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Abstract CORBA Object Request Brokers (ORBs) [1]. CORBA helps

) . . to improve the flexibility, extensibility, maintainability, and
First-generation CORBA middleware was reasonably Succe|5esl]sability of distributed applications [2]. However, a growing

ful at meeting the demands of request/response apphcatlgr‘)jlsss of distributed real-time applications also require ORB

W'th. best-eff_ort _quahty.of service (.QOS) requwemen_ts. SLMiddleware that provides stringent quality of service (QoS)
porting applications with more stringent QoS requiremen port, such as end-to-end priority preservation, hard upper

poses new challenges for next-generation real-time COR nds on latency and jitter, and bandwidth guarantees [3].

middlewar_e, however. _Th_is paper provid_es three contrib_utioE%ure 1 depicts the layers and components of an ORB endsys-
to the design and optimization of real-time CORBA midd| *m that must be carefully designed and systematically opti-

ware. First, we outlm.e the chal!er?ges. faceq b_y real-time OR Tzed to support end-to-end application QoS requirements.
implementers, focusing on optimization principle patterns that

can be applied to CORBA’s Object Adapter and ORB Core
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mentation, addresses these challenges and applies key G
optimization principle patterns. Third, we present the results
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urable and adaptable to meet the QoS requirements for a W{

range of real-time applications. In addition, we show hoys Py _T p—— PrROTOCOLS
TAO can be configured to perform predictably and scalab ANAGEVENT

which is essential to support real-time applications. A key r
sult of our work is to demonstrate that the ability of CORB
ORBs to support real-time systems is mostly an implementa-
tion detail. Thus, relatively few changes are required to the

standard CORBA reference model and programming AP figure 1: Real-time Features and Optimizations Necessary to
support real-time applications. Meet End-to-end QoS Requirements in ORB Endsystems
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First-generation ORBs lacked many of the features and op-

1 Introduction timizations [4, 5, 6, 7] shown in Figure 1. This situation was
not surprising, of course, since the focus at that time was
Many companies and research groups are developing isgely on developing core infrastructure components, such as
tributed applications using middleware components likke ORB and its basic services, defined by the OMG speci-
“Work done by the author while at Washington University. fications [8]. In contrast, second-generation ORBs, such as

tThis work was supported in part by Boeing, NSF grant NCR-9628218h€ ACE ORB (TAO) [9], eXp”‘?itly.fOCU_S on providing end-
DARPA contract 9701516, Motorola, Siemens ZT, and Sprint. to-end QoS guarantees to applicatioestically (i.e., network




interface<« application layer) andhorizontally (i.e., end-to- TAO'’s collocation optimizations are completely transparent to
end) integrating highly optimized CORBA middleware witlelients,i.e., collocated objects can be used as regular CORBA
OS I/0 subsystems, communication protocols, and netwaoltijects, with TAO handling all aspects of collocation.

interfaces. ) ] ] . Optimizing memory management: ORBs allocate buffers
Our previous research has examined many dimension§ ey and receive (de)marshaled data. It is important to opti-

high-performance and real-time ORB endsystem design, i e these allocations since they are a significant source of
cluding static [9] and dynamic [10] scheduling, event Proce{Rinamic memory management and locking overhead. Sec-
ing [11], /O subsystem integration [12], ORB Core connefis, 3 2 gescribes the mechanisms used in TAO to allocate
tion and concurrency architectures [7], systematic benchmalky manipulate the internal buffers it uses for parameter
Ing (_)f_r_nultlple OR_BS [4], and design patterns for_ORB _E)fde)marshaling. We illustrate how TAO minimizes fragmenta-

tensibility [13]. This paper focuses on four more d|men5|0|a§n’ data copying, and locking for most application use-cases.

in the high-performance and real-time ORB endsystem desig{y, principle patterns afxploiting localityandoptimizing for
space: Object Adapter and ORB Core optimizations for (3}e common casefluence these optimizations.

request demultiplexing, (2) collocation, (3) memory manage- . . . )
ment, and (4) ORB protocol overhead inimizing ORB protocol overhead: Real-time systems

The optimizations used in TAO are guided by a seprir- have traditionally been developed_ us!ng proprie.tary protoc_ols
ciple patterns[14] that have been applied to optimize migthat are hard-coded for each application or application faml!y.
dleware [15] and lower-level networking software [16], sudf theory, the standard CORBA GIOP/IIOP protocols obvi-
as TCP/IP. Optimization principle patterns document rul@ the need for proprietary protocols. In practice, however,
for avoiding common design and implementation probleff¥ny developers of real-time applications are justifiably con-
that degrade the performance, scalability, and predictability@ed that standard CORBA protocols incur excessive over-
complex systems. The optimization principle patterns we dffad- Section 3.3 shows how TAO can be configured to re-
plied to TAO include:optimizing for the common case; elimduce the overhead of GIOP/IIOP without affecting the stan-
inating gratuitous waste; shifting computation in time su@'d CORBA programming APIs exposed to application de-
as precomputing; avoiding unnecessary generality: passgi?opgrs_. This optimization is bgsed on the principle pattern
hints between layers; not being tied to reference implem&i@voiding unnecessary generality
tations; using specialized routines; leveraging system compoThe remainder of this paper is organized as follows: Sec-
nents by exploiting locality; adding state; and using efficietibn 2 outlines the Portable Object Adapter (POA) architecture
data structures Below, we outline how these optimizatiorof CORBA ORBs and evaluates the design and performance of
principle patterns address the following TAO Object AdaptBIOA optimizations used in TAO; Section 3 outlines the ORB
and ORB Core design and implementation challenges.  Core architecture of CORBA ORBs and evaluates the design
and performance of ORB Core optimizations used in TAO;

ction 4 describes related work; and Section 5 provides con-
cluding remarks.

Optimizing request demultiplexing: The time an ORB'’s

Object Adapter spends demultiplexing requests to target

ject implementationsi.e., servants, can constitute a signifi
cant source of ORB overhead for real-time applications. Sec-

FionZdescribes ho_vy ObjectAda.ptergl_emultiplexii]g strategizs Optimizing the POA for Real-time
impact the scalability and predictability of real-time ORBs. . .

This section also illustrates how TAO's Object Adapter opti- Applications

mizations enable constant time request demultiplexing in the

average- and worst-case, regardless of the number of objéss POA Overview

?hr operations configured into an ORB' Th?‘ p_rlnc_lple Patte:j]ﬁe OMG CORBA 2.2 specification [1] standardizes sev-
at guide our request demultiplexing optimizations include . .
precomputingusing specialized routingpassing hints in pro- eral components on the _server—3|de of CORBA_—compllant
tocol headersandnot being tied to reference models ORBs. These components include _the P_ortable Obje.c_t Adapter
(POA), standard interfaces for object implementatiaires, (
Optimizing collocation: The principle pattern of relaxingservants), and refined definitions of skeleton classes for var-
system requirements enables TAO to minimize the run-tinoeis programming languages, such as Java and C++ [2].
overhead focollocatedobjects,i.e., objects that reside in the These standard POA features allow application developers
same address space as their client(s). Operations on catiavrite more flexible and portable CORBA servers [17]. They
cated objects are invoked on servants directly in the contaldo make it possible to conserve resources by activating ob-
of the calling thread, thereby transforming operation invogacts on-demand [18] and to generate “persistent” object ref-
tions into local virtual method calls. Section 3.1 describes harences [19] that remain valid after the originating server pro-



cess terminates. Server applications can configure these new
features portably usingoliciesassociated with each POA.

CORBA 2.2 allows server developers to creagtiple Ob-
ject Adapters, each with its own set of policies. Although thig, /.o o
is a powerful and flexible programming model, it can incu  gpgraTION
significant run-time overhead because it complicates the re-
guest demultiplexing path within a server ORB. This is parti5: bDEMUX TO
ularly problematic for real-time applications since naive Ok SKELETON

[
ject Adapter implementations can increase priority inversion (SERVANTD (SERVANTZ] eoe
I I

SERVANT
LAYER

OPERATIONK

OPERATION1
OPERATION2

and non-determinism [6]. 4: DEMUX TO
Optimizing a POA to support real-time applications require SErRvANT :
the resolution of several design challenges. This section out- (POAO (POAzj ‘“(POAN]
lines these challenges and describes the optimization pringi- L ] J
. g . L 3:DEMUX TO
ple patterns we applied to maximize the predictability, perfo OBJECT ( ROOT POA ) ORB

mance, and scalability qf TAO'’s PQA. T_hese POA_optimizs AT LAYER
tions include constant-time demultiplexing strategies, reduc- ( )
ing run-time object key processing overhead during upcal?2: PEMUX TO

and generally optimizing POA predictability and reducing, VO HANDLE os

memory footprint by selectively omitting non-deterministicl_DEMUX THRU KERNEL
: LAYER

POA features. PROTOCOL STACK

2.2 Optimizing POA Demultiplexing Figure 2: CORBA 2.2 Logical Server Architecture

Scalable and predictable POA demultiplexing is important for

many applications such as real-time stock quote systems @g,lp 5and 6: The POA uses the operation name to find the
that service a large number of clients, and avionics mission i

i i S appropriate IDL skeleton, which demarshals the request buffer
systems [11] that have stringent hard real-time timing car; :

. : . . . Into operation parameters and performs the upcall to code sup-
straints. Below, we outline the steps involved in demultipleXs.

ing a client request through the server-side of a CORBA OFQgEd by servant developers to implement the object's opera-

and then qualitatively and quantitatively evaluate aIternatiU%n'

demultiplexing strategies. The conventional deeply-layered ORB endsystem demulti-
plexing implementation shown in Figure 2 is generally inap-
propriate for high-performance and real-time applications for
the following reasons [21]:

A.‘ stanldard _GIOP—compham client request contains the idg8 reased efficiency: Layered demultiplexing reduces per-
tlty_ of its objec_t and operation. An object is Ident|f|e_d bY fdrmance by increasing the number of internal tables that
object key, which is amctet sequence . An operation is must be searched as incoming client requests ascend through

represented asstring . As ShOWT‘ in Figure_ 2, the ORBt_he processing layers in an ORB endsystem. Demultiplexing
endsystem must perform the following demultiplexing tasksyjient requests through all these layers is expensive, particu-

Steps 1 and 2: The OS protocol stack demultiplexes the inlf’Irly when alarge number of operations appear in an IDL in-
coming client request multiple times, starting from the ne erface and/or a large number of servants are managed by an

work interface, through the data link, network, and transp PJeCt Adapter.

layers up to the user/kernel boundaeyq, the socket layer), ncreased priority inversion and non-determinism: Lay-
where the data is passed to the ORB Core in a server processd demultiplexing can cause priority inversions because
o servant-level quality of service (QoS) information is inacces-
Steps 3, and 4: The ORB Core uses the addressing informag, e 15 the lowest-level device drivers and protocol stacks in
tion in the client's object key to locate the appropriate PQfyq |10 subsystem of an ORB endsystem. Therefore, an Ob-
and serva_nt. POAs can be orggnlzed hle_rarchlcally. Th Kct Adapter may demultiplex packets according to their FIFO
fore, locating the POA that contains the designated servant §afiar of arrival. EIFO demultiplexing can cause higher prior-

involve a number of demultiplexing steps through the nestgd 5 ckets to wait for a non-deterministic period of time while
POA hierarchy.

2.2.1 Overview of CORBA Request Demultiplexing



lower priority packets are demultiplexed and dispatched [14lgorithm, dynamic hashing often has a fairly high constant

i i ' i — head [6].
Conventional implementations of CORBA incur S|gnn‘|car?tver ead[6]

demultiplexing overhead. For instance, [4, 6] show that cdferfect hashing: If the set of operations or servants is
ventional ORBs speng17% of the total server time processknown a priori, dynamic hashing can be improved by pre-
ing demultiplexing requests. Unless this overhead is reduc@nputing a collision-freperfect hash functiof23]. Perfect
and demultiplexing is performed predictably, ORBs cannidashing is based on the principle patterp@computingind
provide uniform, scalable QoS guarantees to real-time appi$ing specialized routinesA demultiplexing strategy based
cations. on perfect hashing executes in constant time and space. This
The remainder of this section focuses on demultiplexing aproperty makes perfect hashing well-suited for deterministic
timizations performed at the ORB layég., steps 3 through 6. real-time systems that can be configured staticallyi[6],the
Information on OS kernel layer demultiplexing optimizationsumber of objects and operations can be determined off-line.

for real-ime ORB endsystems is available in [22, 12]. Active demultiplexing:  Although the number and names of

operations can be knowa priori by an IDL compiler, the
2.2.2  Overview of Alternative Demultiplexing Strategies number and names of servants are generally more dynamic.
As illustrated in Figure 2, demultiplexing a request to a selp- such cases, itis possible to use the object ID and POA ID

vant and dispatching the designated servant operation invo@tgerd In an object key to index directly into a table managed

I . an Object Adapter. Active demultiplexing uses the princi-
several steps. Below, we qualitatively outline the most com:- ) b b 9 b

mon demultiplexing strategies used in CORBA ORBs. sdte pattern ofelaxing sys'Fem r_equ!remema;ot b_elng ied to
feference mode]andpassing hints in header3 his so-called

tion 2.2.3 then quantitatively evaluates the strategies that e o demultiplexing6] strategy provides a low-overhead

appropriate for each layer in the ORB. ) !
O(1) lookup technique that can be used throughout an Object

Linear search: This strategy searches through a table sadapter.

g??ﬁélﬂgbli(l:fai?oen nhuan;bneor ;)Jriﬁlgegpfrgiénr:ahqeuitraekr)rlweeft s,srlri]r? élé{abl_e 1 summari_es the denywultiplexing strategies considered

search may be an acceptable demultiplexing strategy. For réh he implementation of TAG's POA.

time applications, however, linear search is undesirable since :

it does not scale up efficiently or predictably to a large numl_Strategy [ SearchTime | Comments |

ber of servants or operations. In this paper, we evaluate linegrLinear O(n) Simple to implement

search only to provide an upper-bound on worst-case perfa-S€arch Does not scale

mance, though some ORBs [4] use linear search for operatign®"2"Y O(lgn) Additions/deletions
P Search are expensive
demultiplexing.

Dynamic | O(1) average case¢ Hashing overhead
Binary search: Binary search is a more scalable demulti-| Hashing | O(n) worst case

plexing strategy than linear search since(téign) lookup Perfect O(1) worst case | For static configurations

time is effectively constant for most applications. However|| Hashing generate collision-free

insertions and deletions can be complicated since data mulst__ hashing functions

be sorted for the binary search algorithm to work correctly] Actve | O(1)worstcase | For system generated
Demuxing keys, add direct indexing

Therefore, binary search is particularly useful for ORB opera
tion demultiplexing since all insertions and sorting can be pe
formed off-line by an IDL compiler. In contrast, using binar : .

Yy b . 9 ¥'ab|e 1. Summary of Alternate POA Demultiplexing Strate-
search to demultiplex requests to servants is more problerlré—
atic since servants can be inserted or removed dynamicall9 &0
run-time.

information to keys

Dynamit_: hashing: Many QRBS. use dynamic hash_ing 35 2.3 The Performance of Alternative POA Demultiplex-
their Object Adapter demultiplexing strategy. Dynamic hash- ing Strategies

ing providesO(1) performance for the average case and sup-
ports dynamic insertions more readily than binary sear@ection 2.2.1 describes the demultiplexing steps a CORBA re-
However, due to the potential for collisions, its worst-case equest goes through before it is dispatched to a user-supplied
ecution time isO(n), which makes it inappropriate for hardservant method. These demultiplexing steps include finding
real-time applications that require efficient and predictalitee Object Adapter, the servant, and the skeleton code. This
worst-case ORB behavior. Moreover, depending on the hasletion empirically evaluates the strategies that TAO uses for



each demultiplexing step. All POA demultiplexing measure-3. Object keys will include an index into tHeOA table
ments were conducted on an UltraSPARC-II with two 300 to identify the POA where the object was activated.
MHz CPUs, a 512 Mbyte RAM, running SunOS 5.5.1, and TAO’s ORB Core will use this index as the active demul-
C++ Workshop Compilers version 4.2. tiplexing key.

POA lookup: An ORB Core must locate the POA corre- 4. In some cases, the POA name also may be needgd,
sponding to an incoming client request. Figure 2 shows that if the POA is activated on-demand. Therefore, the object
POAs can be nested arbitrarily. Although nesting provides a reference will contain both the name and the index.
useful way to organize policies and namespaces hierarchically, ] ] . ]

the POAs nesting semantics complicate demultiplexing cof®ing active demultiplexing for POA lookup should provide
pared with the original CORBA Basic Object Adapter (BOA ptimal predlctabll_lty ar_ld scalz_iblh_ty, just as it does when used
demultiplexing [6] specification. or servant demultiplexing, which is described next.

We conducted an experiment to measure the effect of §ervant demultiplexing: Once the ORB Core demulti-
creasing the POA nesting level on the time required to lookplexes a client request to the right POA, this POA demulti-
the appropriate POA in which the servant is registered. \Mexes the request to the correct servant. The following discus-
used a range of POA depths, 1 through 25. The results &itsh compares the various servant demultiplexing techniques
shown in Figure 3. described in Section 2.2.2. TAO uses the Service Configu-
rator [24], Bridge, and Strategy design patterns [25] to defer
the configuration of the desired servant demultiplexing strat-
egy until ORB initialization, which can be performed either
statically (i.e., at compile-time) odynamically(i.e., at run-
time) [13]. Figure 4 illustrates the class hierarchy of strategies

_ that can be configured into TAO's POAs.

£}

>

2 DemuxTable | <<forwards>> _~, Table_impl

S

4 1

current case Linear Search Active Demux
best case
20
25 ‘ ‘
POA Depth Binary Search Dynamic Hash Perfect Hash
Figure 3: Effect of POA Depth on POA Demultiplexing La-
tency Figure 4: TAO's Class Hierarchy for POA Active Object Map
Strategies

Since most ORB server applications do not have deeply
nested POA hierarchies, TAO currently uses a POA demulti~r o\ a1ate the scalability of TAO, our experiments used a
plexing strategy where each POA finds its child using dynamig, o of servants, 1 to 500 by increments of 100, in the server.
hashing and delegates to the child POA where this procesgjig e 5 shows the latency for servant demultiplexing as the
_repeated until the se_arch is complete. This POA d_emumpl%mber of servants increases. This figure illustrates that ac-
ing strategy results iW)(n) growth for the lookup time and e demultiplexing is a highly predictable, low-latency servant

does not scale up to deeply nested POAs. Therefore, we\geg | strategy. In contrast, dynamic hashing incurs higher
adding active demultiplexing to the POA lookup phase, whigly\siant overhead to compute the hash function. Moreover,

operates as follows: its performance degrades gradually as the number of servants
increases and the number of collisions in the hash table in-
1. Alllookups start at th&®ootPOA. crease. Likewise, linear search does not scale for any realistic
2. TheRootPOA will maintain aPOA table that points systemj.e., its performance degrades rapidly as the number of
to all the POAs in the hierarchy. servants increase.
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100 200 549 P —— The lookup key for this phase is the operation name, which

No. of Objects 50 is astring  defined by developers in an IDL file. However,
it is not permissible to modify the operatigtring name
Figure 5: Servant Demultiplexing Latency with Alternatives include active demultiplexing information. Since active de-
Search Techniques multiplexing cannot be used without modifying the GIOP pro-
tocol! TAO uses perfect hashing for operation demultiplex-
ing. Perfect hashing is well-suited for this purpose since all

. . . operations names are known at compile time.
Note that we did not implement the perfect hashing strated))/ _ ) i P .
Figure 7 plots operation demultiplexing latency as a func-

for servant demultiplexing. Although it is possible to know the £ th ber of _ his i i h
set of servants on each POA for certain statically configuridf? Of the number of operations. This figure illustrates that

applicationsa priori, creating perfect hash functions repeat-

edly during application development is tedious. We omitte

binary search for similar reasorig., it requires maintaining ‘ o pertect Hashing DBinary Search ‘
. . . . R . ynamic Hashing O Linear Search

a sorted active object map every time an object is activat

or deactivated. Moreover, since the object key is created

a POA, active demultiplexing provides equivalent, or bette

performance than perfect hashing or binary search.

Operation demultiplexing: The final step at the Object
Adapter layer involves demultiplexing a request to the appr
priate skeleton, which demarshals the request and dispatc
the designated operation upcall in the servant. To measli
operation demultiplexing overhead, our experiments defin
a range of operations, 1 through 50, in the IDL interface. 10 L

For ORBs like TAO that target real-time embedded system ¥ a0 50
operation demultiplexing must be efficient, scalable, and pr No. of Methods
dictable. Therefore, we generate efficient operation l00KgRy re 7: Operation Demultiplexing Latency with Alternative
using GPERF [23], which is a freely available perfect hag?earch Techniques
function generator we developed.

GPERF [26] automatically constructs perfect hash func-
tions from a user-supplied list of keywords. In addition to tt’ggﬁr:L

Latency (us)

Linear Search
Dynamic Hashing
Binary Search
Perfect Hashing

1

toct hash f : GPERF | i ect hashing is extremely predictable and efficient, outper-
perfect hash functions, can also generate linear ing dynamic hashing and binary search. As expected, lin-

binary search strategies. ear search depends on the number and ordering of operations,

Figure 6 illustrates the interaction between the TAO ID{yhich complicates worst-case schedulability analysis for real-
compiler and GPERF. When perfect hashing, linear search g, appjications.

binary search operation demultiplexing strategies are selected,
TAO's IDL compller invokes GPERF as a co-process to gelee are investigating modifications to the GIOP protocol for hard real-

?rate an optimized lookup strategy for operation names in lighe systems that possess stringent latency and message-footprint require-
interfaces. ments.




Optimizing servant-based lookups: When a CORBA re-
quest is dispatched by the POA to the servant, the POA u: 0
the Object Id in the request header to find the servantin its A BWith Reverse L ookup
tive Object Map. Section 2.2.3 describes how TAO'’s looku B Without Rever se L ookup
strategies provide efficient, predictable, and scalable mecl
nisms to dispatch requests to servants based on Object Ids Time
particular, TAO’s Active Demultiplexing strategy enables cor (usec)
stantO(1) lookup in the average- and worst-case, regardle
of the number of servants in a POA's Active Object Map.

However, certain POA operations and policies requil
lookups on Active Object Map to be based on ther-
vant pointer rather than the Object Id. For instance
the _this method on the servant can be used with tt
IMPLICIT _ACTIVATION POA policy outside the context of
request invocation. This operation allows a servant to be ¢
tivated implicitly if the servant is not already active. If the
servant i_s already active, it will return the object reference C‘ll—ri'gure 8: Benefits of Adding a Reverse-Lookup Map to the
responding to the servant. POA

Unfortunately, naive POASs Active Object Map imple-
mentations incur worst-case performance for servant-based

lookups. Since the primary key is the Object Id, servant-based

lookups degenerate into a linear search, even when Acf¥§rhead of maintaining an additional table in the POA. For
Demultiplexing is used for the Object Id-based lookups. AYerY object activation and deactivation, two updates are re-
shown in Figure 5, linear search is prohibitively expensive 4dired in the Active Object Map: (1) to the Reverse-Lookup

the number of servants in the Active Object Map increasé@"?‘,p and the (2) to the Active Demultiplexing_ map used for
fbject Id-based lookups. However, this additional process-

This overhead is particularly problematic for real-time appl > \
cations, such as avionics mission computing systems [11], gk does not affect the critical path of Object Id-based lookups

(1) create a large number of objects usitis ~ during their during run-time.
initialization phase and (2) must reinitialize rapidly to recovE&ummary of TAO’s POA demultiplexing strategies:
from transient power failures. Based on the results of our benchmarks described above,

To alleviate servant-based lookup bottlenecks, we apply tiigure 9 summarizes the demultiplexing strategies that we
principle pattern ohdding extra statéo the POA in the form have determined to be most appropriate for real-time appli-
of aReverse-Lookumap that associates each servant with itations [11]. Figure 9 shows the use of active demultiplex-
Object Id inO(1) average-case time. In TAO, this Reverse-
Lookup map is used in conjunction with the Active Demulti-

(SKEL 1) (SKEL 2) oo (SKELN)
I I ! |

600
700 gog %00
Number of Servants 1000

plexing map that associates each Object Id to its servant. Fig-
ure 8 shows the time required to find a servant, with and with- PERFECT
out the Reverse-Lookup map, as the number of servants in a HASHING (SERVANTD (SERVANTZJ “.(SERVANTN)
POA increases. |

Servants are allocated from arbitrary memory locations. ACTIVE o 57
Since we have no control over the pointer value format, TAO PEMUXING (POAJ (POAz) ---(POAN)
uses a hash map for the Reverse-Lookup map. The value of the I I T

servant pointer is used as the hash key. Although hash maps ( ROOT POA )
do not guarante€(1) worst-case behavior, they do provide a ACTIVE ¢——— ]
significant average-case performance improvement over linear DEMUXING ( )
search.

A Reverse-Lookup map can be used only with the Figure 9: TAO's Default Demultiplexing Strategies
UNIQUEID POA policy since with théMULTIPLE_ID POA

policy, a servant may support many Object Ids. This constraint

is not a shortcoming since servant-based lookups are onlying-for the POA names, active demultiplexing for the servants,
quired with theUNIQUEID policy. One downside of addingand perfect hashing for the operation names. Our previous
a Reverse-Lookup map to the POA, however, is the increasegerience [27, 4, 28, 6, 7] measuring the performance of



CORBA implementations showed TAO is more efficient and Object Key
predictable than widely used conventional CORBA ORBs. P353bccdb00094aed firstPOA/mysenjant

4 A N

All of TAO’s optimized demultiplexing strategies described /' '\

above are entirely compliant with the CORBA specification.

Thus, no changes are required to the standard POA interfaces i :
o o Object Id

specified in CORBA specification [1]. Time Stamp jec

POA Name

2.3 Optimizing Object Key Processing in POA

Figure 11: TAO's Optimized Parsing of Object Keys
Upcalls

Motivation: Since the POA is in the critical path of request
processing in a server ORB, it is important to optimize Its ey instance, it must omit non-deterministic operations to im-

cessing. Figure 10 shows a naive way to parse an object ke end-to-end predictability. Likewise, it must provide a
In this approach, the object key is parsed and the individighimal memory footprint to support embedded systems [15].

Object Key TAO'’s predictability optimizations: Based on the princi-
ple patterns ofvoiding unnecessary generaliydrelaxing
system requirementa/e enhanced TAO'’s POA to selectively
disable the following features in order to improve end-to-end

P353bccdb00094ae8/firstPOA/myser\*ant

] predictability of request processing:
e Servant Managers are not required: There is no need
to locate servants in a real-time environment since all servants
POA Name must be registered with PO/Aspriori.
(P353bccdb00094a 8 e Adapter Activators are not required: Real-time ap-
X Object Id plications create all their POAs at the beginning of execution.
Time Stamp Therefore, they need not use or provide an adapter activator.
. ] . ] The alternative is to create POAs during request processing, in
Figure 10: Naive Parsing of Object Keys which case end-to-end predictability is hard to achieve.

e POA Managers are not required: The POA must not
fields of the key are stored in separate components. Unfigtroduce extra levels of queueing in the ORB. Queueing can
tunately, this approach (1) allocates memory dynamically fesuse priority inversion and excessive locking. Therefore, the
each individual object key field and (2) copies data to mop®©A Manager in TAO can be disabled.
the object key fields into individual objects.

, . o . TAO's footprint optimizations: In addition to increasing
TAQ's object key upcallloptlmlzatlons. TAO prowde§ the the predictability of POA request processing, omitting these

- ) . Features also decreases TAO's memory footprint. These omis-
terns Of. avoiding obvious wastand av0|d|ng. UNNECessaryqions were done in accordance with the Minimum CORBA
generality TAO Ieverages the fact thaf[ the object_k_ey IS ava@- ecification [29], which removes the following features from
able through the entire upcall and is not modified. Thl{%) CORBA 2.2 specification [1]:

the individual components in the object key can be optimize&e ' '

to point directly to their correct locations, as shown in Fig- « Dynamic Skeleton Interface

ure 11. This eliminates wasteful memory allocations and data
copies. This optimization is entirely compliant with the stan- ¢ Dynamic Invocation Interface
dard CORBA specification. « Dynamic Any

2.4 Optimizing POA Predictability and Mini-  * '"e"¢ePtrs

mizing Footprint ¢ Interface Repository

Motivation: To adequately support real-time applications, * Advanced POA features
an ORB’s Object Adapter must h@redictableand minimal ¢ CORBA/COM interworking



Component CORBA | Minimum | Percentage]] 3.1 Collocation Optimizations
CORBA Reduction o o . . .

=ToT 81696 507516 565 Motlvatllon: In addition to separatmg mterface an.d imple-

ORB Core 347:080 330,304 18 mentatlt_)n, a key strgngth of CORBA is its decoupling c_>f 1)

Dynamic Any 131,305 0 100 ;ervant implementations from (2) hoyv sgrvants are configured

CDR Interpreter 63,687 68.775 0 into server processes throughout a distributed system. In prac-

IDL Compiler 10,488 10512 0 tice, CORBA is used primarily to communicate between re-

Pluggable Protocols| 14,610 14.674 0 mote objects. However, there are configurations where a client

Default Resources 7.919 7.975 0 and servant must be collocated in the same address space [31].
T Total [ 861,985 639,456] 258 | In this case, there is no need to incur the overhead of data mar-

shaling or transmitting requests and replies through a “loop-

Table 2: Comparison of CORBA with Minimum CORBAback” tranqurt_device_,which is an application of the principle
Memory Footprint pattern ofavoiding obvious waste
TAO'’s collocation optimization technique: TAO's POA
optimizes for collocated client/servant configurations by gen-
Table 2 shows the footprint reduction achieved when tBgating a special stub for the client, which is an application
features listed above are excluded from TAO. The 25.8% tfthe principle pattern ofelaxing system requirementhis
duction in memory footprint for Minimum CORBA s fairly stup forwards all requests to the servant and eliminates data
significant. However, we plan to reduce the footprint of TAQyarshaling, which is an application of the principle pattern

even further by streamlining its CDR Interpreter [15]. In Mingf avoiding waste Figure 12 shows the classes produced by
imum CORBA, TAO's CDR Interpreter only needs to suppofia0’s IDL compiler.

the static skeleton interface (SSI) and static invocation inter-

face (Sll). Thus, support for the dynamic skeleton interface  CLIENT-SIDE SERVER-SIDE
T o . MAPPING MAPPING

(DSI) and dynamic invocation interface (DIl) can be omitted.

CORBA::Object Servant Base

3 Optimizing the ORB Core for Real-

time Applications
IR
The ORB Core is a standard componentin CORBA that is re-

sponsible for connection and memory management, data trans- T
fer, endpoint demultiplexing, and concurrency control [1]. ‘ Stub ‘ ‘ Collocated Proxy ‘ ‘ Skeleton ‘
An ORB Core is typically implemented as a run-time library
linked into both client and server applications. When a client <<forwards>>
invokes an operation on an object, the ORB Core is responsi- :
ble for delivering the request to the object and returning a re- \A ,
sponse, if any, to the client. For objects executing remotely, a ‘Ser"am 'mp'eme“ta“o“‘
CORBA-compliant ORB Core transfers requests via the Gen-
eral Inter-ORB Protocol (GIOP), which is commonly imple- Figure 12: TAO’s POA Mapping and Collocation Class
mented with the Internet Inter-ORB Protocol (IIOP) that runs
atop TCP. o

Optimizing a CORBA ORB Core to support real-time ap- The stub and skeletonlcla_sses shown in I_:|gure 12.are re-
plications requires the resolution of many design challeng8tired by the POA specification; the collocation class is spe-
This section outlines several of these challenges and descrfiiig t© TAO. Collocation is transparent to the client since it
the optimization principle patterns we applied to maximiz(H"_y accesses the abstract interface and never uses the collo-
the predictability, performance, and scalability of TAO’s ORg_atlon class directly. Therefore, the POA provides the colloca-
Core. These optimizations include transparently collocatifig class, rather than the regular stub class, when the servant
clients and servants that are in the same address space, fisides in the same address space as the client.
mizing dynamic memory allocations and data copies, and m8upporting transparent collocation in TAO: Clients can
imizing GIOP/IIOP protocol overhead. Additional optimizaebtain an object reference in several waysg, from
tions for real-time ORB Core connection management aad CORBA Naming Service or from a Lifecycle Ser-
concurrency strategies are described in [30]. vice generic factory operation. Likewise, clients can use




string _to _object to convert a stringified interoperablel: resolve object reference  3: find_servani()

objgct reference (IOR) into an object rgferenc_e. _To ensure lot ) —> [.corBA-ORBl ~— = | RoOtPOA : Portable
cality transparency, an ORB’s collocation optimization must — Server::POA
determine if an object is collocated. If itis, the ORB returnsa | . =
collocated stub — if it is not, the ORB returns a regular stub tclients \\ N . 2:get_collocated_poa()
a distributed object. AR $ \
The specific steps used by TAO’s collocation optimizations > —narrow\\(z 4:instantiates .-
are described below: -
New Object Reference :
. . o CORBA::Object . TAO
Step 1 — Determining collocation: To determine if an S ORB Core
object reference is collocated, TAO's ORB Core maintains a _ _ S
collocation table which applies the principle ahaintaining 8. invokes operations RN & _narrow (
extra state Figure 13 shows the internal structure for collo- N
cation table managementin TAO. Each collocation table maps 7: instantiates \\
Collocated Servant : < Servant Implementation :
RO0tPOA | 0. o1 CORBA::Object CORBA::ServantBase
CORBA::ORB PortableServer:POA |~ "’

Figure 14: Finding a Collocated Object in TAO

TAO_ORB_Core L
Y Addr As shown in Figure 14, when a client process tries to resolve
Table Collection N an imported object referen¢g), the ORB checké2) the col-
- \\\ location table maintained by TAO’s ORB Core to determine if
W AN any object endpoints are collocated. If a collocated endpointis
L Table Entry found this check succeeds and the RootPOA corresponding to

Collocation Table

=>|Bendpoint : Addr the endpoint is returned. Next, the matching Object Adapter
*|&Jpoa : PortableServer:POA . : . :
is queried for the servant, starting at its RootP(®. The
Figure 13: Class Relationship of TAO's Collocation TableSORB then instantiates a gene@ORBA::Object (4) and
invokes thenarrow operation onit. If a servantis found, the
ORB’s _narrow operation5)invokes the servant'siarrow
an ORB'’s transport endpoints to its RootPOA. In the casem&thod(6) and a collocated stub is instantiated and returned to
[IOP, endpoints are specified usifigostname, port numbgr the client(7). Finally, clients invoke operatior(8) on the col-
tuples. located stub, which forwards the operation to the local servant
Multiple ORBs can reside in a single server process. Eagh a virtual method call.
ORB can support multiple transport protocols and accept reif the imported object reference is not collocated, then either
quests from multiple transport endpoints. Therefore, TA@peration(2) or (3) will fail. In this case, the ORB invokes the
maintains multiple collocation tables for all transport protois _a method to verify that the remote object matches the tar-
cols used by ORBs within a single process. Since differgydt type. If the test succeeds, a distributed stub is created and
protocols have different addressing methods, maintaining preturned to the client. All subsequent operations are invoked
tocol specific collocation tables allows us to strategize and epmotely. Thus, the process of selecting collocated stubs or
timize the lookup mechanism for each protocol. non-collocated stubs is completely transparent to clients and
it's only performed at the time of object reference creation.

1.

Step 2 — Obtaining a reference to a collocated object: A
client acquires an object reference either by resolving an im-Step 3 — Performing collocated objectinvocations: Col-
ported IOR usingtring _to _object or by demarshaling located operation invocations in TAO borrow the client’s
an incoming object reference. In either case, TAO examiribgead-of-control to execute the servant’s operation. There-
the corresponding collocation tables according to the profifese, they are executed within the client thread at its thread
carried by the object to determine if the object is collocatgxiority.
or not. If the object is collocated, TAO performs the series of Although executing an operation in the client’s thread is
steps shown in Figure 14 to obtain a reference to the collocatedy efficient, it is undesirable for certain types of real-time
object. applications [32]. For instance, priority inversion can occur



when a client in a lower priority thread invokes operatioral requests directly to the servant class. Although this makes
on a collocated object in a higher priority thread. To prdhe common case very efficient, this implementation does not
vide greater access control over the scope of TAO'’s collocapport the following advanced POA features:

tion optimizations, applications can associate different access

policies to endpoints so they only appear collocated to cer® POA:Current is not setup

tain priority groups. Since endpoints and priority groups in ¢ |nterceptors are bypassed

many real-time applications are statically configured, this ac-

cess control lookup does not impose additional overhead. * POAManager state is ignored

. ] . e Servant Managers are not consulted
Empirical results: To measure the performance gain from

TAO's collocation optimizations, we ran server and client ® Etherealized servants can cause problems
threads in the same process. Two platforms were used t@ Location forwarding is not supported

benchmark the test program: a dual 300 Mhz UltraSparc-II
running SunOS 5.5.1 and a dual 400 Mhz Pentium-Il running

Microsoft Wino!ows NT 4.0 (SP3.) The test program was run aqqing support for these features to TAO’s collocation class

both with TAO's collocation optimizations enabled and digo,y downs the collocation optimization, which is why TAO

abled to compare the performance systematically. currently omits these features. We plan to support these ad-
Figure 15 shows the performance improvement, measujgfl e features in future releases of TAO so that if applica-

in calls-per-second, using TAO's collocation optimizationgong know these advanced features are not required they can
Each operation cubed a variable-length sequendersf s o ignored selectively.

that contained 4 and 1,024 elements, respectively. As ex-

e The POAsThread _Policy is circumvented

3.2 Memory Management Optimizations

60000

54237 . . ..
m—— Motivation: A key source of overhead and non-determinism

50000 in conventional ORB Core implementations is improper man-
40900 20450 agement of memory buffers. Memory buffers are used by
40000 ] CORBA clients to send requests containing marshaled param-
32000 eters. Likewise, CORBA servers use memory buffers to re-
30000 I ]— ceive requests containing marshaled parameters.
One source of memory management overhead stems from
20000 | the use of dynamic memory allocation, which is problem-
atic for real-time ORBs. For instance, dynamic memory can
10000 | fragment the global process heap, which decreases ORB pre-
2678 dictability. Likewise, locks used to access a global heap from
ol T e multiple threads can increase synchronization overhead and
cube_small_sequence<long> cube_large_sequence<long> incur priority inversion [30]
Operations Another significant source of memory management over-
\ B Solarts wio Collocation - BNT wio Collocation \ head involves excessive data copying. For instance, conven-
tional ORB’s often resize their internal marshaling buffers
Figure 15: Results of TAO’s Collocation Optimizations Multiple times when encoding large operation parameters.
Naive memory management implementations use a single
buffer that is resized automatically as necessary, which can
pected, collocation greatly improves the performance of arause excessive data copying.
eration invocations when servants are collocated with clien]ti ,
Our results Sh.OW’ depending on the size of arguments PaSERS's memory management optimizations leverage off the
to the operations, performance improves from 2,000%&

8sign of its concurrency strategies, which minimize thread
200,0009%. Alth_ough th,e test resplts are fpre_seeaple, t%}ﬁtext switching overhead and priority inversions by elimi-
show that by using TAO's collocation optimization, invoc

. . Fhating queueing within the ORB’s critical path. For example,
tlons_on collocated CORBA objects can be as fast as calll&g th% ?:Iient-sige, the thread that invokespa remote opergtion
functions on local C++ objects. is the same thread that completes the I/O required to send the
TAO's collocation optimizations are not totally compliantequest,i.e., no queueing exists within the ORB. Likewise,
with the CORBA standard since its collocation class forwarda the server-side, the thread that reads a request completes

calls/sec

S memory management optimization techniques:



the upcall to user code, also eliminating queueing within the 50
ORB. These optimizations are based on the principle pattern —— Global Allocator
of exploiting localityandoptimizing for the common case LS sllassier
By avoiding thread context switches and queueing, TAO ,, |
can benefit from memory management optimizations based
on thread-specific storageThread-specific storage is a com-
mon design pattern [13] for optimizing buffer management |
in multi-threaded middleware. This pattern allows multiplejz' 30 I
threads to use one logically global access point to retrievé
thread-specific data without incurring locking overhead for
each access, which is an application of the patteavofding
waste TAO uses this pattern to place its memory allocators
into thread-specific storage. Using a thread-specific memory :
pool eliminates the need for intra-thread allocator locks, re-
duces fragmentation in the allocator, and helps to minimize 10 ! ! ! !
e o . o 0 200 400 600 800 1000
priority inversion in real-time applications. iteration
In addition, TAO minimizes unnecessary data copying by
keeping a linked list of CDR buffers. As shown in Figure 1@sigure 17: Buffer Allocation Time using TSS and Global Al-
operation arguments are marshaled into TSS allocated buffgysators
The buffers are linked together to minimize data copying.
Gather-write /0O system calls, suchvastev , can then write
these buffers atomically without requiring multiple OS call§RB buffers and the other using a global allocator.
unnecessary data allocation, or copying. TAO’s memory mandn this experiment, we perform16 ORB buffer allocations
and ~1,000 regular data allocations. The exact series of al-
operation ((parami| , | param2),large_param |) locations is not important, as long as both experiments per-
- T T : form the same number. If there is one series of allocations

marshal B g where the global allocator behaves non-deterministically, it is
ORB buffers [T 1 [+ [— [ 1] not suitable for hard real-time systems.

o r il Our results in Figure 17 illustrate that TAO's TSS allocators

writev 0| oo 1 S Lo isolate the ORB from variations in global memory allocation
1b|1b]1]b] € strategies. In addition, this experiment shows how TSS allo-
Gather |¢ ! : ! : ;‘ TSS Pool cators are more efficient than global memory allocators since
Write | oVEC they eliminate locking overhead. In general, reducing locking
overhead throughout an ORB is important to support real-time

Figure 16: TAO's Internal Memory Managment applications with deterministic QoS requirements [30].

agement design also supports special allocators, such as 2%1% M_inimizing ORB Protocol Message Foot-
copy schemes [33] that share memory pools between user pro- Print

cesses, the OS kernel, and network interfaces. o ) .
Motivation: Real-time systems have traditionally been de-

Empirical results: Figure 17 compares buffer allocatiorveloped using proprietary protocols that are hard-coded for
time for a CORBA request using thread-specific storage (TSSBch application. In theory, CORBA's GIOP/IIOP protocols
allocators with that of using a global allocator. These eabviate the need for proprietary protocols. In practice, how-
periments were executed on a Pentium 11/450 with 256Mlver, many developers of real-time applications are justifiably
of RAM, running LynxOS 3.0. The test program containezbncerned that standard CORBA protocols will cause exces-
a group of ORB buffer (de)allocations intermingled with sive overhead. For example, some applications have very strict
pseudo-random sequence of regular (de)allocations. Thisasstraints on latency, which is affected by the total time re-
typical of middleware frameworks like CORBA, where appliguired to transmit the message. Other applications, such as
cation code is called from the framework and vice-versa. Batiobile PDAs running over wireless access networks, have
experiments perform the same sequence of memory allocationted bandwidth, which makes them more sensitive to pro-
requests, with one experiment using a TSS allocator for teeol message footprint overhead.



TAO’s ORB protocol optimization techniques: A GIOP To obtain more significant protocol optimizations, we are

request includes a number of fields, such as the version naiding apluggable protocold§ramework to TAO [34]. This

ber, that are required for interoperability among ORBs. Hofvamework generalizes TAO’s curreARDRBgioplite op-

ever, certain fields are not required in all application domairien to support both pluggable ORB protocols (ESIO&s)l

For instance, the magic number and version fields can be ompitiggable transport protocols.

ted if a single supplier and single version is used for ORBs in

areal-time embedded system. Likewise, if the communicating

ORBs are running on systems with the same endianess, 4 Related Work

big-endian or little-endian, the byte order flag can be omitted

from the request. Demultiplexing is an operation that routes messages through
Since embedded and real-time systems typically run the layers of an ORB endsystem. Most protocol stacks models,

same ORB implementation on similar hardware, we hasech as the Internet model or the ISO/OSI reference model,

modified TAO to optionally remove some fields from theequire some form of multiplexing to support interoperabil-

GIOP header and the GIOP Request header when itlyewith existing operating systems and peer protocol stacks.

-ORBgioplite option is given to the client and servetikewise, conventional CORBA ORBs utilize several extra

CORBA::ORBinit method. The fields removed by thidevels of demultiplexing at the application layer to associate

optimization are shown in Table 3. These optimizations d@reoming client requests with the appropriate servant and op-

guided by the principle patterns oflaxing system require- eration (as shown in Figure 2).

mentsandavoiding unnecessary generality Related work on demultiplexing focuses largely on the
lower layers of the protocol stack.e., the transport layer
Header Field Size and below, as opposed to the CORBA middleware. For in-
GIOP magic number 4 bytes stance, [21, 35, 22, 36] study demultiplexing issues in com-
GIOP version 2 bytes

munication systems and show how layered demultiplexing is

(R3|0P ﬂ?gSS (byte (c;rdetr) ¢ > 41bb¥te not suitable for applications that require real-time quality of
Request Principal | > 4 byles senvice guarantees.
Total 2—15 bytes Packet filters are a mechanism for efficiently demultiplex-

ing incoming packets to application endpoints [37]. A number
) : . . , . f schemes to implement fast and efficient packet filters are

;Ii';ti)lzzg(.)rl:/lessagmg Footprint Savings for TAO's GIOPlite OF?';vailable. These include the BSD Packet Filter (BPF) [38],

the Mach Packet Filter (MPF) [39], PathFinder [40], demul-

Empirical results: We conducted an experiment to measu%glexmg based on automatic parsing [41], and the Dynamic

the performance impact of omitting the GIOP fields in Table acket Flltgr (DPF) [36]. - . :
These experiments were executed on a Pentium 11/450 Witl*lAS me_ntloned before,_m_ost existing demultiplexing strate-
256Mb of RAM, running LynxOS 3.0 in loopback mode. ToJies are implemented within the OS kernel. However, to op-

ble 4 summarizes the results, expressed in caIIs—per-seCSH&Z.i”y redu<_:e ORB endsystem Qemult|pIeX|ng overhead re-
guires a vertically integrated architecture that extends from the

OS kernel to the application servants. Since our ORB is cur-
Marshaling Enabled Marshaling Disabled rently implemented in user-space, however, our work focuses
min | max | avg min | max| avg| on minimizing the demultiplexing overhead in steps 3, 4, 5,
GIOP 2,878 2,937 | 2,906 || 2,912 | 2,976 | 2,949 || and 6 (which are shaded in Figure 2).
GIOPlite | 2,883 | 2,978 | 2,943 || 2,911 | 3,003 | 2,967

Table 4: Performance of TAO's GIOP and GIOPlite Protoc®  Concluding Remarks
Implementations
Developers of real-time systems are increasingly using off-

Our empirical results reveal a slight, but measurabfg, the-shelf middleware components to lower software lifecycle
improvement when removing the GIOP message footprautsts and decrease time-to-market. In this economic climate,
“overhead.” More importantly though, these changes do ribe flexibility offered by CORBA makes it an attractive mid-
affect the standard CORBA APIs used to develop applicatiodfeware architecture. Since CORBA is not tightly coupled to
Therefore, programmers can focus on the development of agparticular OS or programming language, it can be adapted
plications, and if necessary, TAO can be optimized to use thésadily to “niche” markets, such as real-time embedded sys-
lightweight version of GIOP. tems, which are not well covered by other middleware. In this
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