Compile the test program itself.
Section 5.1 contains a detailed de-
scription and analysis.

Table 3: Overhead on interpreter.

No interception occurs in these tests, they just
measure the overhead imposed on the inter-
preter to introduce the ability to intercept op-

Table 4: Overhead on JIT compiler.

No interception occurs in these tests, they
just measure the overhead imposed on the JIT
compiler and the code it produces to introduce

erations. the ability to intercept operations.
Operation 1586 1686 spul spu2
emptyloop —41% | —-15% —0% —0% Operation i586 i686 spul spu2
synchronized —0% | +1% | +0% | +4% emptyloop +0% +1% +0% +0%
invokestatic +13% | +0% | +4% | —8% synchronized +12% | 4+10% | +27% +3%
invokespecial +30% +8% | +38% | —10% invokestatic +91% | +20% +23% +34%
invokevirtual +17% 0% | +7% | —-9% invokespecial +119% +8% | +19% | +28%
invokeinterface | —3% | —7% | +20% | —10% invokevirtual +30% | +158% —6% +0%
getstatic 3% | —2% | +20% | —0% invokeinterface +7% +2% +3% +2%
putstatic —23% —3% | +24% | +4% getstatic +68% | +148% | +163% | +163%
getfield —22% | 2% | +19% | —0% putstatic +180% | +97% | +90% | +90%
putfield —26% | —2% | +25% | +6% getfield +293% | +86% | +149% | +149%
arraylength —18% | —9% | +2% | +12% putfield +103% | +96% | +66% | +66%
iaload —64% —6% | +1% | —-0% arraylength +258% | +86% | +140% | +150%
iastore —14% 3% | +1% | +1% iaload +191% | +98% | +55% | +95%
println +6% | +4% | +3% | —2% iastore +236% | +55% | +41% | +45%
compile +5% | +2% | 2% | —-3% println +45% +6% +5% | +12%
compile +36% | +42% +32% +29%
compile-JIT +105% | +112% +81% +54%
compile-diff +16% +17% +20% +20%

The inner-loop iteration count starts at 1, and is
repeatedly multiplied by 10 until it is large enough
to be measurable with the clock resolution. As soon
as this happens, the elapsed time and the iteration
count start to be used to estimate the running-time
of an iteration. If the total elapsed time of an exe-
cution of the inner loop is longer than one second,
the estimate is the final result of the test. Other-
wise, it is used to compute the iteration count for
the next execution of the inner loop, aiming at a
total execution time of 1100 milliseconds.

With the exception of the tests println and
compile, this mechanism selected an iteration count
between 50,000 and 100,000,000, for the final exe-
cution of the inner loop of each test. In the case
of println, the iteration count was never smaller
than 500. The compile test was run stand-alone,
not within this framework.

Each test case was run 50 times on each configura-
tion and platform, and the average times of the runs
were used to compute the relative overheads pre-
sented in Table 3 and Table 4. Although we have
introduced the ability to intercept operations, no
actual interception took place during those tests.

Table 5: Total compile time.

These are the total execution times of the
compile test for each configuration. They
were used to calculate the lines compile in Ta-
ble & and Table 4.

(times are in seconds)

Configuration i586 | 1686 | spul | spu2
Kaffe JIT 17 5.1 9.1 7.5
Guarana JIT 23 72 | 12 9.6
Kaffe interpreter 30 9.2 | 13 11
Guarana interpreter 32 9.4 | 13 10

5.1 The compile test

As an additional effort to measure the performance
impact of the introduction of interception ability,
we have measured the execution time for the Java
compiler to translate the test program to Java byte-
codes. The averaged execution times are presented
in Table 5.

On short-running applications like this, most of
the time is spent on virtual machine initialization
and JIT compilation, not on running the applica-

Table 6: JIT compilation time for compile test.

These are the times spent on JIT compila-
tion during the execution of the compile test.
They were used to compute the values in the
compile-JIT line of Table 4.

(times are in seconds)

Configuration | i586 | 1686 | spul | spu2
Kaffe JIT 3.9 1.3 1.8 1.9
Guarana JIT 8.0 2.8 3.3 2.9

Table 7: Net compile time

These are the differences between total erecu-
tion time (compile) and JIT compilation time
(compile-JIT), i.e., the times spent on ezecu-
tion of the JIT compiled code. They were used
to compute the values in the compile-diff
line of Table 4.

(times are in seconds)

Configuration | i586 | 1686 | spul | spu2
Kaffe JIT 13 3.8 7.3 5.5
Guarana JIT 16 4.5 8.8 6.7

tion itself. The virtual machine start-up, for exam-
ple, involves executing very large array initializa-
tion methods, whose JIT-compilation wastes a lot
of memory and CPU cycles, because these methods
are executed only once.

Although a complex program, involving several sim-
ilar classes, is being compiled, Table 6 shows that
more than 50% of the total time was spent on JIT-
compiling Java Core classes and the Java compiler
itself. Therefore, the actual overhead in execution
time, at least for long-running applications, is much
smaller.

Table 7 presents the differences between the to-
tal time and the JIT-compilation time, that repre-
sents the time spent on running the actual applica-
tion, i.e., the compiler. Long running applications,
that repeatedly execute the same methods, should
present a reflection overhead similar to the relative
overhead of this table.

Table 8: Interception time, interpreter.

This table presents the interception time of
various operations in the Guarand inter-
preter, with a do-nothing meta-object. Field
operations refers to static and non-static
field reads and writes. Array operations in-
volve array length reads and array elements
reads and writes.
(times are in milliseconds)

Configuration i686 | 1686 | spul | spu2
synchronized 092 | 0.30 | 042 | 0.35
invokestatic 0.59 | 0.17 | 0.22 | 0.18
invokespecial 0.65 | 0.17 | 0.23 | 0.19
invokevirtual 0.65 | 0.17 | 0.24 | 0.19

invokeinterface 0.67 | 0.18 | 0.24 | 0.19
field operations 0.60 | 0.16 | 0.21 | 0.17
array operations | 0.56 | 0.15 | 0.21 | 0.17

Table 9: Interception time, JIT compiler.

This table presents the interception time of
various operations in the Guarand JIT com-
piler, with a do-nothing meta-object. Other
operations refers to all field and array opera-
tions.

(times are in milliseconds)

Configuration i586 | 1686 | spul | spu2

synchronized 0.55 | 0.018 | 0.33 | 0.25
invokestatic 0.30 | 0.099 | 0.20 | 0.15
invokespecial 0.32 | 0.10 0.18 | 0.14
invokevirtual 0.33 | 0.11 0.20 | 0.15

invokeinterface 0.33 | 0.11 0.19 | 0.15
other operations | 0.3 0.09 0.17 | 0.13

5.2 Intercepting operations

We have also performed some tests involving actual
interception, using a do-nothing meta-object to in-
tercept the operation that is the subject of each
test. The absolute time spent on the interception
of a single operation is presented in Table 8, for the
interpreter, and in Table 9, for the JIT compiler.

It is worth noting that each synchronized block
involves two operations, one that enters the monitor
of an object and another that leaves it. Since both
are intercepted, the interception time is increased.
Additional details are available elsewhere [18].

5.3 Overall discussion

In certain combinations of platform and engine, an
operation executes faster on Guaranda than on the
corresponding combination without it. This is quite
hard to explain, since Guarana always executes at
least as much code as Kaffe does. The tests have
been verified so as to ensure that the results are
correct, and the generation of the tables from the
test results is mostly automated, so there is little
place for human error. The better performance can
be attributed to factors such as improved fast-RAM
cache hit ratio or alignment issues.

The overhead introduced by interception on the in-
terpreter engine is mostly small, because the inter-
preter is usually orders of magnitude slower than
the test for existence of a meta-object. The JIT,
however, is severely affected by increased register
pressure and additional register spilling and reload-
ing. JIT-compilation costs have increased too, as
our tests have shown, but they have only affected
the figures of the compile test. In all other cases,
we ensure that a method is JIT-compiled before we
start timing its execution.

Although the interception code has introduced mod-
erate penalties for invoking static and private
methods, the most common kind of invocation (non-
final) causes a very small overhead, except on
1686, and interface invocations are almost not af-
fected at all.

The bad results for some invocation bytecodes on
one x86 platform but not on the other is unexpected,
considering that it executes exactly the same ma-
chine code on both. It looks like these tests in-
troduce pathological pipeline stalls or branch pre-
diction errors that degrade performance, since the
average penalty, measured in compile-diff,is very
similar on both x86 platforms, and much lower than
most of the individual penalties.

On the other hand, the bad results for all load
and store operations on the JIT engines are ex-
pected, since these instructions can usually be exe-
cuted in one or two machine-level instructions, and
in Guarand they require at least one more regis-
ter and two instructions to test for the presence of
a meta-object. Fortunately, in object-oriented ap-
plications, field and array operations are usually in-
tertwined with method invocations and object cre-
ations. Since the latter operations incur a much

smaller penalty, and they are one order of magni-
tude slower than the former ones, the net perfor-
mance penalty may be acceptable, as the introduc-
tion of reflective capabilities may pay off.

It is worth noting that, although we have introduced
the ability to intercept object creation, we have not
been able to measure the effect of this addition,
due to the impredictability of the garbage collec-
tor. Anyway, the overhead is known to be negligi-
ble, since a single test was introduced in a rather
complex function coded in C.

6 Future optimizations

The reflection overhead on the interpreter is quite
small. Furthermore, the interpreter is much slower
than the JIT compiler, so there is not much point
in trying to optimize it any further. For the JIT
code, there is little hope for similarly small over-
heads, though.

One approach we had considered would be to im-
plement all operations, even field and array ones, as
invocations of dynamically generated JIT-compiled
code. Then, instead of having to test the meta-
object reference before performing an operation, an
extended dispatch table would contain pointers to
these JIT-generated functions, on non-reflective ob-
jects, or to interceptor functions, in the case of re-
flective objects.

However, we do not think this solution would do
very well: first, because we would have to look up
the dispatch table before executing every single op-
eration, as in a virtual method invocation, and the
absolute time for a virtual method invocation is
much larger than non-virtual method invocation, so
we would end up increasing the cost of most opera-
tions, instead of reducing it.

Furthermore, invoking a function requires saving
most registers on some ABIs, but this is not required
when contents of memory addresses are loaded di-
rectly, as field and array operations are currently
implemented. In fact, because of Kaffe’s inability
to carry register allocation information across ba-
sic blocks, the fact that Guarana introduces basic
blocks in field or array operations forces registers to
be stored in stack slots because it might be neces-
sary to invoke an interceptor function. A promising

optimization involves improving the register alloca-
tion mechanism so as to propagate register alloca-
tion information along the most frequently used con-
trol flow, that is the one without interception, and
move the burden of spilling and reloading registers
into the not-so-common case in which interception
must take place. This would decrease the cost of
both branches, because they currently save all reg-
isters and mark them all as unused before they join
to proceed to the next instruction. Furthermore, if
the JIT compiler ever gets smarter with regard to
global register allocation, the additional branches
introduced by Guarana will not get it confused.

There is another optimization, that is much harder
to implement within Kaffe, but that could reduce
the overhead of loops and methods that make heavy
access of a particular object or array. The test for
the existence of a meta-object could be performed
before entering the loop or starting the sequence,
and different versions of the code would be gener-
ated: one, in which no meta-object test is performed
for that object, and another in which the test is per-
formed in every iteration, because the meta-object
may change. This optimization is based on a sim-
ilar proposal for optimizing array reference check-
ing [15]. Unfortunately, this kind of optimization
can only be performed if no method invocation nor
interception could possibly occur within the loop or
sequence, so as to ensure that reconfiguration does
not take place within the same thread. Even in this
case, other threads might reconfigure the object or
array while the code runs, so synchronization oper-
ations must also be ruled out, because, by definition
of the Java Virtual Machine Specification [10], they
flush a local cache a thread might maintain. But it
may still be worth the effort for array and field op-
erations, given that the overhead imposed on them
is still large.

7 Conclusions

Our research on computational reflection was ini-
tially motivated by our willingness to verify the use
of MOPs as a tool for structuring and building en-
vironments for fault-tolerant distributed program-
ming. We intended to design and implement a li-
brary like MOLDS [19], a library of reusable and
combinable meta-level components useful for dis-
tributed applications, such as persistence, distribu-
tion, replication and atomicity.

Unfortunately, none of the existing reflective archi-
tectures supported composition of meta-objects in a
way that fulfilled our needs. Therefore, we started
the development of Guarana. This paper is an ef-
fort to convey the positive and negative aspects of
this experience.

Guarana provides a powerful and secure mech-
anism to combine meta-objects into dynamically
modifiable, elaborate meta-configurations. In ad-
dition to enforcing a clear separation between the
reflective levels of an application, the MOP of
Guarana improves reuse of meta-level code by
defining a meta-object interface that eases flexible
composition. Furthermore, it suggests a separation
of concernts between meta-objects, that implement
meta-level behavior, from composers, that define
policies of composition and organization.

The implementation of the reflective architecture
of Guarana required some modifications in a Java
interpreter, but not in the Java programming lan-
guage. Thus, any program created and compiled
with any Java compiler will run on our implementa-
tion, and it will be possible to use reflective mecha-
nisms in order to extend them.

Our modifications have reduced the speed of the in-
terpreter, but we believe the flexibility introduced
by the reflective capabilities outweighs this inconve-
nience. Furthermore, the performance impact anal-
ysis has revealed the current hot spots in the inter-
ception mechanisms. We expect to reduce this im-
pact by implementing the suggested optimizations.

Now that we have Guarand, we are concentrat-
ing our efforts on the design and implementation
of MOLDS. The interaction of the various mecha-
nisms foreseen for MOLDS will fully demonstrate
the power of our MOP. Meanwhile, other projects
based on Guarand are demonstrating its flexibility
and ease of use. Tropyc [1] is a pattern language for
the domain of cryptography, that is currently using
Guarana in order to transparently introduce cryp-
tographic mechanisms in electronic commerce appli-
cations. The composition strategy of Guarand has
also supported the implementation of the Reflective
State Pattern and of its adaptation to the domain
of fault tolerance [3, 4].

A last evidence of the usefulness of our approach is
the possibility of creating a reflective ORB by sim-
ply running a 100% Pure Java ORB in Guarana.
By doing this, we provide to the users of the ORB

the ability to create reflective middleware and ap-
plications, with a development cost close to zero.

The experience with the design and implementation
of Guarana and related applications allows us to
conclude that initiatives by the software industry to
build software that is highly adaptable and reusable
should incorporate MOPs as flexible as, and at least
as efficient as the one we have described.

A Obtaining Guarana

Additional information about Guarana can be
obtained in the Home Page of Guarana, at
the URL http://www.dcc.unicamp.br/~oliva/
guarana/. The source code of its implementa-
tion atop of the Kaffe OpenVM, on-line documen-
tation and full papers are available for download.
Guarana is Free Software, released under the GNU
General Public License, but its specifications are
open, so non-free clean-room implementations are
possible.

B Acknowledgments

This work is partially supported by FAPESP
(Fundagdo de Amparo & Pesquisa do Estado de
Séo Paulo), grants 95/2091-3 for Alexandre Oliva
and 96/1532-9 for LSD-IC-UNICAMP (Laboratdrio
de Sistemas Distribuidos, Instituto de Computacao,
Universidade Estadual de Campinas). Additional
support is provided by CNPq (Conselho Nacional de
Desenvolvimento Cientifico e Tecnoldgico), for the
PRONEX programme and for a PhD scholarship for
Alexandre Oliva.

Islene Calciolari Garcia has helped us very much
in reviewing and improving this paper. She also
made important contributions to the architecture
of Guarana.

Douglas C. Schmidt, from Washington University,
St. Louis, has provided us with very useful sugges-
tions for the final version of this paper.

Special thanks to Tim Wilkinson, for having started
the development of Kaffe OpenVM and having re-
leased it as free software.

References

[1]

[2]

[3]

[6]

[7]

[9]

[10]

Alexandre Melo Braga, Cecilia Mary Fischer
Rubira, and Ricardo Dahab. A system of
patterns to cryptographic object-oriented soft-
ware. In Pattern Languages of Programs Con-
ference - PLOP’98, July 1998. TR#WUCS-
9825.

Shigeru Chiba. A metaobject protocol for
C++. In OOPSLA’95, volume 30, pages 285—
299, October 1995.

Luciane Lamour Ferreira and Cecilia Mary Fis-
cher Rubira. Reflective design patterns to im-
plement fault tolerance. In Workshop on Re-
flective Programming in C++ and Java, OOP-
SLA’98, pages 81-85, Vancouver, BC, Canada,
October 1998.

A Reflective Object-Oriented Framework for
Developing Dependable Software based on Pat-
terns and Metapatterns. Delano medeiros
beder and cecilia mary fischer rubira and ri-
cardo dahab. In 28th International Symposium
on Fault-Tolerant Computing (FastAbstract),
June 1998.

Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, and Grady Booch (Designer).
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, October
1994.

Gregor Kiczales. Towards a new model of ab-
straction in software engineering. In IMSA’92
Workshop on Reflection and Meta-level Archi-
tectures, 1992.

Gregor Kiczales. Beyond the black box: Open
implementation. IEEE Software, January 1996.

Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP’97, LNCS
1241, Finland, June 1997. Springer-Verlag.

Jiirgen Kleinéder and Michael Golm. Meta-
Java: An efficient run-time meta architec-
ture for Java. In International Workshop
on Object Orientation in Operating Systems
- IW0O0O0S’96, Seattle, Washington, October
1996. IEEE.

Tim Lindholm and Frank Yellin.
Virtual Machine Specification.
Addison-Wesley, January 1997.

The Java
Java Series.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Cristina ~ Videira Lopes and Gregor
Kiczales. Aspect-Oriented Program-
ming with AspectJ. Xerox PARC.

http://www.parc.xerox.com/aop/aspectj/tutorial.

Cristina Videira Lopes and Gregor Kicza-
les. Recent developments in AspectJ? In
ECOOP’98 Workshop Reader, LNCS 1543.
Springer-Verlag, 1998.

Pattie Maes. Concepts and experiments in
computation reflection. ACM SIGPLAN No-
tices, 22(12):147-155, December 1987.

Jeff McAffer. Meta-level programming with
CodA. In ECOOP’95, pages 190-214, August
1995.

Samuel P. Midkiff, José E. Moreira, and Marc
Snir. Optimizing array reference checking
in java programs. Technical Report 21184
(94652), IBM, T.J. Watson Research Division,
Yorktown Heights, New York, June 1998.

Philippe Mulet, Jacques Malenfant, and Pierre
Cointe. Towards a methodology for explicit
composition of metaobjects. In OOPSLA’95,
volume 30 of ACM SIGPLAN Notices, pages
316-330, Austin, TX, October 1995.

Alexandre Oliva and Luiz Eduardo Buzato.
Composition of meta-objects in Guarani. In
Workshop on Reflective Programming in C++
and Java, OOPSLA’98, pages 86-90, Vancou-
ver, BC, Canada, October 1998.

Alexandre Oliva and Luiz Eduardo Buzato.
The implementation of Guarand on Java. Tech-
nical Report IC-98-32, Instituto de Com-
putacédo, Universidade Estadual de Campinas,
September 1998.

Alexandre Oliva and Luiz Eduardo Buzato. An
overview of MOLDS: A Meta-Object Library
for Distributed Systems. In Segundo Work-
shop em Sistemas Distribuidos, Curitiba, PR,
Brazil, June 1998.

Alexandre Oliva, Islene Calciolari Garcia, and
Luiz Eduardo Buzato. The reflexive architec-
ture of Guarand. Technical Report 1C-98-14,
Instituto de Computagao, Universidade Estad-
ual de Campinas, April 1998.

Brian C. Smith. Prologue to “Reflection and
Semantics in a Procedural Language”. PhD
Thesis Prologue, 1985.

[22]

[23]

Antari Taivalsaari. Implementing a Java Vir-
tual Machine in the Java Programming Lan-
guage. Technical Report SMLI TR-98-64, Sun
Microsystems Laboratories, March 1998.

Yasuhiko Yokote. The Apertos reflective oper-
ating system: The concept and its implemen-
tation. In OOPSLA ’92, ACM SIGPLAN No-
tices, volume 27, pages 414-434, October 1992.

