
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3–7, 1999

Applying Optimization Principle Patterns
to Design Real-Time ORBs

Irfan Pyarali, Carlos O'Ryan, Douglas Schmidt, Nanbor Wang,
and Vishal Kachroo

Washington University, St. Louis

Aniruddha Gokhale
Lucent Technologies, Bell Labs

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Applying Optimization Principle
Patterns to Design Real-time ORBs

Irfan Pyarali, Carlos O’Ryan, Douglas Schmidt, Aniruddha Gokhale�

Nanbor Wang, and Vishal Kachroo
firfan,coryan,schmidt,vishal,nanborg@cs.wustl.edu gokhale@research.bell-labs.com

Washington University Bell Labs, Lucent Technologies
Campus Box 1045 600 Mountain Ave Rm 2A-442

St. Louis, MO 63130y Murray Hill, NJ 07974

Abstract

First-generation CORBA middleware was reasonably success-
ful at meeting the demands of request/response applications
with best-effort quality of service (QoS) requirements. Sup-
porting applications with more stringent QoS requirements
poses new challenges for next-generation real-time CORBA
middleware, however. This paper provides three contributions
to the design and optimization of real-time CORBA middle-
ware. First, we outline the challenges faced by real-time ORBs
implementers, focusing on optimization principle patterns that
can be applied to CORBA’s Object Adapter and ORB Core.
Second, we describe how TAO, our real-time CORBA imple-
mentation, addresses these challenges and applies key ORB
optimization principle patterns. Third, we present the results
of empirical benchmarks that compare the impact of TAO’s
design strategies on ORB efficiency, predictability, and scala-
bility.

Our findings indicate that ORBs must be highly config-
urable and adaptable to meet the QoS requirements for a wide
range of real-time applications. In addition, we show how
TAO can be configured to perform predictably and scalably,
which is essential to support real-time applications. A key re-
sult of our work is to demonstrate that the ability of CORBA
ORBs to support real-time systems is mostly an implementa-
tion detail. Thus, relatively few changes are required to the
standard CORBA reference model and programming API to
support real-time applications.

1 Introduction

Many companies and research groups are developing dis-
tributed applications using middleware components like

�Work done by the author while at Washington University.
yThis work was supported in part by Boeing, NSF grant NCR-9628218,

DARPA contract 9701516, Motorola, Siemens ZT, and Sprint.

CORBA Object Request Brokers (ORBs) [1]. CORBA helps
to improve the flexibility, extensibility, maintainability, and
reusability of distributed applications [2]. However, a growing
class of distributed real-time applications also require ORB
middleware that provides stringent quality of service (QoS)
support, such as end-to-end priority preservation, hard upper
bounds on latency and jitter, and bandwidth guarantees [3].
Figure 1 depicts the layers and components of an ORB endsys-
tem that must be carefully designed and systematically opti-
mized to support end-to-end application QoS requirements.

NETWORKNETWORK

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK INTERFACESNETWORK INTERFACES

ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

CLIENT

GIOP

OBJECT
(SERVANT)

CONCURRENCY

MODELS

TRANSPORT

PROTOCOLS

I/O
SUBSYSTEM

NETWORK

ADAPTER

PRESENTATION

LAYER

SCHEDULING,
DEMUXING, &
DISPATCHING

DATA COPYING

& MEMORY

ALLOCATION

CONNECTION

MANAGEMENT

OS KERNEL

OS I/O SUBSYSTEM

NETWORK INTERFACES

OBJ

REF

Figure 1: Real-time Features and Optimizations Necessary to
Meet End-to-end QoS Requirements in ORB Endsystems

First-generation ORBs lacked many of the features and op-
timizations [4, 5, 6, 7] shown in Figure 1. This situation was
not surprising, of course, since the focus at that time was
largely on developing core infrastructure components, such as
the ORB and its basic services, defined by the OMG speci-
fications [8]. In contrast, second-generation ORBs, such as
The ACE ORB (TAO) [9], explicitly focus on providing end-
to-end QoS guarantees to applicationsvertically (i.e., network

interface$ application layer) andhorizontally (i.e., end-to-
end) integrating highly optimized CORBA middleware with
OS I/O subsystems, communication protocols, and network
interfaces.

Our previous research has examined many dimensions of
high-performance and real-time ORB endsystem design, in-
cluding static [9] and dynamic [10] scheduling, event process-
ing [11], I/O subsystem integration [12], ORB Core connec-
tion and concurrency architectures [7], systematic benchmark-
ing of multiple ORBs [4], and design patterns for ORB ex-
tensibility [13]. This paper focuses on four more dimensions
in the high-performance and real-time ORB endsystem design
space:Object Adapter and ORB Core optimizations for (1)
request demultiplexing, (2) collocation, (3) memory manage-
ment, and (4) ORB protocol overhead.

The optimizations used in TAO are guided by a set ofprin-
ciple patterns[14] that have been applied to optimize mid-
dleware [15] and lower-level networking software [16], such
as TCP/IP. Optimization principle patterns document rules
for avoiding common design and implementation problems
that degrade the performance, scalability, and predictability of
complex systems. The optimization principle patterns we ap-
plied to TAO include:optimizing for the common case; elim-
inating gratuitous waste; shifting computation in time such
as precomputing; avoiding unnecessary generality; passing
hints between layers; not being tied to reference implemen-
tations; using specialized routines; leveraging system compo-
nents by exploiting locality; adding state; and using efficient
data structures. Below, we outline how these optimization
principle patterns address the following TAO Object Adapter
and ORB Core design and implementation challenges.

Optimizing request demultiplexing: The time an ORB’s
Object Adapter spends demultiplexing requests to target ob-
ject implementations,i.e., servants, can constitute a signifi-
cant source of ORB overhead for real-time applications. Sec-
tion 2 describes how Object Adapter demultiplexing strategies
impact the scalability and predictability of real-time ORBs.
This section also illustrates how TAO’s Object Adapter opti-
mizations enable constant time request demultiplexing in the
average- and worst-case, regardless of the number of objects
or operations configured into an ORB. The principle patterns
that guide our request demultiplexing optimizations include
precomputing, using specialized routines, passing hints in pro-
tocol headers, andnot being tied to reference models.

Optimizing collocation: The principle pattern of relaxing
system requirements enables TAO to minimize the run-time
overhead forcollocatedobjects,i.e., objects that reside in the
same address space as their client(s). Operations on collo-
cated objects are invoked on servants directly in the context
of the calling thread, thereby transforming operation invoca-
tions into local virtual method calls. Section 3.1 describes how

TAO’s collocation optimizations are completely transparent to
clients,i.e., collocated objects can be used as regular CORBA
objects, with TAO handling all aspects of collocation.

Optimizing memory management: ORBs allocate buffers
to send and receive (de)marshaled data. It is important to opti-
mize these allocations since they are a significant source of
dynamic memory management and locking overhead. Sec-
tion 3.2 describes the mechanisms used in TAO to allocate
and manipulate the internal buffers it uses for parameter
(de)marshaling. We illustrate how TAO minimizes fragmenta-
tion, data copying, and locking for most application use-cases.
The principle patterns ofexploiting localityandoptimizing for
the common caseinfluence these optimizations.

Minimizing ORB protocol overhead: Real-time systems
have traditionally been developed using proprietary protocols
that are hard-coded for each application or application family.
In theory, the standard CORBA GIOP/IIOP protocols obvi-
ate the need for proprietary protocols. In practice, however,
many developers of real-time applications are justifiably con-
cerned that standard CORBA protocols incur excessive over-
head. Section 3.3 shows how TAO can be configured to re-
duce the overhead of GIOP/IIOP without affecting the stan-
dard CORBA programming APIs exposed to application de-
velopers. This optimization is based on the principle pattern
of avoiding unnecessary generality.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the Portable Object Adapter (POA) architecture
of CORBA ORBs and evaluates the design and performance of
POA optimizations used in TAO; Section 3 outlines the ORB
Core architecture of CORBA ORBs and evaluates the design
and performance of ORB Core optimizations used in TAO;
Section 4 describes related work; and Section 5 provides con-
cluding remarks.

2 Optimizing the POA for Real-time
Applications

2.1 POA Overview

The OMG CORBA 2.2 specification [1] standardizes sev-
eral components on the server-side of CORBA-compliant
ORBs. These components include the Portable Object Adapter
(POA), standard interfaces for object implementations (i.e.,
servants), and refined definitions of skeleton classes for var-
ious programming languages, such as Java and C++ [2].

These standard POA features allow application developers
to write more flexible and portable CORBA servers [17]. They
also make it possible to conserve resources by activating ob-
jects on-demand [18] and to generate “persistent” object ref-
erences [19] that remain valid after the originating server pro-

cess terminates. Server applications can configure these new
features portably usingpoliciesassociated with each POA.

CORBA 2.2 allows server developers to createmultipleOb-
ject Adapters, each with its own set of policies. Although this
is a powerful and flexible programming model, it can incur
significant run-time overhead because it complicates the re-
quest demultiplexing path within a server ORB. This is partic-
ularly problematic for real-time applications since naive Ob-
ject Adapter implementations can increase priority inversion
and non-determinism [6].

Optimizing a POA to support real-time applications requires
the resolution of several design challenges. This section out-
lines these challenges and describes the optimization princi-
ple patterns we applied to maximize the predictability, perfor-
mance, and scalability of TAO’s POA. These POA optimiza-
tions include constant-time demultiplexing strategies, reduc-
ing run-time object key processing overhead during upcalls,
and generally optimizing POA predictability and reducing
memory footprint by selectively omitting non-deterministic
POA features.

2.2 Optimizing POA Demultiplexing

Scalable and predictable POA demultiplexing is important for
many applications such as real-time stock quote systems [20]
that service a large number of clients, and avionics mission
systems [11] that have stringent hard real-time timing con-
straints. Below, we outline the steps involved in demultiplex-
ing a client request through the server-side of a CORBA ORB
and then qualitatively and quantitatively evaluate alternative
demultiplexing strategies.

2.2.1 Overview of CORBA Request Demultiplexing

A standard GIOP-compliant client request contains the iden-
tity of its object and operation. An object is identified by an
object key, which is anoctet sequence . An operation is
represented as astring . As shown in Figure 2, the ORB
endsystem must perform the following demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times, starting from the net-
work interface, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket layer),
where the data is passed to the ORB Core in a server process.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. There-
fore, locating the POA that contains the designated servant can
involve a number of demultiplexing steps through the nested
POA hierarchy.

O
P

E
R

A
T

I
O

N
1

O
P

E
R

A
T

I
O

N
2

O
P

E
R

A
T

I
O

N
K

2: DEMUX TO

 I/O HANDLE

...

...

...POA1

OS I/O SUBSYSTEM

NETWORK ADAPTERS

SERVANT 1

5: DEMUX TO

 SKELETON

6: DISPATCH

 OPERATION

1: DEMUX THRU

 PROTOCOL STACK

4: DEMUX TO

 SERVANT

ORB COREORB CORE

ROOT POA
3: DEMUX TO

 OBJECT

 ADAPTER

POA2 POA
N

SERVANT
N

...SKEL 1 SKEL 2 SKEL
N

SERVANT 2

OS

KERNEL

LAYER

ORB

LAYER

SERVANT

LAYER

Figure 2: CORBA 2.2 Logical Server Architecture

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers to implement the object’s opera-
tion.

The conventional deeply-layered ORB endsystem demulti-
plexing implementation shown in Figure 2 is generally inap-
propriate for high-performance and real-time applications for
the following reasons [21]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for a non-deterministic period of time while

lower priority packets are demultiplexed and dispatched [12].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [4, 6] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

The remainder of this section focuses on demultiplexing op-
timizations performed at the ORB layer,i.e., steps 3 through 6.
Information on OS kernel layer demultiplexing optimizations
for real-time ORB endsystems is available in [22, 12].

2.2.2 Overview of Alternative Demultiplexing Strategies

As illustrated in Figure 2, demultiplexing a request to a ser-
vant and dispatching the designated servant operation involves
several steps. Below, we qualitatively outline the most com-
mon demultiplexing strategies used in CORBA ORBs. Sec-
tion 2.2.3 then quantitatively evaluates the strategies that are
appropriate for each layer in the ORB.

Linear search: This strategy searches through a table se-
quentially. If the number of elements in the table is small,
or the application has no stringent QoS requirements, linear
search may be an acceptable demultiplexing strategy. For real-
time applications, however, linear search is undesirable since
it does not scale up efficiently or predictably to a large num-
ber of servants or operations. In this paper, we evaluate linear
search only to provide an upper-bound on worst-case perfor-
mance, though some ORBs [4] use linear search for operation
demultiplexing.

Binary search: Binary search is a more scalable demulti-
plexing strategy than linear search since itsO(lg n) lookup
time is effectively constant for most applications. However,
insertions and deletions can be complicated since data must
be sorted for the binary search algorithm to work correctly.
Therefore, binary search is particularly useful for ORB opera-
tion demultiplexing since all insertions and sorting can be per-
formed off-line by an IDL compiler. In contrast, using binary
search to demultiplex requests to servants is more problem-
atic since servants can be inserted or removed dynamically at
run-time.

Dynamic hashing: Many ORBs use dynamic hashing as
their Object Adapter demultiplexing strategy. Dynamic hash-
ing providesO(1) performance for the average case and sup-
ports dynamic insertions more readily than binary search.
However, due to the potential for collisions, its worst-case ex-
ecution time isO(n), which makes it inappropriate for hard
real-time applications that require efficient and predictable
worst-case ORB behavior. Moreover, depending on the hash

algorithm, dynamic hashing often has a fairly high constant
overhead [6].

Perfect hashing: If the set of operations or servants is
known a priori, dynamic hashing can be improved by pre-
computing a collision-freeperfect hash function[23]. Perfect
Hashing is based on the principle pattern ofprecomputingand
using specialized routines. A demultiplexing strategy based
on perfect hashing executes in constant time and space. This
property makes perfect hashing well-suited for deterministic
real-time systems that can be configured statically [6],i.e., the
number of objects and operations can be determined off-line.

Active demultiplexing: Although the number and names of
operations can be knowna priori by an IDL compiler, the
number and names of servants are generally more dynamic.
In such cases, it is possible to use the object ID and POA ID
stored in an object key to index directly into a table managed
by an Object Adapter. Active demultiplexing uses the princi-
ple pattern ofrelaxing system requirements, not being tied to
reference models, andpassing hints in headers. This so-called
active demultiplexing[6] strategy provides a low-overhead,
O(1) lookup technique that can be used throughout an Object
Adapter.

Table 1 summaries the demultiplexing strategies considered
in the implementation of TAO’s POA.

Strategy Search Time Comments

Linear O(n) Simple to implement
Search Does not scale
Binary O(lg n) Additions/deletions
Search are expensive
Dynamic O(1) average case Hashing overhead
Hashing O(n) worst case
Perfect O(1) worst case For static configurations,
Hashing generate collision-free

hashing functions
Active O(1) worst case For system generated
Demuxing keys, add direct indexing

information to keys

Table 1: Summary of Alternate POA Demultiplexing Strate-
gies

2.2.3 The Performance of Alternative POA Demultiplex-
ing Strategies

Section 2.2.1 describes the demultiplexing steps a CORBA re-
quest goes through before it is dispatched to a user-supplied
servant method. These demultiplexing steps include finding
the Object Adapter, the servant, and the skeleton code. This
section empirically evaluates the strategies that TAO uses for

each demultiplexing step. All POA demultiplexing measure-
ments were conducted on an UltraSPARC-II with two 300
MHz CPUs, a 512 Mbyte RAM, running SunOS 5.5.1, and
C++ Workshop Compilers version 4.2.

POA lookup: An ORB Core must locate the POA corre-
sponding to an incoming client request. Figure 2 shows that
POAs can be nested arbitrarily. Although nesting provides a
useful way to organize policies and namespaces hierarchically,
the POA’s nesting semantics complicate demultiplexing com-
pared with the original CORBA Basic Object Adapter (BOA)
demultiplexing [6] specification.

We conducted an experiment to measure the effect of in-
creasing the POA nesting level on the time required to lookup
the appropriate POA in which the servant is registered. We
used a range of POA depths, 1 through 25. The results are
shown in Figure 3.

1
5

10
15

20
25

best case

current case

0

50

100

150

200

250

300

350

L
at

en
cy

 (
u

s)

POA Depth

Figure 3: Effect of POA Depth on POA Demultiplexing La-
tency

Since most ORB server applications do not have deeply
nested POA hierarchies, TAO currently uses a POA demulti-
plexing strategy where each POA finds its child using dynamic
hashing and delegates to the child POA where this process is
repeated until the search is complete. This POA demultiplex-
ing strategy results inO(n) growth for the lookup time and
does not scale up to deeply nested POAs. Therefore, we are
adding active demultiplexing to the POA lookup phase, which
operates as follows:

1. All lookups start at theRootPOA.

2. TheRootPOA will maintain aPOA table that points
to all the POAs in the hierarchy.

3. Object keys will include an index into thePOA table
to identify the POA where the object was activated.
TAO’s ORB Core will use this index as the active demul-
tiplexing key.

4. In some cases, the POA name also may be needed,e.g.,
if the POA is activated on-demand. Therefore, the object
reference will contain both the name and the index.

Using active demultiplexing for POA lookup should provide
optimal predictability and scalability, just as it does when used
for servant demultiplexing, which is described next.

Servant demultiplexing: Once the ORB Core demulti-
plexes a client request to the right POA, this POA demulti-
plexes the request to the correct servant. The following discus-
sion compares the various servant demultiplexing techniques
described in Section 2.2.2. TAO uses the Service Configu-
rator [24], Bridge, and Strategy design patterns [25] to defer
the configuration of the desired servant demultiplexing strat-
egy until ORB initialization, which can be performed either
statically (i.e., at compile-time) ordynamically(i.e., at run-
time) [13]. Figure 4 illustrates the class hierarchy of strategies
that can be configured into TAO’s POAs.

DemuxTable Table_Impl

Linear Search

Binary Search Dynamic Hash Perfect Hash

Active Demux

<<forwards>>

Figure 4: TAO’s Class Hierarchy for POA Active Object Map
Strategies

To evaluate the scalability of TAO, our experiments used a
range of servants, 1 to 500 by increments of 100, in the server.
Figure 5 shows the latency for servant demultiplexing as the
number of servants increases. This figure illustrates that ac-
tive demultiplexing is a highly predictable, low-latency servant
lookup strategy. In contrast, dynamic hashing incurs higher
constant overhead to compute the hash function. Moreover,
its performance degrades gradually as the number of servants
increases and the number of collisions in the hash table in-
crease. Likewise, linear search does not scale for any realistic
system,i.e., its performance degrades rapidly as the number of
servants increase.

1 100 200 300 400 500

Active Demux

Dynamic Demux

Linear Demux

0

50

100

150

200

L
at

en
cy

 (
u

s)

No. of Objects

Figure 5: Servant Demultiplexing Latency with Alternative
Search Techniques

Note that we did not implement the perfect hashing strategy
for servant demultiplexing. Although it is possible to know the
set of servants on each POA for certain statically configured
applicationsa priori, creating perfect hash functions repeat-
edly during application development is tedious. We omitted
binary search for similar reasons,i.e., it requires maintaining
a sorted active object map every time an object is activated
or deactivated. Moreover, since the object key is created by
a POA, active demultiplexing provides equivalent, or better,
performance than perfect hashing or binary search.

Operation demultiplexing: The final step at the Object
Adapter layer involves demultiplexing a request to the appro-
priate skeleton, which demarshals the request and dispatches
the designated operation upcall in the servant. To measure
operation demultiplexing overhead, our experiments defined
a range of operations, 1 through 50, in the IDL interface.

For ORBs like TAO that target real-time embedded systems,
operation demultiplexing must be efficient, scalable, and pre-
dictable. Therefore, we generate efficient operation lookup
using GPERF [23], which is a freely available perfect hash
function generator we developed.

GPERF [26] automatically constructs perfect hash func-
tions from a user-supplied list of keywords. In addition to the
perfect hash functions, GPERF can also generate linear and
binary search strategies.

Figure 6 illustrates the interaction between the TAO IDL
compiler and GPERF. When perfect hashing, linear search and
binary search operation demultiplexing strategies are selected,
TAO’s IDL compiler invokes GPERF as a co-process to gen-
erate an optimized lookup strategy for operation names in IDL
interfaces.

Figure 6: Integrating TAO’s IDL Compiler and GPERF

The lookup key for this phase is the operation name, which
is astring defined by developers in an IDL file. However,
it is not permissible to modify the operationstring name
to include active demultiplexing information. Since active de-
multiplexing cannot be used without modifying the GIOP pro-
tocol.1 TAO uses perfect hashing for operation demultiplex-
ing. Perfect hashing is well-suited for this purpose since all
operations names are known at compile time.

Figure 7 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure illustrates that

1 10 20 30
40

50

Perfect Hashing
Binary Search

Dynamic Hashing
Linear Search

0

5

10

15

20

25

L
at

en
cy

 (
u

s)

No. of Methods

Perfect Hashing Binary Search
Dynamic Hashing Linear Search

Figure 7: Operation Demultiplexing Latency with Alternative
Search Techniques

perfect hashing is extremely predictable and efficient, outper-
forming dynamic hashing and binary search. As expected, lin-
ear search depends on the number and ordering of operations,
which complicates worst-case schedulability analysis for real-
time applications.

1We are investigating modifications to the GIOP protocol for hard real-
time systems that possess stringent latency and message-footprint require-
ments.

Optimizing servant-based lookups: When a CORBA re-
quest is dispatched by the POA to the servant, the POA uses
the Object Id in the request header to find the servant in its Ac-
tive Object Map. Section 2.2.3 describes how TAO’s lookup
strategies provide efficient, predictable, and scalable mecha-
nisms to dispatch requests to servants based on Object Ids. In
particular, TAO’s Active Demultiplexing strategy enables con-
stantO(1) lookup in the average- and worst-case, regardless
of the number of servants in a POA’s Active Object Map.

However, certain POA operations and policies require
lookups on Active Object Map to be based on theser-
vant pointer rather than the Object Id. For instance,
the this method on the servant can be used with the
IMPLICIT ACTIVATION POA policy outside the context of
request invocation. This operation allows a servant to be ac-
tivated implicitly if the servant is not already active. If the
servant is already active, it will return the object reference cor-
responding to the servant.

Unfortunately, naive POA’s Active Object Map imple-
mentations incur worst-case performance for servant-based
lookups. Since the primary key is the Object Id, servant-based
lookups degenerate into a linear search, even when Active
Demultiplexing is used for the Object Id-based lookups. As
shown in Figure 5, linear search is prohibitively expensive as
the number of servants in the Active Object Map increases.
This overhead is particularly problematic for real-time appli-
cations, such as avionics mission computing systems [11], that
(1) create a large number of objects usingthis during their
initialization phase and (2) must reinitialize rapidly to recover
from transient power failures.

To alleviate servant-based lookup bottlenecks, we apply the
principle pattern ofadding extra stateto the POA in the form
of a Reverse-Lookupmap that associates each servant with its
Object Id inO(1) average-case time. In TAO, this Reverse-
Lookup map is used in conjunction with the Active Demulti-
plexing map that associates each Object Id to its servant. Fig-
ure 8 shows the time required to find a servant, with and with-
out the Reverse-Lookup map, as the number of servants in a
POA increases.

Servants are allocated from arbitrary memory locations.
Since we have no control over the pointer value format, TAO
uses a hash map for the Reverse-Lookup map. The value of the
servant pointer is used as the hash key. Although hash maps
do not guaranteeO(1) worst-case behavior, they do provide a
significant average-case performance improvement over linear
search.

A Reverse-Lookup map can be used only with the
UNIQUEID POA policy since with theMULTIPLE ID POA
policy, a servant may support many Object Ids. This constraint
is not a shortcoming since servant-based lookups are only re-
quired with theUNIQUEID policy. One downside of adding
a Reverse-Lookup map to the POA, however, is the increased

100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

Time
(usec)

Number of Servants

With Reverse Lookup
Without Reverse Lookup

Figure 8: Benefits of Adding a Reverse-Lookup Map to the
POA

overhead of maintaining an additional table in the POA. For
every object activation and deactivation, two updates are re-
quired in the Active Object Map: (1) to the Reverse-Lookup
map and the (2) to the Active Demultiplexing map used for
Object Id-based lookups. However, this additional process-
ing does not affect the critical path of Object Id-based lookups
during run-time.

Summary of TAO’s POA demultiplexing strategies:
Based on the results of our benchmarks described above,
Figure 9 summarizes the demultiplexing strategies that we
have determined to be most appropriate for real-time appli-
cations [11]. Figure 9 shows the use of active demultiplex-

.........

.........POAPOA11

SERVANT SERVANT 11

ORB COREORB CORE

ROOT POA

ACTIVEACTIVE

DEMUXINGDEMUXING

POAPOA22 POAPOA
NN

SERVANT SERVANT
NN

.........SKEL SKEL 11 SKEL SKEL 22 SKEL SKEL
N

SERVANT 2

ACTIVE

DEMUXING

PERFECT

HASHING

Figure 9: TAO’s Default Demultiplexing Strategies

ing for the POA names, active demultiplexing for the servants,
and perfect hashing for the operation names. Our previous
experience [27, 4, 28, 6, 7] measuring the performance of

CORBA implementations showed TAO is more efficient and
predictable than widely used conventional CORBA ORBs.

All of TAO’s optimized demultiplexing strategies described
above are entirely compliant with the CORBA specification.
Thus, no changes are required to the standard POA interfaces
specified in CORBA specification [1].

2.3 Optimizing Object Key Processing in POA
Upcalls

Motivation: Since the POA is in the critical path of request
processing in a server ORB, it is important to optimize its pro-
cessing. Figure 10 shows a naive way to parse an object key.
In this approach, the object key is parsed and the individual

P353bccdb00094ae8

firstPOA

POA Name

Time Stamp

Object Key

P353bccdb00094ae8/firstPOA/myservant

myservant

Object Id

Figure 10: Naive Parsing of Object Keys

fields of the key are stored in separate components. Unfor-
tunately, this approach (1) allocates memory dynamically for
each individual object key field and (2) copies data to move
the object key fields into individual objects.

TAO’s object key upcall optimizations: TAO provides the
following object key optimizations based on the principle pat-
terns of avoiding obvious wasteand avoiding unnecessary
generality. TAO leverages the fact that the object key is avail-
able through the entire upcall and is not modified. Thus,
the individual components in the object key can be optimized
to point directly to their correct locations, as shown in Fig-
ure 11. This eliminates wasteful memory allocations and data
copies. This optimization is entirely compliant with the stan-
dard CORBA specification.

2.4 Optimizing POA Predictability and Mini-
mizing Footprint

Motivation: To adequately support real-time applications,
an ORB’s Object Adapter must bepredictableandminimal.

P353bccdb00094ae8/firstPOA/myservant

POA Name

Time Stamp Object Id

Object Key

Figure 11: TAO’s Optimized Parsing of Object Keys

For instance, it must omit non-deterministic operations to im-
prove end-to-end predictability. Likewise, it must provide a
minimal memory footprint to support embedded systems [15].

TAO’s predictability optimizations: Based on the princi-
ple patterns ofavoiding unnecessary generalityandrelaxing
system requirements, we enhanced TAO’s POA to selectively
disable the following features in order to improve end-to-end
predictability of request processing:

� Servant Managers are not required: There is no need
to locate servants in a real-time environment since all servants
must be registered with POAsa priori.

� Adapter Activators are not required: Real-time ap-
plications create all their POAs at the beginning of execution.
Therefore, they need not use or provide an adapter activator.
The alternative is to create POAs during request processing, in
which case end-to-end predictability is hard to achieve.

� POA Managers are not required: The POA must not
introduce extra levels of queueing in the ORB. Queueing can
cause priority inversion and excessive locking. Therefore, the
POA Manager in TAO can be disabled.

TAO’s footprint optimizations: In addition to increasing
the predictability of POA request processing, omitting these
features also decreases TAO’s memory footprint. These omis-
sions were done in accordance with the Minimum CORBA
specification [29], which removes the following features from
the CORBA 2.2 specification [1]:

� Dynamic Skeleton Interface

� Dynamic Invocation Interface

� Dynamic Any

� Interceptors

� Interface Repository

� Advanced POA features

� CORBA/COM interworking

Component CORBA Minimum Percentage
CORBA Reduction

POA 281,896 207216 26.5
ORB Core 347,080 330,304 4.8
Dynamic Any 131,305 0 100
CDR Interpreter 68,687 68,775 0
IDL Compiler 10,488 10,512 0
Pluggable Protocols 14,610 14,674 0
Default Resources 7,919 7,975 0

Total 861,985 639,456 25.8

Table 2: Comparison of CORBA with Minimum CORBA
Memory Footprint

Table 2 shows the footprint reduction achieved when the
features listed above are excluded from TAO. The 25.8% re-
duction in memory footprint for Minimum CORBA is fairly
significant. However, we plan to reduce the footprint of TAO
even further by streamlining its CDR Interpreter [15]. In Min-
imum CORBA, TAO’s CDR Interpreter only needs to support
the static skeleton interface (SSI) and static invocation inter-
face (SII). Thus, support for the dynamic skeleton interface
(DSI) and dynamic invocation interface (DII) can be omitted.

3 Optimizing the ORB Core for Real-
time Applications

The ORB Core is a standard component in CORBA that is re-
sponsible for connection and memory management, data trans-
fer, endpoint demultiplexing, and concurrency control [1].
An ORB Core is typically implemented as a run-time library
linked into both client and server applications. When a client
invokes an operation on an object, the ORB Core is responsi-
ble for delivering the request to the object and returning a re-
sponse, if any, to the client. For objects executing remotely, a
CORBA-compliant ORB Core transfers requests via the Gen-
eral Inter-ORB Protocol (GIOP), which is commonly imple-
mented with the Internet Inter-ORB Protocol (IIOP) that runs
atop TCP.

Optimizing a CORBA ORB Core to support real-time ap-
plications requires the resolution of many design challenges.
This section outlines several of these challenges and describes
the optimization principle patterns we applied to maximize
the predictability, performance, and scalability of TAO’s ORB
Core. These optimizations include transparently collocating
clients and servants that are in the same address space, mini-
mizing dynamic memory allocations and data copies, and min-
imizing GIOP/IIOP protocol overhead. Additional optimiza-
tions for real-time ORB Core connection management and
concurrency strategies are described in [30].

3.1 Collocation Optimizations

Motivation: In addition to separating interface and imple-
mentation, a key strength of CORBA is its decoupling of (1)
servant implementations from (2) how servants are configured
into server processes throughout a distributed system. In prac-
tice, CORBA is used primarily to communicate between re-
mote objects. However, there are configurations where a client
and servant must be collocated in the same address space [31].
In this case, there is no need to incur the overhead of data mar-
shaling or transmitting requests and replies through a “loop-
back” transport device, which is an application of the principle
pattern ofavoiding obvious waste.

TAO’s collocation optimization technique: TAO’s POA
optimizes for collocated client/servant configurations by gen-
erating a special stub for the client, which is an application
of the principle pattern ofrelaxing system requirements. This
stub forwards all requests to the servant and eliminates data
marshaling, which is an application of the principle pattern
of avoiding waste. Figure 12 shows the classes produced by
TAO’s IDL compiler.

CORBA::Object

Stub

Interface

Collocated Proxy

Servant Base

Skeleton

Servant Implementation

<<forwards>>

CLIENT-SIDE
MAPPING

SERVER-SIDE
MAPPING

Figure 12: TAO’s POA Mapping and Collocation Class

The stub and skeleton classes shown in Figure 12 are re-
quired by the POA specification; the collocation class is spe-
cific to TAO. Collocation is transparent to the client since it
only accesses the abstract interface and never uses the collo-
cation class directly. Therefore, the POA provides the colloca-
tion class, rather than the regular stub class, when the servant
resides in the same address space as the client.

Supporting transparent collocation in TAO: Clients can
obtain an object reference in several ways,e.g., from
a CORBA Naming Service or from a Lifecycle Ser-
vice generic factory operation. Likewise, clients can use

string to object to convert a stringified interoperable
object reference (IOR) into an object reference. To ensure lo-
cality transparency, an ORB’s collocation optimization must
determine if an object is collocated. If it is, the ORB returns a
collocated stub – if it is not, the ORB returns a regular stub to
a distributed object.

The specific steps used by TAO’s collocation optimizations
are described below:

Step 1 – Determining collocation: To determine if an
object reference is collocated, TAO’s ORB Core maintains a
collocation table, which applies the principle ofmaintaining
extra state. Figure 13 shows the internal structure for collo-
cation table management in TAO. Each collocation table maps

TAO_ORB_Core

Table Collection

CORBA::ORB

1..*

1

1..*

1

Collocation Table

1
1..*

1
1..*

Addr

1..*1..*

endpoint

PortableServer::POA
0..1

0..*
0..1

0..*RootPOA

Table Entry
endpoint : Addr
poa : PortableServer::POA1..*1..*

Figure 13: Class Relationship of TAO’s Collocation Tables

an ORB’s transport endpoints to its RootPOA. In the case of
IIOP, endpoints are specified usingfhostname, port numberg
tuples.

Multiple ORBs can reside in a single server process. Each
ORB can support multiple transport protocols and accept re-
quests from multiple transport endpoints. Therefore, TAO
maintains multiple collocation tables for all transport proto-
cols used by ORBs within a single process. Since different
protocols have different addressing methods, maintaining pro-
tocol specific collocation tables allows us to strategize and op-
timize the lookup mechanism for each protocol.

Step 2 – Obtaining a reference to a collocated object: A
client acquires an object reference either by resolving an im-
ported IOR usingstring to object or by demarshaling
an incoming object reference. In either case, TAO examines
the corresponding collocation tables according to the profiles
carried by the object to determine if the object is collocated
or not. If the object is collocated, TAO performs the series of
steps shown in Figure 14 to obtain a reference to the collocated
object.

: CORBA::ORB

: Clients

: TAO_
ORB_Core

RootPOA : Portable
Server::POA

New Object Reference :
CORBA::Object

Collocated Servant :
CORBA::Object

Servant Implementation :
CORBA::ServantBase

2: get_collocated_poa()

3: find_servant()

4: instantiates

1: resolve object reference

5: _narrow ()

8: invokes operations 6: _narrow ()

7: instantiates

Figure 14: Finding a Collocated Object in TAO

As shown in Figure 14, when a client process tries to resolve
an imported object reference(1), the ORB checks(2) the col-
location table maintained by TAO’s ORB Core to determine if
any object endpoints are collocated. If a collocated endpoint is
found this check succeeds and the RootPOA corresponding to
the endpoint is returned. Next, the matching Object Adapter
is queried for the servant, starting at its RootPOA(3). The
ORB then instantiates a genericCORBA::Object (4) and
invokes thenarrow operation on it. If a servant is found, the
ORB’s narrow operation(5) invokes the servant’snarrow
method(6)and a collocated stub is instantiated and returned to
the client(7). Finally, clients invoke operations(8) on the col-
located stub, which forwards the operation to the local servant
via a virtual method call.

If the imported object reference is not collocated, then either
operation(2) or (3) will fail. In this case, the ORB invokes the
is a method to verify that the remote object matches the tar-

get type. If the test succeeds, a distributed stub is created and
returned to the client. All subsequent operations are invoked
remotely. Thus, the process of selecting collocated stubs or
non-collocated stubs is completely transparent to clients and
it’s only performed at the time of object reference creation.

Step 3 – Performing collocated object invocations: Col-
located operation invocations in TAO borrow the client’s
thread-of-control to execute the servant’s operation. There-
fore, they are executed within the client thread at its thread
priority.

Although executing an operation in the client’s thread is
very efficient, it is undesirable for certain types of real-time
applications [32]. For instance, priority inversion can occur

when a client in a lower priority thread invokes operations
on a collocated object in a higher priority thread. To pro-
vide greater access control over the scope of TAO’s colloca-
tion optimizations, applications can associate different access
policies to endpoints so they only appear collocated to cer-
tain priority groups. Since endpoints and priority groups in
many real-time applications are statically configured, this ac-
cess control lookup does not impose additional overhead.

Empirical results: To measure the performance gain from
TAO’s collocation optimizations, we ran server and client
threads in the same process. Two platforms were used to
benchmark the test program: a dual 300 Mhz UltraSparc-II
running SunOS 5.5.1 and a dual 400 Mhz Pentium-II running
Microsoft Windows NT 4.0 (SP3.) The test program was run
both with TAO’s collocation optimizations enabled and dis-
abled to compare the performance systematically.

Figure 15 shows the performance improvement, measured
in calls-per-second, using TAO’s collocation optimizations.
Each operation cubed a variable-length sequence oflong s
that contained 4 and 1,024 elements, respectively. As ex-

765 577
2678

1192

40900 40450

54237

32000

0

10000

20000

30000

40000

50000

60000

cube_small_sequence<long> cube_large_sequence<long>

Operations

ca
lls

/s
ec

Solaris w/o Collocation NT w/o Collocation
Solaris w/ Collocation NT w/ Collocation

Figure 15: Results of TAO’s Collocation Optimizations

pected, collocation greatly improves the performance of op-
eration invocations when servants are collocated with clients.
Our results show, depending on the size of arguments passed
to the operations, performance improves from 2,000% to
200,000%. Although the test results are foreseeable, they
show that by using TAO’s collocation optimization, invoca-
tions on collocated CORBA objects can be as fast as calling
functions on local C++ objects.

TAO’s collocation optimizations are not totally compliant
with the CORBA standard since its collocation class forwards

all requests directly to the servant class. Although this makes
the common case very efficient, this implementation does not
support the following advanced POA features:

� POA::Current is not setup

� Interceptors are bypassed

� POA Manager state is ignored

� Servant Managers are not consulted

� Etherealized servants can cause problems

� Location forwarding is not supported

� The POA’sThread Policy is circumvented

Adding support for these features to TAO’s collocation class
slow downs the collocation optimization, which is why TAO
currently omits these features. We plan to support these ad-
vanced features in future releases of TAO so that if applica-
tions know these advanced features are not required they can
be ignored selectively.

3.2 Memory Management Optimizations

Motivation: A key source of overhead and non-determinism
in conventional ORB Core implementations is improper man-
agement of memory buffers. Memory buffers are used by
CORBA clients to send requests containing marshaled param-
eters. Likewise, CORBA servers use memory buffers to re-
ceive requests containing marshaled parameters.

One source of memory management overhead stems from
the use of dynamic memory allocation, which is problem-
atic for real-time ORBs. For instance, dynamic memory can
fragment the global process heap, which decreases ORB pre-
dictability. Likewise, locks used to access a global heap from
multiple threads can increase synchronization overhead and
incur priority inversion [30].

Another significant source of memory management over-
head involves excessive data copying. For instance, conven-
tional ORB’s often resize their internal marshaling buffers
multiple times when encoding large operation parameters.
Naive memory management implementations use a single
buffer that is resized automatically as necessary, which can
cause excessive data copying.

TAO’s memory management optimization techniques:
TAO’s memory management optimizations leverage off the
design of its concurrency strategies, which minimize thread
context switching overhead and priority inversions by elimi-
nating queueing within the ORB’s critical path. For example,
on the client-side, the thread that invokes a remote operation
is the same thread that completes the I/O required to send the
request,i.e., no queueing exists within the ORB. Likewise,
on the server-side, the thread that reads a request completes

the upcall to user code, also eliminating queueing within the
ORB. These optimizations are based on the principle pattern
of exploiting localityandoptimizing for the common case.

By avoiding thread context switches and queueing, TAO
can benefit from memory management optimizations based
on thread-specific storage. Thread-specific storage is a com-
mon design pattern [13] for optimizing buffer management
in multi-threaded middleware. This pattern allows multiple
threads to use one logically global access point to retrieve
thread-specific data without incurring locking overhead for
each access, which is an application of the pattern ofavoiding
waste. TAO uses this pattern to place its memory allocators
into thread-specific storage. Using a thread-specific memory
pool eliminates the need for intra-thread allocator locks, re-
duces fragmentation in the allocator, and helps to minimize
priority inversion in real-time applications.

In addition, TAO minimizes unnecessary data copying by
keeping a linked list of CDR buffers. As shown in Figure 16,
operation arguments are marshaled into TSS allocated buffers.
The buffers are linked together to minimize data copying.
Gather-write I/O system calls, such aswritev , can then write
these buffers atomically without requiring multiple OS calls,
unnecessary data allocation, or copying. TAO’s memory man-

Write
Gather

marshal

writev ()
allocate

f

l
e
n

u
fn

b b
u

l
e

n
e
l

f
u
b

operation (param1 , param2 , large_param)

ORB buffers

IOVEC
TSS Pool

Figure 16: TAO’s Internal Memory Managment

agement design also supports special allocators, such as zero-
copy schemes [33] that share memory pools between user pro-
cesses, the OS kernel, and network interfaces.

Empirical results: Figure 17 compares buffer allocation
time for a CORBA request using thread-specific storage (TSS)
allocators with that of using a global allocator. These ex-
periments were executed on a Pentium II/450 with 256Mb
of RAM, running LynxOS 3.0. The test program contained
a group of ORB buffer (de)allocations intermingled with a
pseudo-random sequence of regular (de)allocations. This is
typical of middleware frameworks like CORBA, where appli-
cation code is called from the framework and vice-versa. Both
experiments perform the same sequence of memory allocation
requests, with one experiment using a TSS allocator for the

0 200 400 600 800 1000
Iteration

10

20

30

40

50

T
im

e
(u

se
cs

)

Global Allocator
TSS Allocator

Figure 17: Buffer Allocation Time using TSS and Global Al-
locators

ORB buffers and the other using a global allocator.
In this experiment, we perform�16 ORB buffer allocations

and�1,000 regular data allocations. The exact series of al-
locations is not important, as long as both experiments per-
form the same number. If there is one series of allocations
where the global allocator behaves non-deterministically, it is
not suitable for hard real-time systems.

Our results in Figure 17 illustrate that TAO’s TSS allocators
isolate the ORB from variations in global memory allocation
strategies. In addition, this experiment shows how TSS allo-
cators are more efficient than global memory allocators since
they eliminate locking overhead. In general, reducing locking
overhead throughout an ORB is important to support real-time
applications with deterministic QoS requirements [30].

3.3 Minimizing ORB Protocol Message Foot-
print

Motivation: Real-time systems have traditionally been de-
veloped using proprietary protocols that are hard-coded for
each application. In theory, CORBA’s GIOP/IIOP protocols
obviate the need for proprietary protocols. In practice, how-
ever, many developers of real-time applications are justifiably
concerned that standard CORBA protocols will cause exces-
sive overhead. For example, some applications have very strict
constraints on latency, which is affected by the total time re-
quired to transmit the message. Other applications, such as
mobile PDAs running over wireless access networks, have
limited bandwidth, which makes them more sensitive to pro-
tocol message footprint overhead.

TAO’s ORB protocol optimization techniques: A GIOP
request includes a number of fields, such as the version num-
ber, that are required for interoperability among ORBs. How-
ever, certain fields are not required in all application domains.
For instance, the magic number and version fields can be omit-
ted if a single supplier and single version is used for ORBs in
a real-time embedded system. Likewise, if the communicating
ORBs are running on systems with the same endianess,i.e.,
big-endian or little-endian, the byte order flag can be omitted
from the request.

Since embedded and real-time systems typically run the
same ORB implementation on similar hardware, we have
modified TAO to optionally remove some fields from the
GIOP header and the GIOP Request header when the
-ORBgioplite option is given to the client and server
CORBA::ORBinit method. The fields removed by this
optimization are shown in Table 3. These optimizations are
guided by the principle patterns ofrelaxing system require-
mentsandavoiding unnecessary generality.

Header Field Size
GIOP magic number 4 bytes
GIOP version 2 bytes
GIOP flags (byte order) 1 byte
Request Service Context � 4 bytes
Request Principal � 4 bytes
Total � 15 bytes

Table 3: Messaging Footprint Savings for TAO’s GIOPlite Op-
timization

Empirical results: We conducted an experiment to measure
the performance impact of omitting the GIOP fields in Table 3.
These experiments were executed on a Pentium II/450 with
256Mb of RAM, running LynxOS 3.0 in loopback mode. Ta-
ble 4 summarizes the results, expressed in calls-per-second:

Marshaling Enabled Marshaling Disabled
min max avg min max avg

GIOP 2,878 2,937 2,906 2,912 2,976 2,949
GIOPlite 2,883 2,978 2,943 2,911 3,003 2,967

Table 4: Performance of TAO’s GIOP and GIOPlite Protocol
Implementations

Our empirical results reveal a slight, but measurable,2%
improvement when removing the GIOP message footprint
“overhead.” More importantly though, these changes do not
affect the standard CORBA APIs used to develop applications.
Therefore, programmers can focus on the development of ap-
plications, and if necessary, TAO can be optimized to use this
lightweight version of GIOP.

To obtain more significant protocol optimizations, we are
adding apluggable protocolsframework to TAO [34]. This
framework generalizes TAO’s current-ORBgioplite op-
tion to support both pluggable ORB protocols (ESIOPs)and
pluggable transport protocols.

4 Related Work

Demultiplexing is an operation that routes messages through
the layers of an ORB endsystem. Most protocol stacks models,
such as the Internet model or the ISO/OSI reference model,
require some form of multiplexing to support interoperabil-
ity with existing operating systems and peer protocol stacks.
Likewise, conventional CORBA ORBs utilize several extra
levels of demultiplexing at the application layer to associate
incoming client requests with the appropriate servant and op-
eration (as shown in Figure 2).

Related work on demultiplexing focuses largely on the
lower layers of the protocol stack,i.e., the transport layer
and below, as opposed to the CORBA middleware. For in-
stance, [21, 35, 22, 36] study demultiplexing issues in com-
munication systems and show how layered demultiplexing is
not suitable for applications that require real-time quality of
service guarantees.

Packet filters are a mechanism for efficiently demultiplex-
ing incoming packets to application endpoints [37]. A number
of schemes to implement fast and efficient packet filters are
available. These include the BSD Packet Filter (BPF) [38],
the Mach Packet Filter (MPF) [39], PathFinder [40], demul-
tiplexing based on automatic parsing [41], and the Dynamic
Packet Filter (DPF) [36].

As mentioned before, most existing demultiplexing strate-
gies are implemented within the OS kernel. However, to op-
timally reduce ORB endsystem demultiplexing overhead re-
quires a vertically integrated architecture that extends from the
OS kernel to the application servants. Since our ORB is cur-
rently implemented in user-space, however, our work focuses
on minimizing the demultiplexing overhead in steps 3, 4, 5,
and 6 (which are shaded in Figure 2).

5 Concluding Remarks

Developers of real-time systems are increasingly using off-
the-shelf middleware components to lower software lifecycle
costs and decrease time-to-market. In this economic climate,
the flexibility offered by CORBA makes it an attractive mid-
dleware architecture. Since CORBA is not tightly coupled to
a particular OS or programming language, it can be adapted
readily to “niche” markets, such as real-time embedded sys-
tems, which are not well covered by other middleware. In this

sense, CORBA has an advantage over other middleware, such
as DCOM [42] or Java RMI [43], since it can be integrated
into a wider range of platforms and languages.

The POA and ORB Core optimizations and performance re-
sults presented in this paper support our contention that the
next-generation of standard CORBA ORBs will be well-suited
for distributed real-time systems that require efficient, scal-
able, and predictable performance. Table 5 summarizes which
TAO optimizations are associated with which principle pat-
terns, as well as which optimizations conform to the CORBA
standard and which are non-standard.

Optimization Principle Patterns Compliant

Request Precompute, Avoid waste yes
demuxing Passing hints in header

Relaxing system requirements
Using specialized routines
Not tied to reference models
Adding extra state

Object keys Avoid waste yes
in upcalls Exploit locality
Predictability Relaxing system requirements yes
and footprint
Collocation Relax system requirements no

Avoid waste
Add extra state

Memory Exploit Locality yes
management Avoid waste

Optimize for common case
Protocol msg Avoid generality no
footprint Relax system requirements

Table 5: Degree of CORBA-compliance for Real-time Opti-
mization Principle Patterns

Our primary focus on the TAO project has been to research,
develop, and optimize policies and mechanisms that allow
CORBA to support hard real-time systems, such as avion-
ics mission computing [11]. In hard real-time systems, the
ORB must meet deterministic QoS requirements to ensure
proper overall system functioning. These requirements moti-
vate many of the optimizations and design strategies presented
in this paper. However, the architectural design and perfor-
mance optimizations in TAO’s ORB endsystem are equally
applicable to many other types of real-time applications, such
as telecommunications, network management, and distributed
multimedia systems, which have statistical QoS requirements.

The C++ source code for TAO and ACE is freely available
at www.cs.wustl.edu/ �schmidt/TAO.html . This
release also contains the ORB benchmarking test suites de-
scribed in this paper.

Acknowledgements

We would like to thanks our COOTS shepherd, Steve Vi-
noski, whose comments helped improve this paper. In addi-
tion, we would like to thank the COOTS Program Committee
and anonymous reviewers their constructive suggestions for
improving the paper.

References
[1] Object Management Group,The Common Object Request Bro-

ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[2] S. Vinoski and M. Henning,Advanced CORBA Programming
With C++. Addison-Wesley Longman, 1999.

[3] Object Management Group,Realtime CORBA 1.0 Joint Submis-
sion, OMG Document orbos/98-12-05 ed., December 1998.

[4] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[5] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[6] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computing, vol. 47, no. 4, 1998.

[7] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” inProceedings of the
4th IEEE Real-Time Technology and Applications Symposium,
(Denver, CO), IEEE, June 1998.

[8] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communica-
tions Magazine, vol. 14, February 1997.

[9] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[10] C. D. Gill, D. L. Levine, and D. C. Schmidt, “Evaluating Strate-
gies for Real-Time CORBA Dynamic Scheduling,”The Inter-
national Journal of Time-Critical Computing Systems, special
issue on Real-Time Middleware, 1999, to appear.

[11] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[12] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design
and Performance of RIO – A Real-time I/O Subsystem for
ORB Endsystems,” inProceedings of the5th IEEE Real-Time
Technology and Applications Symposium, (Vancouver, British
Columbia, Canada), IEEE, June 1999.

[13] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”IEEE Communications Maga-
zine, April 1999.

[14] Alistair Cockburn, “Prioritizing Forces in Software Design,”
in Pattern Languages of Program Design(J. O. Coplien,
J. Vlissides, and N. Kerth, eds.), pp. 319–333, Reading, MA:
Addison-Wesley, 1996.

[15] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP
Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue on
Service Enabling Platforms for Networked Multimedia Systems,
1999.

[16] G. Varghese, “Algorithmic Techniques for Efficient Protocol
Implementations ,” inSIGCOMM ’96 Tutorial, (Stanford, CA),
ACM, August 1996.

[17] I. Pyarali and D. C. Schmidt, “An Overview of the CORBA
Portable Object Adapter,”ACM StandardView, vol. 6, Mar.
1998.

[18] D. C. Schmidt and S. Vinoski, “C++ Servant Managers for the
Portable Object Adapter,”C++ Report, vol. 10, Sept. 1998.

[19] D. C. Schmidt and S. Vinoski, “Using the Portable Object
Adapter for Transient and Persistent CORBA Objects,”C++
Report, vol. 10, April 1998.

[20] D. Schmidt and S. Vinoski, “Distributed Callbacks and Decou-
pled Communication in CORBA,”C++ Report, vol. 8, October
1996.

[21] D. L. Tennenhouse, “Layered Multiplexing Considered Harm-
ful,” in Proceedings of the1st International Workshop on High-
Speed Networks, May 1989.

[22] Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design of
the APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM ’95, (Boston, USA), pp. 179–187,
IEEE Computer Society Press, April 1995.

[23] D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the2nd C++ Conference, (San Francisco,
California), pp. 87–102, USENIX, April 1990.

[24] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of the
3rd Conference on Object-Oriented Technologies and Systems,
USENIX, June 1997.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[26] A. Gokhale, D. C. Schmidt, C. O’Ryan, and A. Arulanthu, “The
Design and Performance of a CORBA IDL Compiler Optimized
for Embedded Systems,” inSubmitted to the LCTES workshop
at PLDI ’99, (Atlanta, GA), IEEE, May 1999.

[27] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, November
1997.

[28] A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” inProceed-
ings of GLOBECOM ’96, (London, England), pp. 50–56, IEEE,
November 1996.

[29] Object Management Group,Minimum CORBA - Joint Revised
Submission, OMG Document orbos/98-08-04 ed., August 1998.

[30] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Jour-
nal of Real-time Systems, To appear 1999.

[31] D. C. Schmidt and S. Vinoski, “Developing C++ Servant
Classes Using the Portable Object Adapter,”C++ Report,
vol. 10, June 1998.

[32] D. L. Levine, C. D. Gill, and D. C. Schmidt, “Dynamic Schedul-
ing Strategies for Avionics Mission Computing,” inProceed-
ings of the 17th IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC), Nov. 1998.

[33] Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” inProceedings of INFO-
COM ’97, (Kobe, Japan), IEEE, April 1997.

[34] F. Kuhns, C. O’Ryan, D. C. Schmidt, and J. Parsons, “The De-
sign and Performance of a Pluggable Protocols Framework for
Object Request Broker Middleware,” inSubmitted to the IFIP
6th International Workshop on Protocols For High-Speed Net-
works (PfHSN ’99), (Salem, MA), IFIP, August 1999.

[35] D. C. Feldmeier, “Multiplexing Issues in Communications Sys-
tem Design,” inProceedings of the Symposium on Communica-
tions Architectures and Protocols (SIGCOMM), (Philadelphia,
PA), pp. 209–219, ACM, Sept. 1990.

[36] D. R. Engler and M. F. Kaashoek, “DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation,” inProceed-
ings of ACM SIGCOMM ’96 Conference in Computer Com-
munication Review, (Stanford University, California, USA),
pp. 53–59, ACM Press, August 1996.

[37] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The Packet Fil-
ter: an Efficient Mechanism for User-level Network Code,” in
Proceedings of the11th Symposium on Operating System Prin-
ciples (SOSP), November 1987.

[38] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” inProceedings of
the Winter USENIX Conference, (San Diego, CA), pp. 259–270,
Jan. 1993.

[39] M. Yuhara, B. Bershad, C. Maeda, and E. Moss, “Efficient
Packet Demultiplexing for Multiple Endpoints and Large Mes-
sages,” inProceedings of the Winter Usenix Conference, Jan-
uary 1994.

[40] M. L. Bailey, B. Gopal, P. Sarkar, M. A. Pagels, and L. L. Pe-
terson, “Pathfinder: A pattern-based packet classifier,” inPro-
ceedings of the1st Symposium on Operating System Design and
Implementation, USENIX Association, November 1994.

[41] M. Jayaram and R. Cytron, “Efficient Demultiplexing of Net-
work Packets by Automatic Parsing,” inProceedings of the
Workshop on Compiler Support for System Software (WCSSS
96), (University of Arizona, Tucson, AZ), February 1996.

[42] Microsoft Corporation,Distributed Component Object Model
Protocol (DCOM), 1.0 ed., Jan. 1998.

[43] Sun Microsystems, Inc,Java Remote Method Invocation Speci-
fication (RMI), Oct. 1998.

